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Abstract: MYC regulates a complex biological program by transcriptionally activating and repressing
its numerous target genes. As such, MYC is a master regulator of many processes, including cell cycle
entry, ribosome biogenesis, and metabolism. In cancer, the activity of the MYC transcriptional network
is frequently deregulated, contributing to the initiation and maintenance of disease. Deregulation
often leads to constitutive overexpression of MYC, which can be achieved through gross genetic
abnormalities, including copy number alterations, chromosomal translocations, increased enhancer
activity, or through aberrant signal transduction leading to increased MYC transcription or increased
MYC mRNA and protein stability. Herein, we summarize the frequency and modes of MYC
deregulation and describe both well-established and more recent findings in a variety of cancer
types. Notably, these studies have highlighted that with an increased appreciation for the basic
mechanisms deregulating MYC in cancer, new therapeutic vulnerabilities can be discovered and
potentially exploited for the inhibition of this potent oncogene in cancer.
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1. Introduction

MYC (c-MYC) regulates the expression of many target genes that together coordinate a complex
biological response to coordinate cell growth and proliferation. MYC achieves this as a sequence
specific transcription factor, that together with its partner protein MAX [1,2], regulates the activation [1]
and repression [3,4] of its many target genes necessary for cell cycle progression, ribosome biogenesis,
and biomass accumulation [5–7]. More recently, MYC has also been implicated in the regulation of
transcriptional pause release of RNA Polymerase II [8–10] and enhanced capping of nascent mRNA
transcripts [11,12], leading to a pervasive effect on transcript abundance [13].

MYC RNA and protein expression is normally tightly regulated and increases in response to
discrete biological scenarios requiring high MYC levels, such as cellular proliferation in response to
mitogenic signaling [7,14–16]. However, in cancer, MYC expression and/or activity are frequently
co-opted by the tumor, resulting in elevated MYC RNA and protein expression; accordingly, MYC
has been identified as one of the most commonly deregulated oncogenes in a wide variety of cancer
types [17,18]. This aberrant expression, or deregulation, of MYC and the transforming MYC family
members (N-MYC and L-MYC) can take many different forms, reflecting the complexity of MYC
biological regulation. Broadly, MYC deregulation can be classified as alterations that result in MYC
RNA or protein products that are unresponsive to negative regulatory stimuli, resulting in sustained
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MYC expression, or result in elevated basal levels of MYC expression. Herein, we summarize recent
findings regarding the variety of mechanisms by which MYC can be deregulated in cancer, contributing
to its potent role in both the initiation and maintenance of the tumorigenic state.

2. MYC Amplification

Gene amplification of MYC is the most commonly observed marker of MYC deregulation in
cancer. Gene duplication, taking place through genome doubling or tandem duplications [19], is the
underlying mechanism for copy-number alterations (CNAs) in various oncogenes. Evidence of MYC
amplification was first identified in the human leukemia cell line HL60 in 1982 [20]. Soon after,
amplifications of MYCN and MYCL were discovered in cell lines and tumors of neuroblastoma and
small cell lung cancer, respectively [21,22], with small cell lung cancer being the first cancer found
to have amplifications of all three transforming MYC family members [22–24]. In the past decade,
the multitude of genome-wide sequencing studies of primary tumors, enabled by technological
advances in next-generation sequencing and data analysis [25], further established MYC as one
of the most frequently amplified genes across human cancers and revealed new cancer types that
harbor MYC, MYCN, and MYCL amplifications (Summarized in Figure 1a). Comprehensive global
genome-sequencing projects on multitudes of cancers, like The Cancer Genome Atlas (TCGA) [26] and
International Cancer Genome Consortium (ICGC) [27] facilitated the detection of previously unknown
somatic mutations and CNAs and linked these to clinical data. Pan-cancer analyses of at least 12
cancer types estimated the frequency of MYC amplification at approximately 14% [17,18,28]. One such
study categorized cancers into two classes, one dominated by somatic mutations and the other by
CNAs. In the latter class, comprised primarily of ovarian, breast, and squamous cell lung cancers,
MYC amplification was the top CNA [18].

2.1. Breast Cancer

Two of the largest genomic studies of breast cancers, analyzing a collection of more than 3000
breast tumors was performed by the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) and TCGA. These studies identified MYC amplifications in 26.6% and 21.9% of samples
analysed, respectively (Figure 1a) [29,30]. Breast cancer can be divided into distinct subtypes based
on histological and molecular classifications that have prognostic and therapeutic values. MYC
amplification and MYC pathway activation are hallmark features of the basal subtype (55.6% with
MYC amplification), a subtype associated with aggressive disease and poor prognosis, and lacking
targeted therapeutic options [18]. MYC amplification is also present in a substantial portion of other
subtypes representing receptor-positive disease: HER2-positive (34.1%), luminal B (31.5%), and luminal
A (12.8%) (Figure 1b) [18]. MYC amplification is also associated with poor overall survival and poor
recurrence-free rates, with MYC copy number gains increasing post-treatment in some instances
(Figure 1c) [31]. It is important to note that MYC amplification is not the only mechanism to deregulate
MYC in breast cancer (see Section 5.4).

2.2. Ovarian and Endometrial Cancers

Ovarian and endometrial cancers are two common cancers in women, and across both cancers,
patients with advanced stage, high-grade subtypes have a high incidence of mortality. TCGA analyses
of ovarian carcinomas (557 samples) and endometrial carcinomas (373 samples) showed that MYC is
amplified in 30.7% and 10.8% of tumors, respectively [32,33]. In ovarian cancer, MYC amplification
is correlated with inactivation in the breast and ovarian cancer susceptibility protein (BRCA) and
retinoblastoma-associated protein (RB1) pathways [32]; in endometrial cancer, MYC amplification is
associated with low estrogen receptor (ER)/FOXA1 activity and TP53 mutations [33]. The high-grade
subtype of both ovarian and endometrial cancers harbors a high frequency of MYC amplification,
along with TP53, BRCA1/2 mutations, and RB1 loss [30,33].
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Figure 1. MYC, MYCN, MYCL amplifications in cancer. (a) A heatmap depicting the frequency
of copy number alterations (CNAs) in MYC, MYCN, and MYCL loci across multiple cancers
grouped based on tissue of origin (data mined from cbioportal.org [34,35]). The source of the
genomic data is indicated in parentheses. (b) MYC amplification identified in four molecular
subtypes of breast cancer [30]. (c) Long-term survival analysis of 2051 breast cancer patients
(over 30 years) with MYC-amplified and non-MYC-amplified cancers (data accessed through
cbioportal.org and METABRIC [29]). (d) Amplification of MYC, MYCN, and MYCL identified in
two molecular subtypes of prostate cancer, castration-resistant prostate cancer (CRPC) adenocarcinoma
and neuroendocrine-CRPC [36]. (e) Amplification of MYC, MYCN, and MYCL identified in four
molecular subtypes of medulloblastoma [37]. (f) Correlation of MYC mRNA expression with the
type of copy number alteration CNA (deletion, ploidy, gain, or amplification) in breast cancer (left,
METABRIC) and prostate cancer [38] (right).
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2.3. Colorectal Cancer

Colorectal cancer is a leading cause of cancer mortality in the world, and can be subdivided into
four consensus molecular subtypes (CMS1-4), as defined by transcriptomics with different genetic
and biological features [39]. TCGA analysis (220 samples) and a larger meta-analysis (503 samples)
identified the frequency of MYC amplification at 6% overall, while frequencies in the different subtypes
ranged from 5% to 11% [39,40]. The MYC transcriptional program is specifically enriched in the
epithelial CMS2 subtype, with activated WNT pathway signaling [39–41], which has been shown
to transcriptionally activate MYC expression [42] (also further discussed in Sections 3.2 and 5.5).
Furthermore, frequent inactivating mutations of the E3 ubiquitin ligase FBXW7 and transcriptional
regulators SMAD and ARID1A may result in increased protein stability and mRNA transcription,
respectively [40,43–47].

2.4. Prostate Cancer

Prostate cancer is one of the most common adult malignancies, with a subset of men progressing
to the development of aggressive metastatic disease. In a TCGA study of 333 primary prostate
carcinomas, MYC focal amplifications were reported in 8% of the tumors [48]. A second study of 277
non-indolent localized prostate cancers identified recurrent CNAs, including amplification of MYC,
and deletion of PTEN, TP53, and NKX3-1 [49]. Overall, these studies indicated evidence of MYC family
involvement in prostate cancer (Figure 1a,d). Patients with metastatic castration-resistant prostate
cancer (CRPC) treated androgen-directed therapies, including enzalutamide [50] and abiraterone
acetate [51], eventually develop resistance characterized by low or absent androgen receptor (AR)
expression and a neuroendocrine (CRPC-NE) phenotype. In addition to the loss of RB1 (70% of
CRPC-NE) and mutations or deletions of TP53 (67% of CRPC-NE), somatic allele-specific CNAs of
MYC and MYCN were evident in 45% and 15% of CRPC-NE, respectively. This suggests a strong
evolutionary divergence in the development of neuroendocrine prostate cancer from the prostate
adenocarcinoma, and hints at differential importance of MYC amplification in these subtypes [36].
Additional mechanisms of MYC deregulation in prostate cancer are further discussed in Section 3.2.

2.5. Lung Cancer

Lung cancer can be characterized by two histopathological classes: small-cell lung cancer (SCLC)
and non-small-cell lung cancer (NSCLC); the latter being the predominant class. The SCLC cell of
origin has been proposed to be of neuroendocrine character, while NSCLC comprises squamous cell
carcinoma (SCC), which originates from the proximal airway and adenocarcinoma that arises from
distal regions and classifies into multiple subtypes [52]. A TCGA study of 178 SCC lung patient
samples provided insights into the genomic and epigenomic status of these tumors, with an average
of 323 CNAs, 360 exonic mutations, and 165 genomic rearrangements per tumor reported, including
MYC and MYCL amplifications observed at a frequency of 5% and 4%, respectively [53].

In a recent study, 183 NSCLC adenocarcinomas were profiled with whole-exome/genome
sequencing [54]. Among the 25 genetic alterations identified, MYC amplification was observed in 31%
of cases. In another comprehensive analysis of lung adenocarcinoma, somatic CNAs exhibited a very
similar profile with significant MYC amplification [55] (Figure 1a). Recurrent loss-of-function mutations
in the MGA gene, which encodes a MAX interactor, are observed in 8% of lung adenocarcinoma
specimens and appear to be mutually exclusive with MYC amplification [55]. In another study
that comparatively analyzed 660 lung adenocarcinomas and 484 SCC cases MYC amplification was
observed in both adenocarcinoma and SCC tumors, with MYCL significantly more amplified in lung
adenocarcinoma. Additional mechanisms of MYC deregulation in lung cancer are further discussed in
Sections 2.9 and 3.2.
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2.6. Pancreatic Cancer

In a study of over 500 pancreatic ductal adenocarcinoma (PDAC) samples, MYC amplification
was observed in 14% of PDAC and was enriched in the aggressive adenosquamous histological
subtype [56,57]. MYC copy number was also an independent marker of poor outcome, with an overall
survival of less than 10 months in the high copy number cohort [57].

2.7. Renal Clear Cell Carcinoma and Adrenal Cell Carcinoma

Renal cell carcinoma (RCC) is the most common type of kidney cancer, with clear cell RCC
(ccRCC) representing approximately 75% of all RCCs. In a study by Sato et al., more than 100 ccRCC
cases were analyzed by whole-genome, whole-exome, and RNA sequencing, as well as array-based
gene expression, copy number and methylation analyses [58], finding significant focal alterations at
20 loci, including copy number gains in MYC in 23% of the cases. TCGA analysis investigated more
than 400 tumors and observed amplifications in MYC in 15% of cases [59].

2.8. MYC CNAs in Pediatric Cancers

2.8.1. Medulloblastoma

Medulloblastoma is a paediatric malignant brain tumor that can be classified into four distinct
subtypes as the result of transcriptional profiling: two that are associated with deregulation in the
WNT/β-catenin and sonic hedgehog (SHH) signaling pathways, and two less well-characterized
subtypes, termed Groups 3 and 4 [60]. MYC and its family members have been implicated in all
four subtypes (Figure 1e, see also Section 5.5), with MYC amplification and elevated MYC mRNA
expression predominantly observed in Group 3 [61]. In a genomic study of 827 tumors, 16.7% of
Group 3 tumors were MYC-amplified [37]. Three other studies showed 3–17.6% of cases with MYC
amplifications in Group 3 [61–63]. In this subtype, MYC expression may also be elevated through
additional non-coding mechanisms: (1) PVT1-MYC fusions exist in 60% of MYC-amplified cases, and
the long non-coding RNA PVT1 creates a positive feedback loop to maintain high MYC expression [37];
(2) the MYC amplicon contains a medulloblastoma-specific enhancer (high histone H3K27 acetylation
clusters) to enforce high MYC expression (see also Section 3.2) [64].

MYC and MYCN are target genes of the WNT/β-catenin and SHH pathways, respectively,
with elevated mRNA expression seen in these two subtypes [61]. The SHH subtype also harbors
MYCN-amplified (7.7–16.7%) and MYCL-amplified tumors (2.3%) [37,61–63], although the biological
role of L-MYC in medulloblastoma is unknown (Figure 1e). Group 4 also has 5–10.5% of cases with
MYCN amplification [37,61–63]. This, along with N-MYC-driven mouse models that give rise to Group
4-like medulloblastoma [65,66], implicates N-MYC in the oncogenesis of this subtype.

In a genomic study comparing primary and metastatic tumor samples, MYC amplification was
present in matched primary tumors and metastases, whereas MYCN amplification was only present
in primary tumors but not their matched metastases [67]. This suggests that MYC and N-MYC may
be involved in different stages of the oncogenic process. Increased frequencies of MYC and MYCN
amplifications also emerged in tumors of relapsed patients compared to at diagnosis [68,69]. The
aggressive nature of these relapsed tumors may be driven by the combined acquisition of MYC/MYCN
amplifications and TP53 mutations [68]. The diversity of MYC family deregulation in medulloblastoma
illustrates that, while MYC family members can all drive oncogenesis, they may have distinct roles in
giving rise to cancers of different molecular and clinical phenotypes.

2.8.2. Neuroblastoma

Neuroblastoma is a childhood malignancy that afflicts the developing sympathetic nervous
system and accounts for up to 10% of all childhood cancers, with 80% of neuroblastomas occurring
before the age of five. Early work identified MYCN amplification in approximately 40% of patient
cases, correlating with advanced disease (stage III or IV) and poor prognosis [70]. The majority of
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neuroblastoma patients can be classified into three distinct genomic types [71]: type A tumors with
only numerical changes of whole chromosomes, but without any detectable structural rearrangement;
type B tumors characterized by the presence of only partial chromosome imbalances (excluding MYCN
amplification) in the absence of any numerical chromosomal aberrations; and type C tumors that
harbor MYCN amplification without numerical chromosomal aberrations. Two additional genomic
types, D and E, account for mixed profiles with respect to their segmental or numerical aberrations and
MYCN amplification. Recently, Westermann et al. examined the relationship between MYC and MYCN
amplification in neuroblastoma, which are known to transcriptionally repress of one another [72]. They
found that MYC expression in MYCN amplified neuroblastoma is not generally observed, and when
MYC is over-expressed it is dominant over N-MYC expression [72].

Recently, a number of whole-genome and whole-exome sequencing studies have broadened our
understanding of the role MYCN amplification plays in this cancer. The Therapeutically Applicable
Research to Generate Effective Treatments (TARGET) initiative analyzed specimens from 240 cases
by a combination of whole-exome and whole-genome sequencing [73], where amplification of the
MYCN oncogene was observed in 32% of the cases (confirmed by fluorescence in situ hybridization)
and a recurrent MYCN mutation was observed in 1.7% of the cases. Another study, consisting of a
whole-genome sequencing data of 87 neuroblastoma specimens identified chromothripsis, a local
shredding of chromosomes, in 18% of late stage neuroblastomas associated with poor outcomes [74].
These chromothripsis-related structural aberrations were associated with amplification of MYCN, and
in one tumor, resulted in MYC amplification and overexpression [74].

A study examining 217 neuroblastoma tumors by whole-genome sequencing, including 75
high-risk tumors, found that most high-risk tumors harbored either MYCN amplification, TERT
rearrangements or ATRX mutations, all of which can contribute to telomere lengthening and could be
useful in the molecular classification of high-risk neuroblastoma [75]. MYCN is a known transcriptional
activator of TERT, yet MYCN amplifications were mutually exclusive with TERT rearrangements, as
well as ATRX alterations, a gene associated with alternate lengthening of telomeres, suggesting that
these alterations may share a similar role in neuroblastoma [75].

2.9. MAX Alterations

MYC requires its basic helix-loop-helix leucine zipper (bHLHLZ) dimerization partner MAX for
its transcriptional and oncogenic activities [1,2,4,76] however, a rat pheochromocytoma cell line (PC-12)
does not express MAX mRNA or protein, yet retains a transcriptionally functional MYC protein [77,78].
A number of genomic sequencing studies have identified inactivating MAX mutations and deletions
in human pheochromocytomas [79,80], small-cell lung tumors [81], and oligodendroglial tumors [82].
In the latter two cancer types, MAX alterations appear to be mutually exclusive to amplifications
of MYC and MYC family members [81,82]. The mechanisms by which MYC functions without its
dimerization partner MAX, particularly in the context of cancer, remain to be elucidated, but does
suggest that there are additional means of activating the MYC transcriptional program.

2.10. Considerations for MYC Amplification

MYC amplification is observed in virtually all cancer types. The abundance of recent genomic
sequencing studies has indicated that MYC amplification can often define specific molecular subtypes,
and is frequently associated with aggressive disease, metastatic potential, therapeutic resistance and
poor patient outcomes (Figure 1c). The sequencing of extrachromosomal DNA (ecDNA) in multiple
cancer types identified a significantly higher copy number of oncogenes, including MYC, in ecDNA
compared to chromosomal DNA, suggesting additional means for tumors to gain copies of MYC that
contribute to tumor adaptability and heterogeneity [83]. As another layer of complexity, amplification
of each of the three oncogenic MYC family members can be present in cancer, yet each may give rise to
distinct biological phenotypes.
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While MYC amplification is an overt sign of MYC deregulation, the mechanism by which this
CNA drives oncogenesis is not entirely clear. The simplest explanation is that MYC amplification
leads to increased MYC mRNA and protein levels, and this elevated level is sufficient to elicit
proliferative and oncogenic transcriptional programs. MYC amplification, however, is not always
correlated with increased MYC mRNA or protein levels [84–86] (Figure 1f), suggesting: (1) MYC levels
can be elevated through transcriptional (e.g., Wingless (WNT) and NOTCH signaling) [42,87] and
post-transcriptional (e.g., FBXW7 ubiquitin ligase and RAS/MAPK pathway) [43,44,88] mechanisms;
(2) MYC amplification may require cooperating events to deregulate MYC levels or activity. For
example, the long non-coding RNA gene, PVT1, which resides in the 8q24.21 MYC amplicon, is
necessary for high MYC expression, mediated by a positive feedback loop [37,89]. In MYC-amplified
tumors, the presence of TP53 mutations, a frequently co-occurring event with MYC amplification
in many tumor types, correlates with higher MYC mRNA expression compared to TP53 wild-type
tumors [90]. One hypothesis is that MYC amplification and elevated MYC expression may have
contributed to the initiation of pre-cancerous lesions [91], but those clones that progress have lower
levels of deregulated MYC expression [92]. More research in this area is required to fully appreciate
the contribution of MYC amplification to tumorigenesis.

3. Enhancer Activity

The tightly coordinated control of MYC expression in response to extracellular and intracellular
signaling is accomplished via cell-type specific enhancer sequences surrounding the MYC locus.
In cancer, constitutively high levels of MYC expression can be achieved by translocations rendering
MYC under the control of highly active lineage-specific enhancers, such as in Burkitt Lymphoma
(BL), or through the acquisition of increased enhancer activity affecting MYC transcription from the
endogenous locus. These modes of MYC deregulation will be discussed below.

3.1. Translocations

One of the first means of MYC deregulation to be discovered were MYC translocations, the
defining genetic feature of BL, a subtype of Non-Hodgkin B-cell lymphoma [93–97]. In the 1980s, three
independent research groups identified a translocation of the MYC gene locus from its endogenous
location on chromosome 8 [98–101] (Figure 2a). While a common feature of these translocations
was the placement of MYC under the control of an unrelated distal enhancer, further investigation
revealed that 70–80% of BL patients possess a t(8;14)(q24;q32) translocation rendering MYC under
the control of the immunoglobulin (Ig) heavy chain enhancer, whereas 10–15% of patients acquire
a t(2;8)(p12;q24) or t(8;22)(q24;q11) karyotype, related to translocation to the κ and λ light chain
enhancers, respectively [97,99].

Another B-cell malignancy, displaying equally high MYC protein levels, is multiple myeloma
(MM) [102]. MM is a highly diverse disease that displays a large range of non-random translocation
events into the Ig heavy and light chain loci, with five non-MYC gene loci also being prevalent [103–105].
Nevertheless, 40 out of 43 independent myeloma cell lines were shown to possess MYC translocation
with a majority involving an Ig locus [106]. However, the breakpoints of these rearrangements did
not occur proximal to within the Ig switch regions [106], leading to the assumption that primary
translocations increase genomic instability in these cells, thereby rendering them more vulnerable for
eventual MYC translocation in the transition of a pre-malignant state to MM [106]. Consistently, MYC
deregulation was observed in 67% of MM patients [102,107].
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by regulatory elements at the MYC locus. Lineage-specific super-enhancers have been mapped to the 
gene desert area surround MYC at the 8q24.21 locus, as indicated by colored cartoon peaks 
representing H3K27 acetylation. Two single nucleotide polymorphisms (SNPs) have been linked to 
altered MYC transcription: rs6983267, located 335 kb upstream of the MYC locus, and rs55705857, 
located within an enhancer 1.7 Mb downstream of MYC. 
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Figure 2. Enhancer alterations deregulating MYC transcription. (a) In B-cells, the immunoglobulin
(Ig) gene locus (left) is controlled by an upstream enhancer that ensures constitutive high expression
levels of antibodies. In Burkitt Lymphoma, the Ig and MYC loci translocate rendering MYC under the
influence of a highly active enhancer (right). Translocation can be visualized on a chromosomal level
when comparing the length of sister chromatids in anaphase spread assays. (b) Deregulation of MYC
by regulatory elements at the MYC locus. Lineage-specific super-enhancers have been mapped to the
gene desert area surround MYC at the 8q24.21 locus, as indicated by colored cartoon peaks representing
H3K27 acetylation. Two single nucleotide polymorphisms (SNPs) have been linked to altered MYC
transcription: rs6983267, located 335 kb upstream of the MYC locus, and rs55705857, located within an
enhancer 1.7 Mb downstream of MYC.

3.2. Activated Enhancer Activity

Translocations observed in B-cell malignancies have established the paradigm of altered enhancer
activity in MYC deregulation. More recently, altered enhancer activity has also been identified as a
mechanism contributing to deregulation of MYC at the endogenous genomic locus. The MYC gene
exists within a “gene desert” region on chromosome 8q24, located within a 2 Mb stretch of the genome
that is notable for the relative infrequency of protein-coding sequences [108,109]. Stretches of this
region have the capacity to act as MYC-specific enhancers to fine-tune MYC expression. Complicating
this scenario further, activation of endogenous enhancers through gene duplication or epigenetic
mechanisms has been demonstrated to be another means to deregulate MYC expression from the
endogenous locus [110–112].



Genes 2017, 8, 151 9 of 30

3.2.1. Single Nucleotide Polymorphisms and MYC Transcription

Genome-wide association studies (GWAS) have indicated that single nucleotide polymorphisms
(SNPs) frequently map to non-coding regulatory locations in the genome. This includes enhancer
regions, and in some cases SNPs have been implicated in altering enhancer activity [113,114]. Several
cancer-associated SNPs have been mapped to the 8q24 locus and influence cancer predisposition in
a number of different malignancies including colorectal and prostate cancers [115–118]. Identifying
the molecular mechanisms resulting in this outcome remains challenging and requires extensive
validation, including analysis of enhancer activity, and with the development of novel technologies
to capture chromatin conformations, the interaction of these putative enhancer sequences with the
MYC promoter. Despite these challenges, several studies have demonstrated a role for a subset of
8q24 SNPs in MYC deregulation. For example, the risk allele rs6983267 is significantly associated with
the risk of developing colorectal and prostate cancer, with the G variant resulting in increased risk as
compared to the reference allele [119,120]. This variant is approximately 335 kb upstream of MYC, and
was demonstrated to behave as a long-range enhancer that influences MYC transcription as a result
of altered allele-specific binding of the WNT-pathway transcription factor TCF4 [114,117,121,122].
Another SNP, rs55705857-G, recently found to be associated with increased risk in IDH1/2-mutant
gliomas, is positioned within a single chromatin topologic domain with MYC, and increases the
activity of the MYC transcriptional network, as compared to the reference allele [118]. The underlying
mechanism and specificity of this risk allele for IDH-mutant gliomas is unclear and future work will
be needed to delineate this intriguing relationship.

3.2.2. Activation of Enhancer Sequences

Histone acetylation is associated with an open chromatin conformation that is permissive for
transcription. In particular, H3K27 acetylation is associated with active promoters and enhancers, and
is frequently utilized to identify active enhancers in genome-wide chromatin immunoprecipitation
sequencing (ChIPseq) experiments [123]. Deregulation of MYC at the endogenous locus can also be
achieved through the hyperacetylation and hyperactivation of lineage-specific enhancers that are either
absent or less active in normal cells [123]. This has been elegantly demonstrated by several recent
publications. For example, a cluster of enhancers located downstream of the mouse Myc locus were
found to interact with the Myc promoter in vivo [124]. This enhancer activity was maintained by the
chromatin remodelling SWI/SNF (SWItch/Sucrose Non-Fermentable) complex, which was identified
in this study to serve an oncogenic, rather than tumor suppressive function, by maintaining Myc
expression. Furthermore, the corresponding region in humans, located 1.7 Mb downstream of MYC,
has previously been identified to undergo focal amplifications in acute myeloid leukemia (AML) and is
hyperacetylated in T-cell leukemias and chronic myelogenous leukemia [125–130]. Additionally,
Herranz et al. identified a recurrently amplified T-cell enhancer in T-cell acute lymphoblastic
leukemia, located 1.47 Mb downstream of the MYC locus [131]. A technique termed pinpointing
enhancer-associated rearrangements by chromatin immunoprecipitation (PEAR-ChIP) has enabled the
detection of enhancer rearrangements that result in transcriptional deregulation of oncogenes [132].
This technique was successfully used to identify enhancers deregulating MYC expression in B-cells,
identifying lineage-specific enhancers located 235 and 535 kb downstream of MYC. Moreover, this
region was also identified to be a target of recurrent somatic amplifications in plasma cell myeloma,
supporting a role for this enhancer in deregulation of MYC in B-cell malignancies [133] (summarized
in Figure 2b).

Other lineage-specific enhancers have been implicated in malignancies in addition to those of
the hematopoietic system. For example, Lin et al., identified a medulloblastoma-specific enhancer
90 kb upstream of MYC [64], and similarly, a region 400 to 500 kb upstream of MYC serves as a
colorectal specific super-enhancer (Figure 2b). Detecting altered enhancer activity in cancer has also
been advanced by the integration of non-coding somatic copy number alterations and epigenetic
profiling of enhancer marks, facilitating the identification of putative enhancers undergoing focal
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amplification in multiple different cancer types [110]. In this recent study, non-coding amplifications
were identified 450 kb and 800 kb downstream of MYC, in lung adenocarcinoma and uterine
corpus endometrial carcinoma respectively. These amplifications resulted in the formation of a large
enhancer region, as characterized by H3K27 hyperacetylation, resulting in increased MYC transcription.
Furthermore, an alternative means of enhancer deregulation is through differential methylation of
these regulatory domains. DNA methylation is generally associated with transcriptional repression,
and hypomethylation of a colorectal specific enhancer was identified as a novel means of activating
enhancers, leading to deregulated MYC transcription [112].

It is becoming abundantly clear that MYC transcriptional regulation is extremely complex. The
gene desert surrounding MYC houses many lineage-specific regulatory regions that act as modulators
of MYC expression (also further discussed in Section 5). This is likely due to the cohort of transcriptional
regulators that finely-tune cell-type specific MYC expression, which is highjacked in cancer to
deregulate MYC. Further investigation into the discrete mechanisms regulating MYC expression
in different cell-types has the potential to identify novel means of MYC deregulation and inform
potential therapeutic vulnerabilities. This concept has already been highlighted by the discovery
and use of the small molecule JQ1 as an inhibitor of MYC expression in malignancies where MYC
expression is regulated by large enhancers, such as in MM [128,134].

4. MYC Protein Stability

In addition to the complex transcriptional regulation of MYC, MYC protein abundance is also
tightly regulated. MYC is generally considered to be a short half-life protein and several mechanisms
have been identified that contribute to its degradation or stabilization in response to appropriate
signaling events. In cancer, these pathways can be altered, resulting in aberrant MYC stabilization,
or MYC itself can undergo point mutations that render it unresponsive to specific protein turnover
pathways. Findings related to MYC protein stability are summarized in the following section.

4.1. MYC Protein Turnover

To date, one pathway has been extensively characterized as modulating MYC protein stability.
MYC is first phosphorylated on serine-62 (pS62) by cyclin dependent kinase 1 (CDK1) or extracellular
signal-regulated kinase (ERK), among other kinases, followed by phosphorylation of threonine-58
(T58) by glycogen synthase kinase (GSK3) [15,135]. Subsequently, the prolyl isomerase PIN1 isomerizes
proline residue 57 from the cis- to trans-conformation, permitting protein phosphatase 2A (PP2A)
dephosphorylation of pS62 [136]. Singly phosphorylated T58 is then recognized by the E3 ligase
FBXW7, which ubiquitylates MYC and targets it for degradation [44]. Several deubiquitinases have
been reported to work in opposition to FBXW7 and stabilize MYC, namely ubiquitin specific protease
28 (USP28), USP36, and USP37 [137,138]. More recently, USP22 has also been reported to regulate MYC
stability, however it is unknown whether this is in opposition to turnover mediated by FBXW7 [139].
In accordance with MYC’s oncogenic activity, many of these MYC regulators have been characterized
either as oncogenes, such as USP28 [140], or tumor suppressors, for example FBXW7 [141]. Another
layer of regulation lies in the three isoforms of FBXW7, and their localization. FBXW7α is found in
the nucleus, along with USP28 [137], while FBXW7γ and USP36 are predominantly located in the
nucleolus [142]. FBXW7β is found in the cytoplasm and does not interact with MYC [143].

There are other regulators of MYC stability in addition to the FBXW7 pathway that are altered in
cancer. The E3 ligase SKP2 is reported to recognize and ubiquitylate MYC. SKP2 initially enhances
MYC’s transcriptional activity, prior to stimulating its protein degradation via the proteasome [144].
This observation was supported by MYC’s recruitment of both SKP2 and components of the proteasome
to chromatin, and by the discovery of the MM-1 protein, which interacted with the 26S proteasome
and MYC, leading to proteasomal degradation [145,146]. Accordingly, SKP2 is recognized as an
oncogene [147] and is amplified in a subset of cancers (summarized in Figure 3). Given that MYC has
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a short half-life across multiple cell types, it is likely that other FBXW7 and SKP2-independent stability
mechanisms exist that have yet to be identified.
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4.2. MYC Mutations and Protein Stability

While point mutations in c-MYC and N-MYC proteins are relatively rare, a number of studies
have identified a subset of functional mutations, primarily targeting MYC Homology Box I (MBI),
a highly conserved region in MYC family proteins [73,148,149]. Sequencing studies in BL tumors
have identified mutational hotspots in MYC, identifying, amongst other point mutations, frequent
mutation of the T58 residue [150–153]. In support of this observation, viral MYC (v-MYC), is known to
have potent transforming capacity and also contains a variant of residue 58 (an alanine substitution),
resulting in increased protein stability of v-MYC [150,154,155]. This is highly suggestive that MYC
stability could be a critical component of transformation, and structure function studies verified that
mutation of T58 to alanine yielded an increase in protein stability [88,154]. However, in another study
the gain-of-function activity of T58A in a mouse model of B cell lymphomagenesis was attributed, not
to an alteration of MYC stability, but to the downregulation of pro-apoptotic BIM expression [156].
Additional hotspot mutations identified in BL, including E39D and T58I, have been found to exhibit
elevated transcriptional activity by microarray analyses and demonstrated gain-of-function activities
in an in vivo xenograft model [148]. Despite these observations, the T58I mutation observed most
frequently in BL was also shown, surprisingly, to have a substantial decrease in transforming capacity
in an earlier study [157], bringing into question the pathological relevance of T58 point mutations in
human tumors, and potentially implying a context- or tissue-dependent transformative role. Despite
this finding, the important role of this pathway in regulating MYC stability is still well-supported.

More recently, Chakraborty et al. described residues elsewhere on MYC that phenocopy
T58A [158]. The T244 and P245 residues were identified from a study of hotspot mutations in
lymphomas, and the mutation of P245 to alanine (P245A) yielded an increase in half-life similar
to what was observed with T58A. Overall, the phosphodegron in the region 244–248 closely resembles
that of the 58–62 region, however recognition of this second phosphodegron by GSK3 or FBXW7
has not yet been demonstrated [158]. It remains to be seen whether this is a potential secondary
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site of FBXW7 regulation or if additional regulators exist for this second phosphodegron. FBXW7 is
also commonly mutated in many tumors, including two hotspot residues, arginine 465 (R465) and
R479, accounting for ~43% of the observed mutations. The resulting mutant proteins act as dominant
negatives of the FBXW7 protein resulting in increased expression of its protein targets, such as MYC to
promote tumor growth [141,149].

Analysis of the high-risk neuroblastoma genetic landscape using a combination of next-generation
sequencing approaches resulted in the identification of a recurrent mutation in the MYCN gene (1.7%
of cases, resulting in the P44L missense mutation) [73]. Tumors that harbor the P44L mutation exhibit
a very low mutation frequency and were mutually exclusive of MYCN amplification. Further analyses
will be needed to reveal whether this region is responsible for a gain-of-function phenotype, and
if this aberration can be targeted therapeutically in the patients affected. Genomic analysis of 293
basal cell carcinoma (BCC) tumors identified recurrent MYCN missense mutations in 30% of these
cases, mapping to MBI (P44L, P44S, or P44F) [149]. While it remains to be seen whether this mutation
is important for the stability of N-MYC, the authors found that the P44L mutation led to increased
auto-ubiquitylation of FBXW7α and represents a unique mechanism for oncogenic N-MYC P44L
activity in BCC. The authors also noted a number of additional point mutations within the MBI
region of N-MYC, which could impair the interaction with FBXW7α or other regulators of N-MYC
stability [146,159].

5. Signaling Pathways and MYC Deregulation

Multiple signaling pathways are known to regulate MYC gene expression and result in MYC
deregulation in the absence of translocation or amplification. Here we discuss evidence of aberrant
signaling contributing to MYC transcriptional upregulation and/or enhanced MYC protein stability
in a variety of tumor types, including chronic myeloid Leukemia (CML), T-cell acute lymphoblastic
leukemia (T-ALL), breast, colorectal, and liver cancers.

5.1. PI3K/AKT Signaling

The PI3K/AKT pathway is one of the most commonly mutated pathways in cancer [160]. The
PI3K protein interacts with receptor tyrosine kinases (RTKs) at the plasma membrane and converts
extracellular stimuli into intracellular signals though the phosphorylation of a second messenger
molecule phosphatidylinositol biphosphate (PIP2) to PIP3, initiating a signal transduction cascade
through the phosphorylation and activation of the serine/threonine kinase AKT [161]. PTEN
(phosphatase and tensin homolog) directly antagonizes PI3K activity by dephosphorylating PIP3
back to PIP2 [162,163]. Once activated, AKT acts as an effector kinase, regulating a number of proteins
and pathways important for tumorigenesis [164], including glycogen synthase kinase (GSK3) [165].
AKT phosphorylates GSK3 and inactivates the kinase, inhibiting its ability to phosphorylate and
negatively regulate MYC protein stability [88] (summarized in Figure 4a). Both PI3K and PTEN are
commonly mutated in many cancers (Figure 3) [160], with activating mutations in the helical domain
of the p110α subunit of PI3K (such as E542K and E545K) relieving the inhibitory effects of the p85
regulatory subunit of PI3K [166]. Mutations in the kinase domain of PI3K, such as H1047R, have
been shown to phosphorylate PIP3 independently of RAS-GTP [166]. Conversely, the PTEN gene
is commonly lost in many tumors (see Figure 3) [167], with all mutations of these genes leading to
hyper-activated AKT [168]. Thus, activation of PI3K/AKT by multiple mechanisms can lead to MYC
deregulation by increasing MYC stability.
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Figure 4. Signaling pathways regulating MYC transcription and MYC protein stability in cancer.
(a) MYC protein stability can be altered through the RAS/PI3K signaling pathways. (b–e) MYC
transcription is deregulated by multiple signaling pathways in many cancer types. Specific signaling
pathways are highlighted to demonstrate transcriptional deregulation of the MYC gene in the context
of (b) chronic myeloid leukemia (CML) (c) breast cancer, (d) colorectal cancer, and (e) T-cell acute
lymphoblastic leukemia (T-ALL). Proteins deregulating MYC are highlighted, with red-colored proteins
indicating oncogenic alterations (mutation or copy number alteration in greater than 10% of any TCGA
cancer dataset) and tumor suppressors shown in blue (mutations and deletions; greater than 10% of
any TCGA cancer dataset). Signaling receptors are black and all other proteins are colored grey. RSBE
(repressive SMAD binding element), ERE (estrogen response element), WRE (WNT response element),
P (Promoter).

5.2. MAPK Signaling

Ligand binding and activation of RTKs leads to phosphorylation of their C-terminal plasma
membrane domains, providing a site of interaction for a number of proteins at the plasma membrane.
These proteins then recruit signaling components of the MAPK and PI3K pathways, including
the guanine nucleotide exchange factor, son of sevenless (SOS). Localization of SOS at the plasma
membrane brings it into the proximity of RAS, allowing SOS to catalyze the nucleotide exchange of
GDP to GTP on the RAS family of GTPases (HRAS, KRAS, NRAS), leading to RAS activation [169].
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GTP loaded RAS activates the RAF kinases (ARAF, BRAF, CRAF), which in turn activate the MEK
kinases (MEK1 and MEK2), leading to activation of extracellular-signal-regulated kinase 1(ERK1) and
ERK2 [167]. ERK is one of the major effector proteins of the RAS oncoprotein and is able phosphorylate
and regulate a number of protein substrates to propagate the pro-growth and pro-survival signals
associated with RAS signaling [170].

One mechanism through which ERK propagates these signals is by the regulating the activity
and stability of the MYC protein through phosphorylation of S62 (see also Section 4.1) [88]. Recent
findings suggest that ERK may mediate more phosphorylation events on the MYC protein to control its
stability, implying a more complex regulatory model [171]. As mentioned, RAS-GTP also binds to and
activates the PI3K pathway [172–174], eventually leading to the inactivation of GSK3 and stabilization
of the MYC protein (Figure 4a) [88]. An additional means of MYC regulation occurs indirectly through
MAD1, a member of the MYC/MAD/MAX family of transcription factors which competes with MYC
for binding to its obligate binding partner MAX [175,176]. Ribosomal S6 kinase (RSK) is activated by
ERK, and in turn phosphorylates MAD1, promoting its ubiquitylation and degradation, and allowing
MYC to bind to MAX unhindered, increasing MYC transcriptional output [177].

The RAS family of proteins are commonly mutated in many human cancers, with KRAS being
the most commonly mutated family member [160,178]. Mutations of glycine-12 (G12), G13 and
glutamine-61 (Q61) are the most commonly observed. These sites reside in the RAS active site and are
critical for the hydrolysis of the bound GTP. The inability to hydrolyze GTP to GDP maintains the RAS
protein in an active state and perpetuates the signal cascade [178–182]. The RAF family of proteins
(primarily BRAF) are also often mutated [160], with the most commonly observed mutations being
valine-600 (V600), resulting in a constitutively activated kinase [183,184]. Together, activation of these
proteins deregulates MYC through increased protein stability.

5.3. BCR-ABL1 Signaling in Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder dependent on
MYC expression and driven by the activated tyrosine kinase activity of the BCR-ABL1 fusion
protein [185–187]. BCR-ABL1 signaling activates multiple pathways, regulating growth and survival
including the RAS and PI3K signal transduction pathways. Additionally, BCR-ABL1 activates
the JAK/STAT pathway through interaction [187] and activation [188] of JAK2, as well as directly
activating STAT protein (Figure 4b) [189]. Activated JAK2 phosphorylates the STAT5 transcription
factor at tyrosine-694, allowing STAT5 to homodimerize, translocate to the nucleus and function as a
transcription factor. Once translocated, STAT5 dimers bind to the MYC-regulatory 3′ super-enhancer
(1.7 Mb downstream of the MYC coding region) to regulate MYC expression [190–192]. Interestingly,
STAT5 transcriptional activity is regulated by bromo- and extra-terminal domain (BET) proteins,
namely BRD2. Active STAT5 recruits BRD2 to assist in the assembly of the pre-initiation complex and
regulate MYC transcription, suggesting that bromodomain inhibitors, such as JQ1 derivatives, can be
effective in CML [193,194]. In addition to BCR-ABL1 fusions, mutations in the JAK/STAT transduction
pathway have been identified to be oncogenic. Gain-of-function JAK2 mutations of valine-617 to
phenylalanine (JAK2-V617F) render JAK2 constitutively activated [194,195]. This mutation has been
detected across myeloproliferative neoplasms and appears to occur in a mutually exclusive manner
with BCR-ABL1 fusions [196–198]. Myeloproliferative diseases such as CML, containing activating
mutations in the JAK/STAT pathway, should therefore be considered to have deregulated MYC
expression. Indeed, MYC is essential for BCR-ABL1 mediated transformation [186,187].

5.4. Breast Cancer Signaling and MYC

Estrogen-receptor alpha (ERα) is a receptor involved in hormone signaling within breast cells.
Activation of ERα, through the binding of 17β-estradiol, allows ERα to homodimerize and interact
with DNA directly through estrogen response elements (EREs) or indirectly through interaction with
other transcription factors such as JUN, specificity protein 1 (SP1), and nuclear factor kappa B (NF-κB)
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(Figure 4c). MYC is upregulated by estrogen receptor in ERα positive breast cancer cells, through
binding to an enhancer located 67 kb upstream of the transcription start site [199–201], and ectopic
expression of MYC in cells treated with ERα antagonists can rescue their proliferative defects [202].
Gene expression analysis comparing estrogen-treated to MYC overexpression in breast cancer cells
identified that half of estrogen-regulated genes were also MYC-regulated, indicating that high MYC
expression levels (as observed in basal/triple-negative subtypes) can compensate for ERα in breast
cancers [203,204]. Nonetheless, ERα positive or over-expressed breast cancers associated with luminal
A and B tumors [203,205] can transcriptionally target the MYC gene and deregulate MYC mRNA
expression, independent of MYC amplification.

Aurora kinase A (AURKA), which is commonly amplified in a subset of cancers (Figure 3) [206]
and has increased mRNA expression in breast cancers [207], has been recently shown to have
kinase-independent activities. Through interaction with heterogeneous nuclear ribonucleoprotein
K (hnRNP K), a protein with nucleic acid binding properties, AURKA binds a promoter element
approximately 100–150 bp upstream of the MYC P1 promotor, inducing a shift in the ratio of P1 vs. the
shorter P2 transcript of MYC. In this manner, AURKA can act as a transcriptional regulator to induce
MYC expression in human breast cancer cell lines (Figure 4c) [207,208].

Repression of MYC through transforming growth factor β (TGF-β) signaling is an important
method of negatively regulating MYC expression in some breast cancers. Upon binding of the TGF-β
ligand to the TGF-β receptor, SMAD2/3 becomes phosphorylated and active, leading to the formation
of a repressive complex in the proximal promotor region of MYC (Figure 4c) [209,210]. Loss of this
negative regulatory pathway and subsequent decreased nuclear SMAD3 has been shown to correlate
with tumor aggressiveness [211,212]. In addition, this pathway can be deregulated in the context
of active RAS signaling, through JNK-mediated SMAD3 signaling [213]. While MYC amplification
is associated with basal breast cancer (see Section 2.1, Figure 1a,b), other subtypes of breast cancer
possess the signaling pathways required to deregulate MYC expression independent of this gross
genetic abnormality.

5.5. WNT Signaling and MYC

Aberrant activation of the canonical WNT-β-catenin signaling pathway is estimated to occur
in more than 90% of colorectal cancers [214]. In the absence of WNT ligand, cytoplasmic β-catenin
is continually degraded intracellularly via β-catenin phosphorylation and a ‘destruction’ complex
containing the axis inhibition proteins 1 and/or 2 (AXIN1/2), adenomatous polyposis coli (APC),
casein kinase 1 (CK1), and glycogen synthase kinase three (GSK3) (Figure 4d) [129,215]. While APC
and the AXINs act as a scaffold to position β-catenin, the latter enzymes phosphorylate β-catenin
marking it for ubiquitylation by the β-transducin-repeat-containing protein (β-TRCP) and subsequent
degradation via the proteasome. In the absence of nuclear β-catenin, T-cell factor/Lymphoid enhancer
factor (TCF/Lef) family of sequence-specific transcription factors and transducing-like enhancer
protein (TLE/Groucho) form a repressive complex, which recruits histone deacetylases (HDACs)
to WNT responsive elements (WREs) and prevents the transcription of WNT pathway target genes,
including MYC [129,215]. When the ligand is present, Disheveled (DVL) proteins associate with
the Frizzled-LRP5/6 receptors and result in the inactivation of the intracellular destruction complex
through segregation of the AXINs. This allows stabilized β-catenin to translocate to the nucleus where
it forms active transcriptional complexes by displacing the repressive complexes off of TCF/Lef bound
WREs and recruiting other activating co-factors, resulting in the transcriptional activation of pathway
target genes [129,215]. Of the many target genes transcribed by this pathway, MYC is one of the best
characterized [39,122,216,217]. WREs have been identified both upstream and downstream of the MYC
gene boundary, and form a loop that accompanies MYC transactivation [130]. In colorectal cancers,
the predominantly mutated component of this signaling pathway is the tumor suppressor gene APC
with 85% occurring in a mutational “hotspot” region of the gene (see Figure 3).
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In addition to APC mutations in colorectal cancers, WNT signaling can also be aberrantly
activated via mutations that stabilize β-catenin or impaired AXIN1/2 function, although these are less
ubiquitously found [217–220]. For example, there is evidence of MYC deregulation through altered
WNT signaling in pediatric hepatoblastoma (HB) and hepatocellular carcinoma (HCC) [221–223].
Individuals with an inherited familial APC gene mutation have and 750–7500 times higher risk for
the development of HB as young children [224], and greater than 80% of HBs have a mutation in
β-catenin, APC, or AXIN [225]. Furthermore, in an animal model of HB, Myc was found to be required
for sustained tumor growth [226]. CTNNB1 mutations are also observed in HCC, although with a
lower frequency of 15.9% of cases [227,228].

5.6. NOTCH Signaling and MYC

One of the hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) is its very high proliferative
rate due to the activation of oncogenic pathways closely linked to the mechanisms responsible for
driving proliferation and cell growth in early T-cell progenitors [229]. One of these key oncogenic
pathways that has been extensively examined for its contribution to T-ALL is the NOTCH signaling
pathway [230]. In general, this signaling pathway requires one of four mature NOTCH receptors to
bind its candidate Delta/Serrate/Lag-2 (DSL) family of ligands at the cell surface of neighboring
cells (Figure 4e). Once this interaction occurs, this prompts the cleavage of the extracellular
domains of the receptor by ADAM (a disintegrin and metalloproteinase) metalloproteases which
subsequently facilitate another proteolytic cleavage within the transmembrane region of the receptor
by the γ-secretase complex. Once the receptor is released from the membrane, the cytoplasmic
intracellular portion of NOTCH1 (ICN1) is able to translocate into the nucleus where it directly
participates in a core transcriptional complex with several factors including the DNA-binding protein
CBF/RBPJκ/Su(H)/Lag1 (CSL) and Mastermind-like transcriptional co-activators (MAML) [230].
This complex interacts with a long-range MYC enhancer, located 1.47 Mb downstream of MYC [128].
In T-ALL, NOTCH signaling occurs through NOTCH1, which was first implicated in T-ALL
pathogenesis as part of the chromosome translocation t(7;9)(q34;q34.3), accounting for 1% of T-ALLs
seen in the clinic [231]. However, this rare chromosomal rearrangement led to the later discovery of
activating NOTCH1 mutations found to be present in over 65% of T-ALLs [232]. These mutations
allow for sustained, high-level expression of NOTCH pathway target genes, of which MYC features
prominently. Additionally, about 20% of all T-ALLs contain mutations in FBXW7, which can deregulate
MYC and NOTCH1 via inhibition of protein turnover [43,44,233–235].

6. Conclusions

The reports described here, as well as many additional studies, have highlighted that MYC
is one of the most frequently deregulated oncogenes in cancer. MYC is clearly the target of many
different forms of deregulation in cancer, including gene amplification, and transcriptional induction
through altered cellular signaling (summarized in Figure 3) or enhancer activation. This overview
highlights only a select few of the pathways contributing to MYC deregulation, and due to the central
role of MYC in the proliferation and transformation in many diverse tissue types, it is likely that
there are yet undiscovered means of MYC deregulation in cancer; it is therefore extremely difficult
to definitively state how often MYC truly is deregulated. Going forward, quantification of MYC
protein levels through tumor proteomics [236–238] and a more precise definition of MYC activation
and/or the MYC transcriptional program may facilitate a better understanding of MYC deregulation
in oncogenesis. Moreover, MYC is known to be highly modified at the post-translational level,
with many phosphorylation [14,88,136,239–242], SUMOylation [243–245], acetylation [246,247], and
ubiquitylation [43] sites identified [248]. In addition to canonical measures of MYC deregulation
through genetic or epigenetic alterations, post-translational modifications (PTMs) can also modify
MYC activity. Future studies delineating the relative importance of these PTMs and the writers and
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erasers of these marks will be informative for the future of MYC-directed therapeutics, with the
potential to modulate MYC activity at the protein level.

Despite being essential for normal cellular proliferation [5,6], there is evidence that targeting MYC
in cancer is a viable option [249]. A proof-of-concept study for MYC inhibition was performed using
a dominant negative protein inhibitor of MYC, termed Omomyc [250]. Metronomic expression of
systemic Omomyc in a model of RAS-induced lung adenocarcinoma resulted in rapid and sustained
regression of lung tumors in vivo, with minimal toxicity to normal tissues [251]. Moreover, as MYC
is a driver of many diverse cancer types, directly inhibiting MYC in cancer has the potential to have
broad therapeutic impact [252]. Delineating how MYC is deregulated in cancer will be important
to inform the optimal strategies to use for the development of anti-MYC therapeutics in the age of
personalized cancer medicine. This concept has been exemplified by the recent development of the
BET bromodomain inhibitor JQ1, a drug that has shown efficacy in preclinical models of MM [134].
Further understanding of the regulatory mechanisms controlling MYC has the potential to unveil
several classes of novel anti-MYC, targeting a wide-variety of malignancies that exhibit activation of
the MYC transcriptional network.
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