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ABSTRACT
The populations of Humboldtiana durangoensis have experienced a drastic
reduction in the effective population size; in addition, the species is threatened by
anthropogenic activities. For the aforementioned, landscape genetics will serve as a
tool to define the potential evolutionarily significant units (ESU) for this species.
To complete our objective, we evaluated the effect of cover vegetation and climate on
the functional connectivity of the species from the last glacial maximum (LGM) to
the present as well as the effect of climate on shell shape. Partial Mantel tests,
distance-based redundance analysis and a Bayesian framework were used to evaluate
connectivity. On the other hand, geometric morphometrics, phylogenetic principal
component analysis and redundancy analysis were used for the analysis of shell
shape. Our results suggest that the suitable areas have been decreasing since the
LGM; also, vegetation cover rather than climate has influenced the genetic
connectivity among land snail populations, although temperature had a high
influence on shell shape in this species. In conclusion, vegetation cover was the main
factor that determined the functional connectivity for the land snail; however, local
selective pressures led to different phenotypes in shell shape that allowed us to
postulate that each one of the previously defined genetic groups must be considered
as a different ESU.

Subjects Conservation Biology, Evolutionary Studies, Genetics, Zoology
Keywords ESU, Landscape genetics, Phylogenetic principal component, Redundancy analysis,
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INTRODUCTION
Species dispersal can be affected not only by essential processes (e.g., the movement,
mating and reproductive fitness of the individuals) but also by ecological and
topographical factors (e.g., abiotic variables, land cover, line features and landforms)
associated with the landscape (Manel et al., 2003; McRae et al., 2008). Especially in land
snails, dispersal is a process that is highly dependent on a set of variables associated
with the landscape, such as climate and vegetation cover, which represent a high
physiological cost for the snail (Dörge et al., 1999; Schweiger, Frenzel & Durka, 2004;
Hylander et al., 2005; Aubry et al., 2006). Thus, in a heterogeneous landscape, the
differentiation between populations may be increased not only by the historical events and
microevolutionary factors but also by the ecological and topographical factors that
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determine the habitat or structural connectivity (McRae, 2006; McRae et al., 2008; Bell
et al., 2010).

Due to their low vagility, patchy distribution and preference for particular microhabitats
(Dörge et al., 1999; Hylander et al., 2005; Aubry et al., 2006), land snails are excellent
models for exploring the effects of landscape on the movement of individuals among
suitable patches, or in other words, on the functional connectivity (Tischendorf & Fahrig,
2000). The effect of the Pleistocene climate changes on the phylogeographical structure
and demographic history of land snails has been widely documented (Ross, 1999; Haase
et al., 2003; Davison & Chiba, 2006; Holland & Cowie, 2007; Dépraz et al., 2008; Guiller &
Madec, 2010); as well as changes in vegetation cover that have caused a decline in
abundance and species density (Hylander, Nilsson & Göthner, 2004). However, neither the
effect of vegetation cover nor the effect of the climate on functional connectivity have been
explored yet.

The snails of the genus Humboldtiana represent a group of nearly 60 species that
have an insular distribution in the mountainous regions from South Texas and New
Mexico to Central Mexico (Thompson, 2006; Mejía & Zuniga, 2007). Many species have
very small ranges, with the exception of three species that are widely distributed (Mejía,
López & Reyes-Gomez, 2018). H. durangoensis is distributed in the Madrense Centro
ecoregion of the Sierra Madre Occidental in Durango state, mainly in cold temperate
forests in an altitudinal gradient ranging from 1,600 to 2,800 m asl. This vegetation
community has historically been exploited in Durango state and has also experienced
droughts and fires that have led to fragmentation and habitat loss (Aragón-Piña et al.,
2010). For these reasons, forest loss has turned into a global conservation issue due to its
effect on biodiversity (Fahrig, 2003).

Conservation efforts in several countries have traditionally been focused on “surrogate”
species, which can create the umbrella effect for other sympatric species and, at the same
time, serve to attract attention and funding (Caro & O’ Doherty, 1999). Illustrative
examples of this situation in Mexico are the efforts to recover the tiny vaquita porpoise
(Phocoena sinus) and the Mexican wolf (Canis lupus baileyi). Nevertheless, very few efforts
have been conducted to preserve “non-charismatic species” such as land snails. In fact,
none of the nearly 1,500 species of native land snails that occur in Mexico (Thompson &
Hulbert, 2011) are included in the Mexican law for endangered species or in the IUCN Red
List, a situation that highly contrasts with European land snails (Cuttelod, Seddon &
Neubert, 2011); at the same time, few studies of the phylogeographic structure or
population genetics have been performed with Mexican land snails (López, Gómez &
Mejía, 2017; López, Zúñiga & Mejía, 2019).

On the other hand, while there is a lack of agreement on how to define an
evolutionarily significant unit (ESU) (but see the review in Fraser & Bernatchez (2001)),
we agree with those proposals that suggest that ESUs must include genetic, ecological
and morphological differentiation (Crandall et al., 2000) that reflect the adaptive
distinctiveness. Previous articles have evaluated the population genetics and
phylogeographic structure of H. durangoensis in the Madrense Centro region using
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microsatellite DNAmarkers and mitochondrial and nuclear DNA (López, Gómez &Mejía,
2017; López, Zúñiga & Mejía, 2019). The microsatellite analysis recovered seven
genetic groups and signals of a strong genetic bottleneck in the populations, while the
mitochondrial and nuclear DNA sequences found three main genetic groups that also
showed signals of drastic reduction in the effective population size.

To evaluate the effects of vegetation cover and local climatic variables on the genetic
differentiation of the snail H. durangoensis, we analyzed the functional connectivity in
three temporal frames: the last glacial maximum (21,000 years bp), the middle Holocene
(6,000 years bp) and the present. In addition, we evaluated the effect of the climate on shell
size and shape using phylogenetic comparative methods. Despite the lack of agreement
regarding the effects of the climate on shell traits, a strong relationship between the
phenotype, genetic variation and climate would be expected (Dowle et al., 2015), because
land snails as other groups with low vagility and dispersal abilities, tend to develop local
morphological adaptations due to restrictive gene flow (Fitzpatrick, 2012; Pfenninger &
Posada, 2002). Both approaches together will allow us to postulate the ESU for this land
snail in the Sierra Madre Occidental in Western Mexico.

METHODOLOGY
Resistance surfaces
The geographic centroids of each one of the seven genetic groups of H. durangoensis
previously defined by microsatellite loci by López, Gómez & Mejía (2017) were used to
determine the effect of the landscape on functional connectivity (Fig. 1). Whereas the
landscape can include a large number of variables, in the present work, we followed
two approximations to evaluate the functional connectivity between snail populations.
The first was to use an approximation of the Grinnellian niche defined from a set of
bioclimatic variables (Bell et al., 2010; Ortego et al., 2012; Poelchau & Hamrick, 2012); the
second was to analyze the effect of vegetation cover, because it is known that it affects
the dispersion of terrestrial snails (Labaune & Magnin, 2002; Armbruster, Hofer & Baur,
2007; Ström, Hylander & Dynesius, 2009; Edworthy et al., 2012; Kappes et al., 2009),
especially in mountain populations where periods of glaciation and deglaciation promoted
the contraction and expansion of vegetation cover (Armbruster, Hofer & Baur, 2007).
In both cases, the different models were generated for three different time frames,
including the current period and two time periods representing the extreme conditions
experienced during the late Quaternary: the middle Holocene (6,000 years bp), which was
warmer and wetter than the present, and the last glacier maximum (LGM), which was
characterized by dry and colder climates (21,000 years bp).

To reduce the error in the parameterization, validation and comparison of the models
(Barve et al., 2011), the available geographic space for the taxon (M) was defined as the
Ecoregion Madrense Centro (González-Elizondo et al., 2013). Grinnellian niche models
were constructed with the 19 climatic variables available in WorldClim (Hijmans et al.,
2005) and the 18 climatic and topographic variables available in ENVIREM (Title &
Bemmels, 2018). The models were made at a resolution of 30 arc-seconds, but in the case of
the LGM, the variables were used at their native resolution of 2.5 min, and a bilinear
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Figure 1 Study area used. Geographic map of the Region Madrense Centro in the Mexican state of
Durango. (A) A digital elevation model (DEM) was used to highlight the different ombrothermal hor-
izons defined by Macías-Rodríguez, Giménez de Azcárate-Cornide & Gopar-Merino (2017). The circles
represent the geographic centroid for each one of the seven genetic groups ofHumboldtiana durangoensis
defined from microsatellite markers in López, Gómez & Mejía (2017): (1) Guanaceví. (2) Los Herreras.
(3) Potrero. (4) Topia. (5) Progreso. (6) El Salto and (7) Las Peñas. The deformation grids around the
genetic groups represent the average shape of each one of the genetic groups. In the lower section a
suitability distribution map from Maxent is showed for the three temporal frames used in this study
assuming a minimum training presence from the model (B) Last Glacial Maximum (LGM) (0.172),
(C) Mid Holocene (0.369) and (D) Current time (0.347). Full-size DOI: 10.7717/peerj.9177/fig-1
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interpolation was performed to decrease the resolution to 30 arc-seconds with the
disaggregate function of the raster library ver. 2.6-7 in R (Hijmans, 2017). The atmospheric
circulation model used was the MPI-ESM-P, since it has shown better performance
with respect to other models of circulation (Tang et al., 2017). The bioclimatic variables
were clipped to the geographic space with the crop and mask functions of the raster library
ver. 2.6-7 in R (Hijmans, 2017).

Species niche model
The environmental suitability areas were defined by a maximum entropy algorithm
(MAXENT v. 3.2.19, Phillips, Anderson & Schapire, 2006) from 28 records of
H. durangoensis available in museums and our own collections. We selected this algorithm
because it produces reliable results even with a small quantity of data (Elith et al.,
2006; Heikkinen et al., 2006; Hernandez et al., 2006). In a preliminary analysis, the
19 WorldClim and 18 ENVIREM variables were included with the default parameters and
log output to minimize the correlation and maximize their contributions to the model.
The relative importance of each variable was determined from its percentage of
contribution and for the loss of predictive power when each variable was excluded using a
jackknife test. In addition, to select those variables with correlation coefficients lower
than 0.6, environmental information was extracted from each geographic point, and a
Pearson correlation test was performed with the function correlation test in the psych
library of R (Revelle, 2018). Thus, the geographic distribution model was obtained with the
selected variables and assumed 10,000 pseudoabsence points separated by 1 km from
the presence records (Barbet-Massin et al., 2012). The statistical evaluation of the model
was carried out in 10 repetitions and the data were partitioned into 75% for training and
25% for evaluation with a logistical output. The predictive power of the model was
evaluated using a partial ROC test with 100 bootstrap replicates (Barve, 2008). Finally, the
suitability area available for the species in each temporal frame was estimated with the
DEM surface tools in ArcGIS 10.

Vegetation models
The random forest (RF) classification algorithm was used to obtain the modeled vegetation
cover (Breiman, 2001). This method categorizes a set of data based on the classification
and regression of the trees from a bootstrap analysis (Breiman, 2001). The INE-INEGI
(1997) vegetation cover map was used as an input file. Because this classification contains
many vegetation types for the Madrense Centro ecoregion, prior to the analysis, the
vegetation types were reclassified into five categories based on the ombrothermal horizons
of the Sierra Madre Occidental (Macías-Rodríguez, Giménez de Azcárate-Cornide &
Gopar-Merino, 2017): (1) temperate forests, (2) cold temperate forests, (3) grasslands,
(4) tropical forests and (5) drylands. The model was trained to take into account the
variables sets of BIOCLIM and ENVIREM and to select only those that explained more
than 50% of the variation based on the mean decrease accuracy criterion; these models
were made with the RF 4.6-14 library in R (Breiman, 2001).
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Isolation by resistance
To evaluate the resistance of the landscape between the genetic groups, the resistance
isolation model (IBR) was implemented in CIRCUITSCAPE 3.4.2 (McRae, 2006). This
method produces a resistance/conductance matrix between the pairs of sites that are
obtained by assigning an arbitrary resistance/conductance value per pixel corresponding to
the relative resistance of the landscape to the genetic flow. The result was a resistance
value that depended on the distance between the localities, the number of possible
pathways and the heterogeneity of the landscape (McRae, 2006). The following resistance
values were assigned to the forest structure: 60 (cold temperate forests), 110 (temperate
forests), 200 (grasslands), 300 (tropical forests) and 360 (drylands).

For the surface derived from the niche modeling, resistance values were assigned
considering five symmetrical categories defined by the range between the minimum
training presence and the highest suitability value obtained by the Maxent model.
The values were assigned with the ifelse and raster R libraries (Hijmans et al., 2005), and
three different approaches were used to evaluate the relationship between the paired
FST values among the seven genetic groups (López, Gómez & Mejía, 2017) and resistance
values. Three matrices were considered in this analysis: the genetic paired distances,
the Log10-transformed Euclidean geographical distances, and the paired resistance
distances obtained from CIRCUITSCAPE for the two evaluated resistance surfaces
(climate and vegetation). In the first approximation, the Mantel partial test was used to
evaluate the effects of the two variables while controlling for the effect of a third.
The significance of the partial correlation of the Mantel test was obtained by 1,000 random
permutations using the partial mantel test function of the NFC library (Bjørnstad, 2013).
In the second approach, a distance-based redundancy analysis (dbRDA) was used in
the vegan 2.5 library (Oksanen et al., 2013) considering the genetic distances, geographic
distances, and the effect of vegetation cover, as well as the effect of the climatic distances on
the mean of the resistance values (Noguerales, Cordero & Ortego, 2016).
The characterization of the environmental space was performed with the random Points
function in R that generated 1,000 random geographic points and with the extract function
to obtain the climatic point value per site. Then, the main function in R was used to
perform the PCA, and later, the dist function in R was used to obtain the eigenvalues of the
environmental distances for the first three components considering only the loadings of
the geographic points corresponding to the genetic groups; finally, the significance of
the dbRDA was evaluated with the anova.cca function in R. Lastly, in the third approach,
given that in the two previous analyses the climate component was not significant
(see Tables 1 and 2), we only evaluate the effects of geography (G), vegetation cover (E) and
both (G + E) on functional connectivity through a Bayesian framework implemented
in the SUNDER 0.0.4 library (Botta et al., 2015). The algorithm implemented in SUNDER
assumed that the covariance of the allelic frequencies among the populations would
decrease as a function of the geographical and environmental distances (Botta et al., 2015).
Thus, to estimate the effect of the set of G, E, and G + E variables, 10 independent chains
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Table 1 Pairwise comparison of Circuitscape. Pairwise comparison of the resistance values obtained
with Circuitscape using the vegetation cover as resistance surface.

Pair LGM Mid Holocene Current

1, 2 209.87 308.20 305.42

1, 3 196.76 318.14 294.33

1, 4 169.83 227.74 226.22

1, 5 309.86 359.06 356.54

1, 6 428.33 507.67 518.36

1, 7 371.76 424.61 420.29

2, 3 235.52 357.59 334.44

2, 4 182.15 243.87 247.67

2, 5 284.65 341.65 344.16

2, 6 402.27 489.54 505.29

2, 7 345.54 406.29 407.04

3, 4 164.42 236.34 213.96

3, 5 308.73 377.72 352.35

3, 6 427.46 526.63 514.47

3, 7 370.94 443.65 416.48

4, 5 224.20 238.48 240.16

4, 6 343.37 387.74 402.65

4, 7 286.93 304.84 304.74

5, 6 209.67 251.50 264.47

5, 7 159.03 175.71 173.63

6, 7 162.45 227.27 239.57

Note:
The numbers in the first column correspond to the geographic centroid of each one of the seven genetic groups recovered
by López, Gómez & Mejía (2017): (1) Guanaceví. (2) Los Herreras. (3) Potrero. (4) Topia. (5) Progreso. (6) El Salto and
(7) Las Peñas.

Table 2 Isolation by distance and resistance. Mantel partial test of the effect of isolation by distance
(IBD) and isolation by resistance (IBR) from climate and vegetation surfaces on the genetic differ-
entiation of Humboldtiana durangoensis populations for the three temporal frames used in this study.

Resistance model Comparison LGM Mid Holocene Current

R p R p R p

Climate fst vs. resistance 0.474 0.094 0.368 0.122 0.418 0.111

fst vs. geogra|resistance 0.182 0.321 0.39 0.081 0.295 0.191

fst vs. resistance|geogra 0.105 0.398 −0.181 0.362 −0.074 0.476

Vegetation fst vs. resistance 0.057 0.382 −0.144 0.29 −0.111 0.344

fst vs. geogra|resistance 0.782 0.005 0.796 0.003 0.784 0.009

fst vs. resistance|geogra −0.699 0.012 −0.725 0.013 −0.706 0.021

Notes:
R, Spearman correlation coefficient between pairwise genetic distances (FST/(1−FST)) and the Euclidean distance from the
geography and pairwise resistance of CIRCUITSCAPE. p, Statistical significance obtained from 1,000 replicates.
Bold indicates comparisons that were signifcant with p < 0.05.
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with 107 iterations and sampling every 1,000 steps were used with uniform priors with
large upper bounds (Botta et al., 2015).

Shell morphometrics
A total of 129 shells of H. durangoensis adults from the seven genetic groups used by
López, Gómez & Mejía (2017) were analyzed: Las Peñas (20 shells), El Salto (8 shells),
Progreso (3 shells), Topia (7 shells), Potrero (46 shells), Los Herreras (25 shells) and
Guanaceví (20 shells). The shape of the shell was obtained using two approaches: a classical
approach that assumed four linear shell measurements (height, SH; width, SW; aperture
height, AH; maximum aperture width, AW) obtained with a digital micrometer with
an accuracy of 0.01 mm; in addition, globosity (G = SH/WD), spiral height (SP = SH−AH)
and shell volume (V) were calculated (Fig. S1). These variables were Log10 transformed
to remove the size effect following the method described by Mosimann (1970). Finally,
the eigenvalues of the mean and the centroid values for each one of the genetic groups were
recovered from a principal component analysis (PCA) for posterior analysis (Hartigan &
Wong, 1979). On the other hand, the shell shape was evaluated from 11 landmarks
according to Mumladze, Tarkhnishvili & Murtskhvaladze (2013) (Fig. S1). Following the
method proposed by Kistner & Dybdahl (2013), a total of five photos were taken per
individual to eliminate the error associated with the orientation. The X/Y coordinates were
digitized in TPSDIG ver 2.12 (Rohlf, 2008). The average shape per genetic group and the
deformation grids were obtained from a generalized Procrustes analysis in order to
visualize changes in the shape of the shell with the gpagen function implemented in
geomorph 3.0.7 (Adams, Collyer & Kaliontzopoulou, 2019). To eliminate the phylogenetic
effect on the variation in shell shape, a phylogenetic principal component analysis was
performed considering the shell shape of both, classical and geometric morphometrics
approaches and a tree based on distances generated from FST values with the function phyl.
pca in phytools (Revell, 2012); additionally, the deformation grids of the average shell
shape of the genetic groups were ploted in the phylomorphospace with the
plotGMPhyloMorphoSpace function implemented in Geomorph. Lastly, to determine
whether there was a relationship between the shell shape and environmental conditions, a
redundancy analysis (RDA) was performed considering the three matrices generated
(means and centroid values for each one of the seven genetic groups as well as the average
shape obtained from the geometric morphometrics analysis) with the rda function
following the method proposed by Borcard, Gillet & Legendre (2018) in the vegan library
ver 2.5 (Oksanen et al., 2013).

RESULTS
Six variables made the greatest contribution to the model of the potential distribution:
isothermality (Bio3), the minimum temperature of the coldest month (Bio6), the
precipitation of the wettest month (Bio 13), the precipitation of the driest month (Bio 14),
the precipitation of the coldest month (Bio 19) and the climatic humidity index.
For the potential vegetation model, 11 variables were selected: isothermality (Bio 3),
temperature seasonality (Bio 4), the annual temperature range (Bio 7), the annual
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precipitation (Bio 12), the driest month precipitation (Bio 13), the seasonality of
precipitation (Bio 15), the coldest quartile precipitation (Bio 19), the average monthly
evapotranspiration potential of driest quarter (PETDriestQuarter), the monthly
variability in evapotranspiration potential (PETseasonality), the average monthly
evapotranspiration potential of the warmest quarter (PETWarmestQuarter) and the
average evapotranspiration potential of the wettest quarter (PETWettestQuarter).

Environmental suitability and vegetation models
The results obtained for the modeling of the distribution area of H. durangoensis in the
Madrense Centro region showed that the models constructed for the three temporal
frames were satisfactory (P = 0). In general, our findings suggested that the areas of
environmental suitability had decreased considerably in the last 21,000 years (38,197 km2

or 28.5% of the total area in the LGM, 32,945 km2 or 24.5% in the mid Holocene and
23,620 km2 or 17.6% in the current). Our findings show that at present, the areas with high
probability of occurrence are restricted to the northern portion of the distribution area
(Fig. 1). The model of vegetation cover generated from the current vegetation map with RF
showed that the estimated success rate was 76.77% for the LGM, 77.48% for the
middle Holocene and 75.57% for the current period (Table S1). In addition, in the last
21,000 years, a variation in the coverage area of each plant community was estimated, and
the temperate forests increased the most, while the grasslands decreased the most
(Table S1; Fig. S2).

Resistance and functional connectivity
The maps generated by CIRCUITSCAPE considering the structure of the vegetation
cover suggested that the connectivity routes between theH. durangoensis genetic groups in
the Central Madrense region have changed little in the last 21,000 years, although in the
actual period, the areas of high resistance are larger compared to those in the LGM
(Table 1; Fig. S2). The resistance surface from the environmental suitability models for the
Mantel test and Mantel partial tests were not significant (Table 2; Fig. S3). On the other
hand, when considering the effects of vegetation cover, the Mantel test between the
values of FST and vegetation cover was once again not significant in any of the three
time frames; however, the Mantel partial tests yielded significant correlations when
controlling for the effects of geography and vegetation cover in the three time periods
(Table 2). In the case of the RDA, the marginal tests for the three time frames showed a
significant association between the genetic differentiation and geographic distance,
explaining 24.26% of the variance, but were not significant when the resistance distances
generated from the vegetation cover or from the climatic variables were considered
(Table 3). In contrast, in the conditional tests as in the Mantel partial test, a relationship
was again observed with the structure of the vegetation cover but not with that of the
climate (Table 3). With respect to the results generated by SUNDER, when the climatic
component was no longer considered, it was observed that during the LGM, it was the
geographic component that best explained the variation, while for the middle Holocene
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and the actual period, both the geographic component and the vegetation cover were
important (Table 4).

Variation in shell size and shape
The values estimated from the morphometrics classical approach allow us to establish
that the populations located in the north of the distribution area (Topia, Potrero, Los
Herreras and Guanaceví) had larger sizes and higher spires in comparison with the
populations in the center (Progreso) and south (Las Peñas and El Salto) of the distribution
area (Table 5). The percentage of variance explained by the first three phylogenetic
components was 99.47% for the means of the linear variables, 99.98% for the centroid
size and 91.84% for the average shape obtained from the analysis of the geometric
morphometrics. Finally, the RDA obtained from the analysis of the first three phylogenetic
components was statistically significant (P < 0.05). The bioclimatic variables associated
with each dataset were different, although in all cases, they were exclusively temperature
variables, with the temperature annual range (Bio 7) being the only common variable
(Fig. 2). Although it was difficult to establish a pattern, the data retrieved from geometric

Table 3 Distance based redundance analysis. Effect of the geographic distance (IBD), vegetation and
climate on the genetic differentiation among the seven genetic populations of Humboldtiana dur-
angoensis obtained from the distance based redundance analysis (dbRDA) for the three temporal frames
used in this study.

Marginal tests Conditional tests

Variable F p % var F p % var

LGM

Geographic 6.086 0.02 24.26 0

Vegetation 0.605 0.447 3.087 14.521 0.002 33.819

PCA1 1 0.327 4.999 0.244 0.623 1.013

PCA2 2.979 0.1 13.552 1.308 0.266 5.131

PCA3 0.098 0.748 0.515 1.536 0.238 5.956

mid Holocene

Geographic 6.086 0.026 24.26 0

Vegetation 0.404 0.537 2.083 19.986 0 39.849

PCA1 2.106 0.166 9.976 1.916 0.177 7.286

PCA2 0.419 0.516 2.158 0.074 0.785 0.312

PCA3 1.211 0.284 5.992 2.888 0.105 10.473

Current

Geographic 6.086 0.025 24.26

Vegetation 0.235 0.636 1.224 17.844 6.00E−04 37.704

PCA1 0.408 0.525 2.101 0.138 0.704 0.578

PCA2 2.095 0.161 9.933 1.723 0.213 6.617

PCA3 1.48 0.231 7.228 2.82 0.108 10.258

Notes:
In the marginal test the effect of each one of the variables was evaluated separately, meanwhile, in the conditional test, the
effect of the geographic distance was included as a covariate. F represent the proportion of variance, p the statistical
significance and % var the percentage of variance explained from each variable.
Bold indicates comparisons that were signifcant with p < 0.05.
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morphometric analysis allowed us to suggest that larger shells with higher spirals are
related to the max temperature of the warmest month (Bio 5), while smaller shells with the
lower spirals were related to the temperature annual range (Bio 7) and mean temperature
of the wettest quarter (Bio 8) (Fig. 2). Additional support for the aforementioned
results proceed from the analysis of the deformation grids in the phylomorphospace,
where the populations located to the North (Guanaceví, Los Herreras, Topia and Potrero)
tend to have higher spires and higher values of whorl expansion ratio that lead to squared
shells, in contrast, the lower spires and the lower values of whorl expansion ratio in
the Center (Progreso) and South (El Salto and Las Peñas) populations lead to wider an
more rounded shells (Fig 3).

DISCUSSION
Effects of the landscape on functional connectivity
The functional connectivity in terrestrial snails was determined by the availability of
microhabitats suitable for dispersal. Our findings showed that the variables related to the
humidity and relative aridity of the terrain, as well as the precipitation of the driest
and the wettest month, had a greater contribution to the potential distribution model

Table 4 Results of the Bayesian inference and model selection obtained from SUNDER to evaluate
the relative effect of geography and vegetation cover on the genetic differentiation of the seven
genetic groups of Humboldiana durangoensis.

Period Iteration G E G + E

Likelihood Bg Likelihood Be Likelihood Bg Be

LGM (6, 3, 1) −8,975.22 4.13 −9,053.74 521.65 −9,044.04 4.15 1,102.35

mid Holocene (3, 3, 6) −6,712.19 3.29 −6,672.19 524.79 −6,638.51 3.52 2,040.62

Current (3, 2, 5) −9,942 3.63 −9,964.55 530.97 −9,890.39 3.29 1,711.27

Note:
G, Euclidean geographic distances; E, Resistance values obtained for the vegetation cover; G+ E, combined effect of both
variables. The numbers inside brackets in the iteration column indicate the number of times that each one of the three
models has obtained the lower value of likelihood in 10 independent runs. The parameter β represents the magnitude of
the effect of the variable on the genetic covariance (lower values indicate a more important effect).

Table 5 Shell measurements performed. Average size (in mm) for the four measurements used in this
study to evaluate the shell shape of seven genetic groups of Humboldtiana durangoensis. Shell height
(SH), Shell width (SH) Aperture height (AH), Maximum Aperture width (AW). Additionally, Globosity
index (G), Spire Height (SP) and Shell Volume are shown.

Group N SH SW ALH AW G SP V

Guanacevi 20 32.15 34.45 21.66 19.52 0.93 10.49 3.42

Los Herreras 25 31.94 33 22.06 19.09 0.97 9.88 3.29

Potrero 46 32.86 35.4 22.32 20.34 0.93 10.54 3.47

Topia 7 31.13 32.56 23.18 18.98 0.96 7.95 3.22

Progreso 3 24.11 26.16 19.11 15.81 0.92 5 2.62

El Salto 8 28.94 31.3 21.28 17.97 0.93 7.66 3.16

Las Peñas 20 25.51 28.14 19.32 16.29 0.91 6.18 2.87
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generated by Maxent. These variables were related to the apparent rupture of the estivation
period in May and to the period of activity and dispersion between July and September, as
has been suggested for other members of the group (Baur, 1986; Aubry et al., 2006).
However, the climate component defined through the environmental suitability analysis
with the MAXENT maximum entropy algorithm and by the method proposed by

Figure 2 Redundancy analysis (RDA) for the shell shape of Humboldtiana durangoensis between:
(A) Average size from traditional morphometrics. (B) Centroid from traditional morphometrics.
(C) Consensus shape from geometric morphometrics and climate variables from Worldclim.
The direction and size of the arrows indicate the correlation between climate variables and RDA axes.
The circles represent the geographic centroid for each one of the seven genetic groups: (1) Guanaceví.
(2) Los Herreras. (3) Potrero. (4)Topia. (5) Progreso. (6) El Salto and (7) Las Peñas.

Full-size DOI: 10.7717/peerj.9177/fig-2
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Noguerales, Cordero & Ortego (2016) did not contribute significantly to explaining the
functional connectivity of H. durangoensis populations.

A possible explanation for this phenomenon might be related to the spatial resolution
provided by the bioclimatic layers. It has been demonstrated that the geographic patterns
of the areas of environmental suitability in the terrestrial mollusks were particularly
dependent on the resolution of the grid, since this increases or diminishes the
heterogeneity of the geographic space (Kadmon & Heller, 1998). However, the models
generated for land snails at a resolution of 30 arc-seconds (1 km2), as used in this study,
have been shown to be efficient in explaining the historical demographic reductions
that are the consequence of contractions in the areas of environmental suitability
(Horsák et al., 2010; Pfenninger et al., 2014; Mumladze, 2014; Patrão et al., 2015). In this
sense, the areas of environmental suitability for H. durangoensis have decreased from
28.5% in the LGM to 17.6% at the present, a result congruent with the population
reductions recovered for this species with microsatellite markers and DNA sequences
(López, Gómez & Mejía, 2017; López, Zúñiga & Mejía, 2019). Therefore, although the
climate component apparently did not make a significant contribution to functional
connectivity, its influence on the taxon cannot be denied because H. durangoensis likely

Figure 3 Deformation grids of the consensus shape of the shells of H. durangoensis plotted into the
phylomorphospace. The black circles correspond to each one of the seven genetic groups analyzed.
(1) Guanaceví. (2) Los Herreras. (3) Potrero. (4) Topia. (5) Progreso. (6) El Salto and (7) Las Peñas.
The first two components of the phylomorphospace explained 74.07% of the variation in shell shape.

Full-size DOI: 10.7717/peerj.9177/fig-3
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experienced environmental tracking as a consequence of climate change, as has been
demonstrated in alpine populations of Arianta arbustorum (Baur & Baur, 2013).

On the other hand, the RF algorithm has been shown to perform well in predicting the
current vegetation types in heterogeneous geographic areas, as it was very robust in
relation to the number of classes in which plant communities were clustered, as has been
verified by paleopalinological records for models generated for LGM (Waske & Braun,
2009; Rodriguez-Galiano et al., 2012; Vanselow & Samimi, 2014; Hais et al., 2015). Thus,
the results of efficiency in the assignment to plant categories with the RF algorithm
(Table S1) fall within the values obtained in other works (Waske & Braun, 2009;Hais et al.,
2015), suggesting that predictions of vegetation cover in this study are correct. Although
our paleovegetation maps apparently did not show significant changes in vegetation cover
(Fig. S2), the resistance results from Circuitscape suggested that these changes have
occurred and that resistance values have increased from the LGM to the present (Table 1).
One of the main limitations of analyses based on resistance surfaces is that the values
assigned to each of the categories are arbitrary; however, it has been shown that the
assigned resistance values have no effect on the habitat categories in a fragmented
landscape (Schweiger, Frenzel & Durka, 2004; Wang et al., 2008). Consequently, as has
been reported for other mountain snails (Scheel & Hausdorf, 2012; Hugall et al., 2002;
Sherpa et al., 2018), the altitudinal displacement of plant communities in mountainous
regions during Quaternary climate changes could explain the dynamics of functional
connectivity in H. durangoensis as has been postulated for other species distributed in the
SMOc (Metcalfe et al., 2000; Anducho-Reyes et al., 2008; Bryson et al., 2011; López-
González, Correa-Ramírez & García-Mendoza, 2014).

Based on these findings, we hypothesized that the functional connectivity of
H. durangoensis on different temporal scales has been promoted by the presence of both
temperate and cold temperate forests and that two patterns can be distinguished as
has been suggested in Helix aspersa and Cepaea nemoralis (Arnaud, 2003; Schweiger,
Frenzel & Durka, 2004; Barahona-Segovia et al., 2019). The first is a model of isolation by
distance on a larger geographic scale (Pfenninger & Posada, 2002; Arnaud, 2003; Schweiger,
Frenzel & Durka, 2004), and the second is possible dynamic metapopulation promoted
both by environmental and landscape heterogeneity on a fine geographic scale, as has been
documented for other land snails (Arnaud et al., 2001; Baur & Baur, 2013).

Variation of the shell in H. durangoensis
The relationship between shell size and shape in land snails with climatic variables of
temperature and precipitation has been widely studied and is well known (see review in
Goodfriend (1986)). However, while the effect of the genetic component on shell shape
variation has been studied (Goodacre, 2001; Dowle et al., 2015; Sherpa et al., 2018),
few studies have attempted to control this effect (Webster, Van Dooren & Schilthuizen,
2012; Kotsakiozi et al., 2013), and none so far have evaluated this effect at the intraspecific
level. Our findings showed, after controlling for the genetic effects, that the shell size
and shape were determined by climatic variables of temperature and precipitation (Fig. 2).
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However, whereas these variables were not significant to explain the genetic relationships
among the groups, they suggested that both the phenotype and genotype were the
results of independent processes (Haase & Misof, 2009); that is, the microhabitat
conditions had a great effect on the shell despite the existence of gene flow (Chiba &
Davison, 2007; Fiorentino et al., 2013; Stankowski, 2013; Proćków, Kuźnik-Kowalska &
Mackiewicz, 2017). Thus, whereas it has been suggested that the use of comparative
phylogenetic methods at intrapopulation levels may generate poor informative results
(Niewiarowski, Angilletta & Leaché, 2004), the power of resolution of these methods may
depend on the taxon and the assessed trait (Martins & Housworth, 2002), as has been
found in this study.

In addition, our results suggested that populations with larger shells and apertures
are distributed to the north, while populations with smaller shells and apertures were
distributed to the south. The altitudinal interval of the sampled localities in the northern
region (1,702–2,400 m asl) was lower than the altitudinal interval in which the populations
in the southern region were collected (2,587–2,759 m asl), which was consistent with
the results previously found in intrapopulation studies of the species of the genera Arianta,
Vestia and Trochulus (Buria & Stahel, 1983; Baur & Raboud, 1988; Sulikowska-Drozd,
2001; Proćków, Kuźnik-Kowalska & Mackiewicz, 2017), where the populations from colder
climates had smaller shells. This could be related to a greater probability of survival of
organisms with small shells in unfavorable climatic conditions (Baur et al., 2014) and
the greater resistance to crystallization temperatures (Ansart et al., 2014). At the same time,
at higher altitudes, the duration of individual growth time is shorter (Anderson, Weaver &
Guralnick, 2007; Proćków, Kuźnik-Kowalska & Mackiewicz, 2017). However, there
were also differences in the sizes of the aperture and the heights of the spires between the
north and south regions. These shells attributes could reflect microclimatic conditions,
where small apertures tended to occur in the drier and higher altitude regions, meanwhile
large apertures and higher spires occured at lower altitudes as has been reported in other
species (Anderson, Weaver & Guralnick, 2007; Haase & Misof, 2009; Dowle et al., 2015).

How many ESUs?
In the literature, only two published works that addressed the definition of the ESUs of
land snails have been published (Holland & Hadfield, 2002; Ursenbacher et al., 2010);
however, they did not remove the phylogenetic effects, which impacted their results. In the
first study, a fragment of the mtCOI DNA was used and only the phylogenetic trees,
genetic distances and AMOVA analysis in the 12 populations of the tree snail Achatinella
mustelina were recognized as six ESUs that were reproductively isolated and distributed
throughout a longitudinal transect of 24 km (Holland & Hadfield, 2002). In the second
study, which used microsatellite loci and performed a genetic structure analysis, two
main clusters were found in Trochulus aureatus, although the authors decided to define
each one of the nine sampled populations as different ESUs, even though they were
separated by less than 200 m (Ursenbacher et al., 2010). In opposition, our results suggest
that each of the seven genetic groups previously identified by the analysis performed by
López, Gómez & Mejía (2017) must be considered an ESU, not only because of their
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genetic distinctiveness but also due to the phenotypical differences. The removal of the
phylogenetic effect shows that temperature and precipitation variables were strong
determinants of the shell size and shape of the species, which explained the morphological
differentiation (Fig. 2).

CONCLUSIONS
The main conclusion of this work is that vegetation cover has a high impact on the
functional connectivity of the land snail, as does climate, which is a strong determinant of
shell shape in this species. Previous studies have found that young restored forests can
achieve even higher snail diversities than old unperturbed forests (Hylander, Nilsson &
Göthner, 2004; Ström, Hylander & Dynesius, 2009), although this could depend on survival
in microrefugia or dispersal from other patches. Forestry is one of the main economic
activities in the state of Durango, Mexico, that exerts strong pressure on the populations of
the land snail H. durangoensis due to habitat loss and degradation. Nevertheless, the
development of comprehensive management plans for the state (CONAFOR, 2006) could
guarantee the long-term survival of H. durangoensis, although further studies need to be
performed to evaluate the potential effects of global climate warming on the species.
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