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Targeting G protein‑coupled receptor 
for pain management
Hongyan Li1,2,3, Rong Wang2, Yinying Lu3, Xuehua Xu4, Jiaxiang Ni1

Abstract:
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue 
damage or described in terms of such damage. Great progress has been made in understanding the 
important roles of various G protein‑coupled receptors in the regulation of pain transmission. However, 
many important questions remain uncertain about the precise signal transduction mechanisms. This 
review focuses opioid receptor and CXC receptor 4 on the effects and mechanisms of pain. Taken 
together, chemokines and their receptors are potential targets for the development of novel pain 
management and therapy.
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Introduction

The heterotrimeric G protein‑coupled 
receptors  (GPCRs) are the largest 

family of cell surface receptors. In spite 
of their diverse functions, all GPCRs 
consist of seven transmembrane domains 
linked by intracellular and extracellular 
loops.[1] The binding of ligands to their 
receptors induces the conformation change 
of the receptor and allows to interact to 
the specific heterotrimeric G proteins with 
their intracellular domains.[2] This, in turn, 
leads to coupling to and signaling through 
activation of one or more G proteins inside 
the cell.

GPCRs can block pain upon targeting opioid, 
cannabinoid, α2‑adrenergic, muscarinic 
acetylcholine, gamma‑aminobutyric acidB 
(GABAB), Group  II and III metabotropic 
glutamate, and somatostatin receptors. 
Therefore, we focus GPCRs, especially 
opioid receptor and CXC receptor 
4 (CXCR4), on the mechanisms and targets 
of pain management.

The heterotrimeric GPCRs are the largest, 
most diverse receptor families in the 
mammalian cells. The G proteins consist 
of three subunits: Gα, Gβ, and Gγ. It has 
been demonstrated that 5 genes encode the 
β subunits, 12 genes encode the γ subunits, 
and 17 genes encode the α subunits.[3] GPCRs 
interact with heterotrimeric G proteins 
composed of α, β and γ subunits that are 
GDP bound in the resting state. Agonist 
binding triggers a conformational change in 
the receptor, which catalyses the dissociation 
of GDP from the α subunit followed by 
GTP-binding to Gα and the dissociation 
of Gα from Gαγ subunits.  Gβγ subunits 
activate a diverse array of effectors, such 
as enzymes and ion channels.[4] Moreover, 
Gα subunits have a key role in determining 
the receptor coupling specificity and 
influencing the efficiency of ion channel 
modulated by Gβγ subunits.[5] Gα subunits 
can be broadly classified into four major 
subfamilies: Gαs‑, Gαi/o‑, Gαq/11‑, and 
Gα12/13‑coupled receptors. [3]

GPCRs regulate  and are  involved 
in diverse diseases, including cancer, 
kidney, inflammatory, central nervous 
system (CNS), and chronic diseases. GPCRs 
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play an important role in pain transduction, especially 
cancer pain and chronic pain. They regulate the pathways 
and mechanisms during pain progress. Almost all GPCR 
agonists that have an analgesic action are coupled to Gi/o 
proteins. Therefore, they become a new target in blocking 
pain. Here, we focus opioid receptor and CXCR4 on the 
effects and mechanisms of pain.

Opioid Receptors and Pain

Opioid receptors are members of the Gi protein‑linked 
GPCRs. These receptors, as well as the chemokine 
and opioid peptide ligands, are widely distributed 
in the brain tissue and the periphery. Four major 
opioid receptors have been cloned: μ‑, δ‑, κ‑, and 
nociceptin/orphanin FQ receptors (opioid receptor‑like 
1 [ORL1]).[6] Each of the opioid receptor genes expressed 
in brain tissue and immune cells has been cloned and 
sequenced.[7‑12] Stimulation of opioid receptors promotes 
Ca2+ release of intracellular Ca2+ stores through activation 
of phospholipase C.[13] The expression level of μ‑, δ‑, and 
κ‑opioid receptors is correlated to the pain conditions. 
In a diabetic neuropathy rat model, the expression of 
μ‑opioid receptor is attenuated in the spinal dorsal 
horn.[14,15] μ‑opioid receptor has been reduced by injury 
in the spinal dorsal horn.[16] On the other hand, an 
increased expression of δ‑opioid receptor of dorsal 
root ganglion  (DRG) neurons is detected in chronic 
inflammatory pain rat model.[17] Consistent with above, 
the level of κ‑opioid receptor is upregulated in the DRG 
neurons of mice following nerve injury.[18]

The μ‑opioid agonists are still the gold standard for 
the treatment of moderate and severe pain. μ‑opioid 
receptor is probably coupled to different signaling 
pathways and heterogeneously expressed in different 
phenotypes of DRG neurons.[19] Intrathecal injection of 
μ‑opioid receptor antagonists abolishes the inhibitory 
effect on dorsal horn neurons and the analgesic action 
produced by μ‑opioids administered systemically,[20,21] 
indicating that μ‑opioid receptor in the DRG and spinal 
cord is involved in pain transmission. However, the 
heterodimerization of the κ‑and δ‑opioid receptors 
synergistically increases the binding of their selective 
agonists. On the contrary, co‑expression of μ‑  and 
δ‑opioid receptors decreases the binding of their selective 
agonists.[22] In contrast to the individually expressed 
μ‑ and δ‑opioid receptors, the co‑expressed receptors are 
insensitive to pertussis toxin in COS cells.[22] Therefore, 
co‑activation of both Gq and Gi/o may be required for 
this opioid excitatory effect. However, the functional 
outcome of this effect is not clear, but it may play a role 
in opioid‑induced hyperalgesia reducing pain. The μ‑, δ‑, 
κ‑, and ORL1‑opioid receptor agonists inhibit neuronal 
activity through (1) inhibition of voltage‑gated calcium 
channels in the DRG neurons[23‑25] and (2) suppression 

of neuronal excitability through activation of GIRK 
channels in the postsynaptic neurons in the spinal cord.[26] 
Above all, opioid receptor novel inhibitors will be a 
potential treatment target for pain management.

CXC Receptor 4 and Pain 
Neurotransmission

Chemokines are responsible for the recruitment 
of leukocytes during inflammation and disease. 
Chemokines, based on the position of conserved 
cysteines, have been classified into four families: C, CC, 
CXC, and CX3C.[27] Besides their well‑known role in the 
immune system, they are highly expressed in the nervous 
system, indicating that they might play roles in the 
regulation of stem cell migration and neurotransmission. 
Chemokine signaling is also of key importance in the 
regulation of neuroinflammatory responses. Many 
chemokines and their receptors may play a distinct role 
in chronic pain syndromes.[28] Although it is uncertain 
of the exact mechanism by which chemokines and their 
receptors act in these pain states, pain strategies aimed 
at limiting the actions of chemokines may result in an 
important new direction of therapies on pain.

GPCR also involved the chemotaxis and inflammatory 
pathway signaling. A common response of all nonexcitable 
cells by chemokine stimulation is chemotaxis. The 
presence of chemokine receptors on neurons often triggers 
downstream signaling cascades through dissociation of 
G proteins which induce the phosphoinositide 3‑kinase 
pathway or activates phospholipase C resulting in 
Ca2+  influx and protein kinase C activation.[28] It is 
important to note that most responses toward chemokines 
are blocked with pertussis toxin, indicating that many 
chemokine receptors are Gi/o coupled. Recent functional 
characterizations of chemokine receptors suggest that 
these proteins form dimers that could further regulate 
their signaling.[29,30] In addition, chemokines may 
activate mitogen‑activated protein kinase by either Ga 
or G‑protein independent signaling.[29,31]

The chemokine CXC motif receptor 4  (CXCR4) is a 
major GPCR for CXCL12. CXCL12/CXCR4 chemokine 
signaling plays a critical role in modulating various 
nervous system developmental processes and in 
regulating synaptic plasticity. CXCR4 is highly expressed 
in the peripheral nervous system (PNS) and CNS and 
exerts functions as modulation of neurotransmission, 
synaptic plasticity, and neuroglial interactions.[32] In pain 
processing, CXCR4 is overexpressed on primary sensory 
neurons, satellite cells, Schwann cells, and endothelial 
cells in the peripheral nociceptive structure.[33‑39] Besides 
functions in PNS, CXCR4 is involved in the CNS 
pain signaling. In a central neuropathic pain model, 
CXCL12/CXCR4 was upregulated in neurons, astrocytes, 
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microglia/macrophages, and leukocytes in the lumbar 
spinal cord.[40] However, the role of CXCR4 in pain 
transduction remains largely unknown. A few studies 
evaluate the effects of pharmacological inhibition of 
CXCR4 on central pain signal processing. Increased 
signaling by stromal‑derived factor‑1 (SDF‑1/CXCL12) 
and its receptor, CXCR4, has been shown to contribute 
to chronic pain behavior.[35] Specific chemokine receptor 
antagonists for CXCR4 successfully may reverse 
nociceptive pain behaviors.[37]

The involvement of chemokine and their receptors in 
neuropathic pain processing has recently been established 
in animal models. It has been shown that the injection of 
SDF1α/CXCL12 into the un‑inflamed adult rat hind paw 
produces dose‑dependent tactile allodynia, designed 
regulated on activation, normal T‑cell expressed, and 
secreted (RANTES/CCL5) or macrophage inflammatory 
protein‑1α (MIP1α/CCL3).[34] These behavioral studies in 
combination with reverse‑transcription polymerase chain 
reaction, calcium imaging, and immunohistochemistry 
confirmed the presence and functionality of the respective 
chemokine receptors, CXCR4, CCR5, and CCR4 in rodent 
DRG sensory neurons.[34] CXCR4‑knockout mice show 
abnormalities in the development of several neuronal 
structures, such as the dentate gyrus of the hippocampus, 
the cerebellum, and the DRG.[41,42] These phenotypes 
result from deficits in the chemokine‑mediated migration 
of neural stem cells. Chemokines are involved in the 
regulation of neuronal excitability, neurotransmitter 
release, and neuronal survival.[42] These possibilities 
are supported by the extensive expression patterns 
of some chemokines and their receptors throughout 
the developed brain[43‑48] and by the reported actions 
of chemokines on phenomena such as neuronal 
excitability and transmitter release in both CNS[49‑52] and 
PNS.[34] Interestingly, although many chemokines are not 
commonly expressed at high levels in the brain, they can 
be dramatically upregulated due to neuroinflammatory 
responses. Increased signaling by SDF‑1/CXCL12 and 
its receptor, CXCR4, has been shown to contribute to 
chronic pain behaviors. The use of specific chemokine 
receptor antagonists for CXCR4 successfully reverses 
nociceptive pain behavior. Taking all this evidence into 
consideration, drugs that inhibit chemokine receptor 
function would be predicted to be useful in treating 
painful neuropathies. In the spinal cord injury‑induced 
central neuropathic pain model, it is demonstrated that 
SDF1 and CXCR4 expression was continuously increased 
at the spinal cord level.[53] Moreover, by mapping the 
cellular and subcellular localization of SDF1 and CXCR4, 
Reaux‑Le et al. reported that SDF1/CXCR4 system was 
closely related to the nociceptive pathway, especially in 
the primary nociceptive neurons, and they also found 
that activating the CXCR4 by intrathecal SDF1 injection 
could induce mechanical allodynia, which could be 

prevented by the CXCR4‑neutralizing antibody.[54] 
However, the underlying mechanisms of SDF1/CXCR4 
involved in the chronic and persistent pain remain 
unclear. Recently, this chemokine signaling has attracted 
much attention because of its emerging involvement in 
nociceptive signal regulation.

In summary, chemokines and their receptors could 
potentially be important for the development and 
maintenance of pain. Chemokines can be synthesized 
by nociceptive neurons and by other cells in response 
to injury. These chemokines activate receptors 
on macrophages and microglia, resulting in their 
migration and enhancing their activation. Importantly, 
the chemokines, as RANTES, SDF1α, MCP1, and 
fractalkine,[34,55] can act directly on nociceptive neurons 
to produce excitation and pain.[34,55] Opioid receptors are 
members of the Gi protein‑linked GPCRs. The μ‑opioid 
agonists are still the gold standard for the treatment 
of moderate and severe pain. Furthermore, specific 
chemokines/receptors are upregulated following 
peripheral nerve injury and appear to participate 
in neural signal processing, leading to chronic pain 
states.[56] CXCL12/CXCR4 signaling is now proven to 
be a potential analgesic target for pain management.

Conclusion

Tissue damage, inflammation, or injury of the nervous 
system may lead to chronic neuropathic pain characterized 
by hyperalgesia, allodynia, and spontaneous pain.[57,58] 
Significant progress has been made in understanding 
the important roles of various GPCRs in the regulation 
of pain transmission. However, intracellular signaling 
is complex and diverse process, and many important 
questions remain to be answered, especially in the precise 
signal transduction mechanism that underlies the diverse 
effects of individual GPCR agonists on ion channels 
and transmission during the pain. Further studies 
on the signal transduction pathways and molecular 
interactions between GPCRs are essential for a better 
understanding of drugs’ action through GPCRs. Drug 
development by targeting each GPCR will improve the 
efficacy of traditional GPCR analgesics used to treat 
acute and chronic pain. The opioid receptor agonists are 
still the gold standard for the treatment of chronic pain. 
Furthermore, CXCR4 as a new therapeutic target has the 
pivotal role for pain managements. GPCRs function, their 
downstream effectors, and signaling pathways in pain 
processing need to be further illustrated. Taken together, 
chemokines and their receptors are potential targets for 
the development of novel pain management and therapy.
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