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Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus
(DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis
is a crucial metabolic change in the late stage of DKD, which is always considered to
be complex and irreversible. In this review, we discuss the pathological mechanisms
of diabetic renal fibrosis and discussed some signaling pathways that are closely
related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch
pathways. The cross-talks among these pathways were then discussed to elucidate the
complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the
new drugs with potential therapeutic effects on renal fibrosis and listed related clinical
trials. The purpose of this review is to elucidate the mechanisms and related pathways
of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical
research to delay the progression of renal fibrosis.
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INTRODUCTION

Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus (DM),
which is characterized by glomerular hyperfiltration, progressive albuminuria, and decreased
glomerular filtration rate (GFR), and ultimately leads to end-stage renal disease (ESRD) (Alicic
et al., 2017). According to the prevalence survey, about 30–50% of ESRD worldwide is caused by
DKD (Tuttle et al., 2014). DKD has become the primary cause of ESRD in middle-aged and elderly
people in China (Duan et al., 2020). The pathological changes of DKD include nodular or diffuse
glomerulosclerosis, tubular inflammation, atrophy, and interstitial fibrosis (Thomas et al., 2015).
Among them, renal interstitial fibrosis is a common metabolic change in the late stage of DKD,
which is also a factor that promotes the progression of the disease.

Renal fibrosis is the deposition of fibrotic matrix and the formation of scar in response to severe
or persistent injury (Humphreys, 2018). Although it is involved in the wound healing process,
continued fibrosis can damage tissue structure and organ function, eventually causing renal failure
(Liu, 2011). Chronic injury to the kidney promotes a variety of pathological changes, including
epithelial–mesenchymal transition (EMT) (Yang and Liu, 2001; Hertig et al., 2008), endothelial–
mesenchymal transition (EndoMT) (Li et al., 2009), and activation of fibroblasts and pericytes.
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EMT is characterized by the loss of intracellular adhesion, such
as E-cadherin, and the acquisition of mesenchymal markers,
such as αSMA, fibroblast-specific protein 1 (FSP1), fibronectin,
collagen, and vimentin (Zhou and Liu, 2016). EndoMT is a
special EMT subset that occurs in endothelial cells, which is
similar to EMT (Sun et al., 2016). Fibroblasts and pericytes are
always regarded as the major origin of myofibroblasts, whose
activation predominantly accelerates the irreversible formation
of myofibroblasts (Mack and Yanagita, 2015). These pathological
processes transform renal cells into myofibroblasts, which exert
their profibrotic function by secreting collagen I, III, and IV,
fibronectin, and laminin, leading to extracellular matrix (ECM)
accumulation and eventually resulting in tubulointerstitial
fibrosis (Figure 1).

Renal fibrosis is the major outcome event of nearly all
chronic kidney disease and is always considered to be irreversible
and remains to be an unsolved clinical conundrum (Francois
and Chatziantoniou, 2018). It is well established that many
signaling pathways are involved in renal fibrosis through a
variety of complex cascades. In this review, we discuss the
diagnostic method and the mechanisms of renal fibrosis,
especially tubulointerstitial fibrosis, and signaling pathways that
are closely related to it, and summarize potential targets as well as
new drugs of DKD.

EXAMINATION AND QUANTIFICATION
SCORES OF RENAL FIBROSIS

The native kidney biopsy is the gold standard for the diagnosis
of renal interstitial fibrosis, by which the pathological process
and the prognosis of patients could be evaluated more accurately
(Luciano and Moeckel, 2019). According to the Banff 97
criteria (Racusen et al., 1999), an adequate cortical specimen
that contains at least 10 glomeruli and 2 arteries should be
obtained by kidney biopsy. Then, staining methods, such as
hematoxylin and eosin (HE) stain, periodic acid-Schiff (PAS)
stain, and trichrome stain, are performed to improve the
identification of the degree of lesion (Farris and Colvin, 2012).
Masson trichrome stain is the preferred method for diagnosis
of renal interstitial fibrosis in clinical practice because of
its simple operation and clear results that can be obtained
under a light microscope (Street et al., 2014). Furthermore,
with the introduction of immunofluorescence and electron
microscopy techniques, the accuracy of qualitative diagnosis
and quantitative analysis of kidney biopsy samplings has been
improved (Hogan et al., 2016).

The widely used Banff 97 classification proposed by Racusen
et al. (1999) divided the lesions into four grades, namely, ci0, ci1,
ci2, and ci3, according to the percentage of cortical parenchyma
affected. The corresponding percentage of the four levels are 0 to
5, 6 to 25, 26 to 50%, and more than 50%, respectively.

Although kidney biopsy is the only specific diagnostic method
for renal fibrosis, non-invasive techniques such as diffusion
tensor imaging (DTI) (Nassar et al., 2021) and molecular imaging
of ECM (Bülow and Boor, 2019) are valuable in the assessment of
renal interstitial fibrosis.

SIGNALING PATHWAYS INVOLVED IN
RENAL FIBROSIS

TGF-β Signaling Pathway
It is well accepted that the TGF-β signaling pathway plays a
crucial role in fibrogenesis, especially in renal fibrosis of diabetic
kidney disease. TGF-β, a key mediator of fibrosis, exerts its
profibrotic effect through the activation of downstream signaling,
leading to EMT, EndoMT, and myofibroblast activation, which
instigates a loss of adhesion proteins and connexins under
high-glucose conditions (Hills et al., 2012). Therefore, ECM
accumulates on the cell surface or between cells, which is the key
cause of renal fibrosis.

The three isoforms of TGF-β, TGF-β1, TGF-β2, and TGF-
β3, all have fibrogenic effects on renal cells and stimulate the
production of ECM proteins in renal fibroblasts, renal tubular
epithelial cells, and glomerular mesangial cells (Ito et al., 2001).
Among them, TGF-β1 is considered to play a major role
in fibrogenesis and mediate part of the functions of TGF-β2
and TGF-β3 (Yu et al., 2003). These reports indicate a better
therapeutic effect in attenuating renal fibrosis by blocking all
three isoforms together. TGF-β1 binds receptor II (T beta RII)
to exert its biological functions, and the disruption of T beta
RII in renal fibroblasts can reduce the accumulation of ECM
and inhibit fibrosis through TGF-β1-induced Smad signaling
pathway (Kasuga et al., 2001; Meng et al., 2012a). CaSR, a kind of
G protein-coupled receptor, could combine with TβRII to form
a CaSR–TβRII complex, which is then translocated from the cell
membrane to the cytoplasm. This process leads to the reduction
of TβRII on the cell membrane, thereby reducing its binding to
its ligand TGFβ1, inhibiting the activation of the TGF-β/Smads
signaling pathway and the expression of downstream genes, and
finally alleviates the ECM accumulation mediated by TGF-β1 or
high glucose (Li et al., 2020a).

The TGF-β signaling pathway could be activated by high-
glucose condition (Qi et al., 2007), which significantly increases
the expression of TGF-β1 mRNA and induces the synthetic
phenotype of mesangial cells (Liu, 2011). The injury of mesangial
cells and podocytes caused by diabetic nephropathy can activate
the signal transduction cascade of the TGF-β/Smad signaling
pathway and stimulate the expression of TGF-1, TSP-1, and
TGF-IIR in GEC, thus activating the Smad signaling pathway
and leading to increased production of ECM (Kim et al., 2003).
Animal studies have also demonstrated that stimulation with
TGF-β1 increased the kidney expression of fibrotic genes such
as collagen I, collagen IV, and fibronectin in mesangial cells and
tubular epithelial cells in UUO mice (Wang et al., 2020a).

On the other hand, treatment with pyrrole-imidazole (PI)
polyamides, a transcription inhibitor of TGF-β1, decreased the
growth of mesangial cells, which demonstrated the role of TGF-
β1 in renal fibrosis (Horikoshi et al., 2020). Treatment with
anti-TGF-β antibody (αT), an antibody neutralizing the activity
of all three isoforms of TGF-β, reduced the deposition of ECM
and alleviated renal interstitial fibrosis (Fukasawa et al., 2004).
Furthermore, the application of αT not only prevented early
changes in renal histopathology and attenuated the accumulation
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FIGURE 1 | Mechanism of renal fibrosis. Injury to the kidney activates inflammatory response and promotes the secretion of inflammatory cytokines by renal cells.
Then, in response to severe or persistent inflammation, renal epithelial cells and endothelial cells undergo phenotypic transitions called EMT and EndoMT,
respectively, while fibroblasts and pericytes are activated. Activated intrinsic renal cells also secrete cytokines such as TGF-β and CTGF to further promote the
formation of myofibroblasts. Various signaling pathways are involved in these processes, including TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch
pathway. These pathological changes result in the irreversible formation of myofibroblasts, followed by the production of multiple types of collagens and the ECM
accumulation, eventually leading to renal tubulointerstitial fibrosis. EMT, epithelial–mesenchymal transition; EndoMT, endothelial–mesenchymal transition.

of ECM with a short-term treatment (Sharma et al., 1996), but
also reduced the expression of α1 (IV) collagen and fibronectin in
later stages of diabetic nephropathy with chronic administration
(Ziyadeh et al., 2000). However, a randomized, double-blind
clinical study showed that using a humanized neutralizing
monoclonal antibody (TGF-β1mAb) to neutralize active TGF-
β1 did not slow the progression of diabetic nephropathy, and
the trial was terminated early for lack of efficacy. Although TGF
blockers have made some progress in animal experiments, their
clinical application is still a conundrum (Voelker et al., 2017).

The Factors That Stimulate the TGF-β
Signaling Pathway
In the occurrence and development of diabetic nephropathy,
many factors promote the progression of renal fibrosis by
stimulating the TGF-β production, such as hyperglycemia,
advanced glycation end products (AGEs), reactive oxygen species
(ROS), and renin–angiotensin II–aldosterone system (RAAS).

Numerous studies have indicated that hyperglycemia is a key
regulatory factor that mediates the TGF-β secretion in both
in vitro and in vivo studies (Zhu et al., 2005). High glucose
stimulated the expression of TGF-β1 mRNA and increased
total TGF-β1 protein production in murine mesangial cells
(MMCs) (Hoffman et al., 1998) and human proximal tubular
cells (HPTC) (Phillips et al., 1995) in culture. Moreover, blood

glucose fluctuation (BGF) plays a significant role in renal TGF-
β1 gene expression; even the level of the blood glucose is in
the normal range (Qi et al., 2007). Another experiment on
animals demonstrated that BGF treatment markedly upregulates
TGF-β1 expression, increasing the synthesis of type I collagen
and inhibiting collagen degradation. Furthermore, BGF appeared
to have a more harmful effect in fibrogenesis of renal cells
in diabetic mice than in mice with consistent hyperglycemia
(Cheng et al., 2013).

Except for the effects brought by blood glucose, AGEs also
upregulated the levels of TGF-β mRNAs partly by the increasing
production of ROS and subsequently induced mesangial cell
hypertrophy and fibrosis (Yamagishi et al., 2003). On the
contrary, the AGE cross-link breaker could reduce EMT in
diabetic rats by decreasing tubular AGE and TGF-β expression
(Oldfield et al., 2001). Both in vivo and in vitro studies
demonstrated that AGEs induced the deposition of matrix
protein via induction of TGF-β and Smad2/3 activation in
mesangial cells, which was suppressed by the inhibitor of AGE
receptor (Lee et al., 2018).

In addition, the results of the previous study suggested that
the activated local RAAS contributed to high glucose-induced
EMT by activating AT receptors and promoting angiotensin II
production. Angiotensin II and activated AT receptors could
stimulate TGF-β synthesis in the kidney and upregulated TGF-
β receptors. Research also found that the AT receptor antagonist
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losartan partially inhibited the increases in TGF-β in rat kidney
proximal tubular epithelial cell line NRK-52E (Zhou et al., 2010a),
which indicated that RAAS played a pivotal role in the TGF-β
signaling pathway. Currently, there is no direct way to inhibit
the TGF-β system without side effects. Therefore, angiotensin-
converting enzyme (ACE) inhibitors and angiotensin type 1
(AT1) receptor blockers are widely used in diabetic nephropathy
at present, which partly interfere with TGF-β expression
mediated by ANG II (Wolf, 2006). Although Ang II blockade
alone reduces renal fibrosis, simultaneous blockade of Ang II
and TGF-β takes a better effect in ameliorating renal fibrosis,
suggesting that drug combinations will be a future therapeutic
direction and novel measures that block the TGF signaling
pathway still need further development (Yu et al., 2004).

Downstream Targets of TGF-β Signaling
TGF-β signaling exerts its biological functions through both
canonical (Smad-dependent) and non-canonical (Smad-
independent) pathways (Derynck and Zhang, 2003). In the
Smad-dependent pathway, the active TGF-β binds to its receptor
type II and type I serine/threonine kinase receptors and thus
phosphorylates Smad2 and Smad3, and oligomeric complexes
are formed with Smad4, which translocates into the nucleus,
regulating the transcription of target genes. Smad7, one of the
inhibitory Smads (I-Smads), exerts its autoinhibitory function by
inhibiting the signals from the serine/threonine kinase receptors
(Miyazono et al., 2000).

In this process, Smad3 plays a major role in the development
of renal fibrosis (Ju et al., 2006). It has provided evidence
that the TGF-β/Smad3 signaling pathway is highly activated in
renal fibrogenesis. Smad3 exhibited an obvious deposition of
collagen, contributing to the development of renal fibrosis in
db/db mice, whereas this process could be inhibited by Smad3
knockout (Xu et al., 2020). Further research suggested that
Smad3 increased TGFβ1-induced connective tissue growth factor
(CTGF) expression and decreased E-cadherin expression. It also
cooperated with Smad2 to increase the expression of alpha-
SMA (Phanish et al., 2006). HIPK2, a regulator of the TGF-
β1/Smad3 pathway, inhibited Smad3 phosphorylation, leading to
the mitigation of renal fibrosis (Liu et al., 2017), which indicated
that Smad3 is a potential therapeutic target for T2DN. Although
Smad2 and Smad3 are both generally considered to be crucial
downstream mediators of TGF-β1, the pathological function of
Smad2 and Smad3 may be different in terms of collagen matrix
deposition and interstitial fibrosis. It has been demonstrated
that the deletion of Smad2 had an effect in enhancing TGF-
β/Smad3 signaling, which promoted collagen production and
fibrosis. On the contrary, the overexpression of Smad2 attenuated
this process, indicating a protective mechanism of Smad2 in
TGF-mediated fibrosis (Meng et al., 2010). It corresponds to
the previous results that Smad2 knockout promoted EMT
progression (Ju et al., 2006; Runyan et al., 2009). Smad4, the
same as Smad3, promotes fibrogenesis, which was proven by
the observation of reduced collagen I expression and inhibited
renal fibrosis in the Smad4 knock-out mouse model (Meng et al.,
2012b). Although the downstream Smad signaling primarily
promotes TGF-β-induced renal fibrosis, Smad7, an inhibitory

Smad, negatively regulates fibrotic cytokines expression. The
anti-fibrosis mechanism of Smad7 has been demonstrated to be
a blockade of Smad2/3 activation via regulating the expression
of microRNAs (Lan, 2008; Chung et al., 2013). In general,
Smads play a crucial role in TGF-β-mediated renal fibrosis as a
downstream signaling pathway (Figure 2), which provides novel
and potential therapeutic targets for clinical treatment and drug
discovery of renal fibrosis.

In addition to the Smad-dependent pathway, multiple non-
Smad downstream signaling pathways are involved in TGF-
β-mediated renal tubular fibrosis, such as the mitogen-activated
protein kinase (MAPK) pathway, Wnt/β-catenin pathway,
extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal
kinase (JNK), and phosphatidylinositol 3-kinase (PI3K) (Sutariya
et al., 2016). These pathways cross-talk with TGF-β signaling
to exert complex biological functions and together promote the
progression of renal interstitial fibrosis.

MAPK Pathway
Mitogen-activated protein kinases consist of a group of
serine/threonine protein kinases, controlling various aspects
of cellular functions, and can be activated in high-glucose
conditions (Haneda et al., 1997). The main subgroups of MAPK
are P38MAPK, ERK, and JNK, which together mediate signal
transduction in fibrosis (Davis, 1994).

It is reported that the overexpression of EphA1, a modulator
of fibrosis, decreased the phosphorylation of ERK1/2 and JNK
in the kidney and finally alleviated renal fibrosis of diabetic
nephropathy mice (Li et al., 2017c). Zhang et al. (2015)
also reported that ERK1/2 MAPK signaling was involved in
diabetic nephropathy to mediate fibrogenesis by regulating
mesangial cell proliferation and ECM accumulation, which
suggested the crucial biological function of the ERK MAPK
pathway in tubulointerstitial fibrosis. Another research found
that blockade of p38 MAPK exerted a beneficial effect via
inhibiting the production of phosphorylated p38 MAPK-positive
cells in the early stage of fibrosis in the treated kidney
(Wada et al., 2006). Moreover, the single blockade of p38
MAPK was also demonstrated to be effective to alleviate renal
fibrosis in the established fibrotic UUO model (Nishida et al.,
2008). At the same time, administration of JNK inhibitor,
which blocked all JNK isoforms, obviously delayed fibrosis
progression via inhibiting accumulation of collagen IV and
α-SMA+myofibroblast in an animal model (Ma et al., 2007).

Extracellular signal-regulated kinase, p38 MAPK, and JNK
pathways play different but complementary roles in ECM
deposition and fibrogenesis. P38 MAPK is more important in
regulating Matrix metalloproteinase 1 (MMP1), while the ERK
MAPK pathway mainly moderates the production of type I
collagen (COL1) in high-glucose conditions (Okano et al., 2010).
Moreover, P38 MAPK and JNK, but not ERK signaling, induced
thrombospondin-1 (TSP-1) production, which is known to be
an activator of the latent TGF-β1 complex (Naito et al., 2004).
JNK markedly contributes to TGF-β1-induced CTGF mRNA
expression, whereas p38 MAPK and ERK pathways take little
effect (Utsugi et al., 2003).
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FIGURE 2 | The canonical TGF-β signaling pathway. Activated TGF-β binds to its type II receptor and type I serine/threonine kinase receptors and thus
phosphorylates Smad2 and Smad3. Smad7 is one of the inhibitory Smads that inhibit the signals from the serine/threonine kinase receptors. Smad2/3 then forms an
oligomeric complex with Smad4, which translocates into the nucleus to regulate the transcription of target genes. The activation of the TGF-β signaling pathway
drives renal cells into myofibroblasts, which secrete collagens and fibronectins to promote renal fibrosis.

In total, although targeting different aspects of the fibrotic
process, the three subgroups of MAPK all contribute to
pathological changes of renal fibrosis. Therefore, targeting the
MAPK pathway as a novel and effective therapy could be a
potential research direction in the future for renal fibrosis of
diabetic kidney disease.

Wnt/β-Catenin Signaling Pathway
It is well established that the Wnt signaling pathway plays
multiple roles in the injury and repair of renal cells through the
mediation of inflammation, fibrosis, angiogenesis, and insulin
secretion (Zhou et al., 2010b; Xiao et al., 2013). The canonical
pathway of Wnt is β-catenin (Harris and Peifer, 2005), through
which Wnt signaling induces the expression of cyclin and
glucokinase, contributing to cell proliferation and glucose sensing
(Schinner et al., 2009).

Wnt signaling was activated by high glucose both in STZ-
induced diabetic rats and in db/db mouse models with an
upregulation of β-catenin and WNT protein level, which could
be attenuated by lowering the blood glucose levels with the
administration of insulin. It was found in an in vitro study that
hyperglycemia and oxidative stress were both responsible for
the activation of the Wnt pathway in renal tubular epithelial
cells. The blockade of the Wnt pathway with the treatment
of LDL-receptor-related protein inhibitor was demonstrated to
ameliorate renal fibrosis (Zhou et al., 2012). Kameswaran et al.
also observed a reduction in fibronectin and α-SMA with the
treatment of inhibitor of Wnt/β-catenin signaling transduction
(Surendran et al., 2005).

Further studies illuminated the detailed mechanism of
Wnt/β-catenin in promoting renal fibrosis. When the signaling
is “on,” the Wnt binds to the frizzled receptor, which
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works together with the low-density lipoprotein receptor-
related proteins (LRP)5 and LRP6 co-receptors to inhibit the
ubiquitination of destruction complex (Piersma et al., 2015).
Therefore, the degradation activity of β-catenin by β-TrCP is
limited, causing the accumulation of β-catenin (Bilic et al.,
2007). Finally, β-catenin translocates from the cytoplasm to the
nucleus to regulate the transcription of target genes (Kawakami
et al., 2013), such as Snail and Twist (Liu, 2010), thereby
promoting the EMT process. For example, Snail was involved
in EMT by downregulating the expression of adhesion protein
E-cadherin, which was further demonstrated by an increasing
level of E-cadherin expression with the administration of Snail
inhibitor (Batlle et al., 2000; Cano et al., 2000). The twist is also
associated with EMT and subsequent renal fibrosis by inducing a
mesenchymal phenotype in UUO mice, whereas the knockdown
of Twist by short interfering RNA (siRNA) markedly attenuated
EMT and fibrosis (Kida et al., 2007; Sun et al., 2009).

PI3K/Akt Signaling Pathway
Phosphoinositide 3-kinase (PI3K) is an intracellular
phosphatidylinositol kinase, also having serine/threonine
(Ser/Thr) kinase activity (Fruman et al., 2017). Akt is a protein
kinase, also called protein kinase B (PKB), because of its
high homology with protein kinase A (PKA) and protein
kinase C (PKC). PI3K is firstly activated by tyrosine kinase to
transform phosphatidylinositol 4,5-biphosphate (PIP2) into
phosphatidylinositol 3,4,5-triphosphate (PIP3) (Huang et al.,
2018), which promotes the accumulation of Akt at the plasma
membrane. Then, Thr308 of Akt is phosphorylated with the
assistance of 3-phosphoinositide-dependent protein kinase 1
(PDK1). Finally, activated Akt can exert its biological function in
multiple physiological processes, including cellular proliferation,
differentiation, apoptosis, migration, and metabolism (Xu et al.,
2015; Zeng et al., 2019).

It has been observed that PI3K/Akt signaling is associated
with ECM accumulation and EMT. Therefore, it has a potential
involvement in renal interstitial fibrosis (Xie et al., 2015; Shin
et al., 2019). Chen et al. (2016) found that the activation of
PI3K/Akt participated in renal tubulointerstitial fibrosis induced
by HG condition. Furthermore, Li et al. (2017a) found that
knocking down the negative regulator SHIP in human renal
tubular epithelial cells (HK2 cells) led to the activation of the
PI3K/Akt pathway and subsequently upregulated the expression
of TGF-β1, α-SMA, and collagen type 3. Additionally, Zhu
et al. also found that high-glucose condition increased the
levels of phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF,
and α-SMA in both STZ-induced diabetic mice and in vitro
human renal tubular epithelial cells. However, the upregulation
of Ser 473 and Thr 308 expression was inhibited by LY294002,
an inhibitor of the PI3K/Akt signal transduction pathway,
followed by reduced CTGF, fibronectin, and collagen production
(Zhu et al., 2016).

JAK/STAT Signaling Pathway
The Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) pathway is involved in the regulation of
cell proliferation, differentiation, apoptosis, and other important

biological processes by activating many cytokines, growth factors,
and hormones (Bhattacharjee et al., 2016). It has been established
that the JAK/STAT signaling pathway is associated with renal
fibrosis in both human and mouse diabetic kidney disease
(Brosius, 2008). The signaling cascade of the JAK/STAT signaling
pathway includes JAK activation, tyrosine phosphorylation, and
STAT recruiting (Morris et al., 2018). Activation of the JAK/STAT
pathway and related proteins contributed to the proliferation
of renal fibroblasts and accelerated the development of renal
interstitial fibrosis in rat NRK-49F cells. However, this process
could be blocked by the JAK inhibitor AG490 (Sun et al., 2019).
Similarly, in DKD patients, enhanced expression of JAK/STAT
mRNA was observed, with the pathological changes of fibrosis.
There is a possible link between JAK2, a pivotal upstream
regulator of the JAK pathway, and tubulointerstitial fibrosis,
which was suggested by the temporal association of upregulated
JAK2 level and evolution of human DKD (Berthier et al., 2009).
Moreover, a phase 2 clinical trial showed that treatment with
Baricitinib, an oral selective inhibitor of JAK1 and JAK2, resulted
in amelioration of albuminuria, indicating a renal protective
effect of JAK signaling blockade (Tuttle et al., 2018).

A further study observed that high glucose exposure directly
induced the tyrosine phosphorylation of JAK2, STAT1, STAT3,
and STAT5. At the same time, the activation of JAK2 promoted
the expression of downstream targets STAT1 and STAT3, but
not STAT5 (Wang et al., 2002), showing the signal transduction
of JAK/STAT in HG conditions. Another study showed that
treatment with probiotic Lactobacillus markedly inhibited the
phosphorylation of JAK2 and STAT1 in the renal cortex in STZ-
induced diabetic mice and subsequently decreased the expression
of α-SMA and fibronectin protein (Lu et al., 2010). In addition,
the administration of selective STAT3 inhibitor reduced the
profibrotic gene expression of collagen IV, TGF-β1, VEGF, and
ACE in tubular epithelial cells in mouse kidneys (Zheng et al.,
2019). Zhou et al. (2014) also found that the expression of JAK2,
STAT3, and STAT5 markedly increased in STZ-induced mouse
kidneys, whereas it decreased after treatment of suppressor of
cytokine signaling (SOCS) 2, along with the attenuation of
renal fibrosis formation. These results provide evidence that
blockade of JAK/STAT signaling reduces collagen accumulation
and profibrotic cytokine expression, resulting in the inhibition of
HG-induced fibrotic response in STZ-induced mice.

Moreover, the JAK/STAT pathway has a possible involvement
in AGE-induced cell proliferation and collagen production in
NRK-49F cells (Huang et al., 1999; Lee et al., 2005), which
account for its profibrotic function from another aspect. Huang
et al. (2001) found that AGE-induced collagen expression was
suppressed by either JAK2 inhibitor or STAT1 and STAT3
decoy oligodeoxynucleotides (ODNs) in NRK-49F cells and thus
concluded that JAK2-STAT1/STAT3 was responsible for the
induction of collagen and promoted renal fibrogenesis.

Notch Signaling Pathway
Notch signaling consists of four transmembrane receptors
(Notch1–Notch4), two Jagged family ligands (JAG1 and JAG2),
and three delta-like ligands (DLL1, DLL3, and DLL4) in the
mammalian system (Hu et al., 2015). It can be reactivated in
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pathological conditions and involved in a variety of processes,
including cellular proliferation, apoptosis, and EMT (Kopan and
Ilagan, 2009). Upon the combination of the Notch signaling
pathway ligand and the receptor, Notch transforms to the
activated form Notch intracellular domain (NICD), which enters
the nucleus to regulate the expression of downstream targets and
trigger ECM and EMT, and ultimately results in renal fibrogenesis
in diabetic kidney disease (Bonegio and Susztak, 2012).

The activation of the Notch signaling pathway was observed
both in tubular interstitial fibrosis (TIF) patients and in TIF
mouse models. Moreover, the Notch pathway was proved to be
both necessary and sufficient for the occurrence and development
of TIF. Tian et al. (2018) demonstrated reno-protective functions
of Gliquidone, which took effect by blocking the Notch/Snail
signaling pathway to delay renal fibrosis. Additionally, with
the administration of γ-secretase inhibitor, a pharmacological
inhibitor of Notch activation, the cascade reaction of the Notch
signaling pathway was blocked (Nishad et al., 2019). The blockade
of Notch resulted in the amelioration of renal fibrosis in the folic
acid-induced (FA-induced) TIF mouse model, as reflected by the
decreased level of fibronectin, collagen, and vimentin (Bielesz
et al., 2010). Jing et al. (2020) also found that administration
of DAPT, an inhibitor of the Notch pathway, reversed HG-
induced protein expression of Jagged1, PGC-1α, and Drpl in renal
tubular epithelial cells. It indicated that Notch signaling pathway
might accelerate renal fibrosis by regulating oxidative damage
and mitochondrial dysfunction.

Among the downstream genes of the Notch signaling pathway,
the Snail plays the most important role in inducing fibrosis. It
acts as a bridge for inducing EMT in tubular epithelial cells and
activating the Notch signaling pathway (Grande et al., 2015).
The expression of the Snail promoter is stimulated by the Notch
pathway in a dose-dependent manner (Sahlgren et al., 2008),
and its overproduction directly leads to the decreased expression
of E-cadherin and increased production of alpha-SMA, MMP-
2, and MMP-9 (Saad et al., 2010). Yang et al. (2017) found that
suppressing the Notch/Snail axis activation with the treatment
of berberine (BBR) increased E-cadherin as well as decreased
α-SMA level, protecting renal tubular cells against EMT and renal
fibrosis both in vivo and in vitro.

Cross-Talks Among Signaling Pathways
In the occurrence and development of renal fibrosis, these
pathways above not only play an independent promoting role but
also have complex interactions with each other. The complicated
cross-talks among them further illuminate the mechanism
of renal tubulointerstitial fibrosis in diabetic kidney disease.
Cross-talks involving the TGF-β signaling pathway have been
highlighted because the TGF-β pathway plays a predominant role
in the fibrogenic process and interacts with nearly all fibrosis-
related pathways.

Cross-Talk Between MAPK and TGF-β
Pathways
In terms of the cross-talk between TGF-β and MAPK, Beek
et al. (Chin et al., 2001) found that treatment with exogenous

TGF-β1 in mesangial cells markedly induced phosphorylation
of p38 MAPK and ERK1/ERK2. The activation of the former
one could be blocked by an inhibitor of the TGF-β type I
receptor. Blocking of the latter one markedly inhibited the
phosphorylation of ERK1/2 induced by high glucose and at the
same time attenuated the level of TGF-β1 expression and resulted
in alleviation of EndMT (Yu et al., 2017). Utsugi et al. (2003)
also found that levels of phosphorylated threonine and tyrosine of
JNK and p38MAPK increased by adding TGF-β1 in human lung
fibroblasts. Therefore, these findings demonstrated that TGF-
β1 has stimulating effects on all the main subgroups of MAPK.
Further study found that the ERK/p38 MAPK pathway activity
played a critical role in maximal induction of Smad activity by
TGF-β1 (Li et al., 2004). The blockade of ERK inhibits R-Smad-
dependent transcriptional activation, leading to a reduction in
TGF-β-induced transcriptional activity (Hayashida et al., 2003).
Also, there is a positive feedback loop between JNK and TGF-
β/Smad (Grynberg et al., 2017). The activation of the TGF-
β/Smad pathway stimulates JNK in the epithelial cell, while JNK
directly induces the phosphorylation of the linker of Smad3,
thereby promoting the transcriptional activity of Smad (van der
Velden et al., 2011). In addition, extracellular MAPK activation
induced by factors such as TNF-α, angiotensin II, and IL-1 can
stimulate latent TGF-β in mesangial cells via TSP-1 (Naito et al.,
2004) or activator protein 1 (AP-1) (Lee et al., 2006; Rui et al.,
2012). In summary, there is a positive cross-talk between MAPK
and TGF-β/Smad signaling pathways, which causes synergistic
enhancement of TGF-dependent responses.

Cross-Talk Between Wnt and TGF-β
Pathways
TGF-β/Smad and Wnt/β-catenin pathways were found to
promote renal fibrosis concertedly or independently. The TGF-
β pathway could activate the canonical Wnt pathway mainly by
downregulating the level of Wnt antagonist Dickkopf-1 (DKK1)
(Akhmetshina et al., 2012). The decrease of DKK1 upregulated
Wnt1-dependent β-catenin expression (Wang et al., 2011). In
addition to the Wnt1-dependent pathway, TGF-β repressed
WT1, a negative regulator of β-catenin, to promote the secretion
of β-catenin and its target genes, such as MMP-9, Snail1, PAI-
1, and Fsp1 (Chang et al., 2008; Kim et al., 2010). TGF-β
also promotes β-catenin dephosphorylation and activation by
inactivating glycogen synthase kinase-3β (GSK-3β) (Zeng et al.,
2005; Dai et al., 2011). Furthermore, the cross-talk between these
pathways can be partly indicated by the binding of β-catenin
with Smad3 in renal tubular epithelial cells, which results in
the progression of EMT, suggesting the profibrotic effects that
β-catenin brings for TGF-β1 (Tian et al., 2013). In addition,
Wnt signaling pathway components, especially Wnt11, are
regulated by a Smad3-dependent mechanism, thus promoting the
activation of mesenchymal marker genes, such as Snail1, Zeb1,
Pai1, and SMA. It finally leads to pathological changes, including
fibroblast proliferation and ECM deposition (Zhang et al., 2012).

The fact that pharmacological blockade of either TGF-β
or Wnt would be sufficient to inhibit the other one further
demonstrated the synergistic effect of TGF-β and Wnt/β-catenin.
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Stellor et al. found that deleting TβRII in proximal tubule
epithelial cells inhibited the expression of TGF-β and, at
the same time, blocked the β-catenin signaling (Nlandu-
Khodo et al., 2017). In return, Hoi et al. (2020) identified
that the WNT/β-catenin inhibitor, ICG-001, as well as its
derivatives blocked TGF-β-induced phosphorylation of Smad2/3,
thus ameliorating renal fibrosis triggered both by TGF-β and
by Wnt pathways.

Cross-Talk Between PI3K/Akt and TGF-β
Pathways
Accumulating evidence has revealed that the PI3K/Akt pathway
has a close relationship with TGF-β signaling in promoting ECM
deposition and renal fibrosis. The PI3K/Akt pathway was found
to be activated in renal tubular cells exposed to high-glucose
condition, followed by increased expression of TGF-β1 and
production of ECM (Hao et al., 2011). Inhibition of the PI3K/Akt
pathway by the chemical inhibitor LY294002 or a small hairpin
RNA vector downregulated TGF-β1 production and indirectly
alleviated the accumulation of ECM and collagen (Wu et al.,
2007). Chen et al. also found that with the treatment of carboxyl-
terminal modulator protein (CTMP), an endogenous inhibitor
of Akt (Chae et al., 2005), the expression of TGF-β and α-SMA
was markedly reduced in cultured renal tubular cells (Chen
et al., 2016). On the other hand, PI3K/Akt serves as a pivotal
downstream regulator of TGF-β1, whose activation markedly
promotes TGF-β1-induced EMT and collagen production (Bakin
et al., 2000; Runyan et al., 2004). Kattla et al. (2008) also
found that administration of TGF-β1 led to activation of
PI3K and Akt, which could be demonstrated by increased
phosphorylation levels of Ser473 and GSK-3β. In terms of the
mechanism by which TGF-β activates PI3K/Akt, researchers
have different opinions. Some researchers hold the view that
TGF-β directly activates PI3K and subsequently stimulates Akt
production (Higaki and Shimokado, 1999), while others consider
TGF-β-induced activation of PI3K as p38MAPK dependent
(Horowitz et al., 2004).

Cross-Talk Between JAK/STAT and
TGF-β Pathways
In addition to the well-known Smad family, TGF-β also activates
JAK1, STAT1, STAT3, and STAT5 to regulate the occurrence of
fibrosis (Dong et al., 2016). In return, STAT3 can enhance fibrosis
partly by stimulating TGF-β expression (Ogata et al., 2006).
Researchers observed that the TGF-β-induced phosphorylation
of STAT3 was dependent on the binding of JAK to TβRI in the
early stage and was mediated by Smad3 and TβRI kinase activity
in the late phase (Itoh et al., 2018; Wiegertjes et al., 2019). It
was verified that blockade of JAK2 by either JAK2 antisense or
specific inhibitor AG-490 inhibited TGF-β protein expression
and fibronectin production in glomerular mesangial cells. Also,
depletion of STAT1 by corresponding antisense, but not STAT3,
reduced HG-induced TGF-β expression (Wang et al., 2002),
suggesting that JAK2-STAT1 signaling has a great influence on
the TGF-β pathway.

Cross-Talk Between Notch and TGF-β
Pathways
Studies have shown that the Notch pathway is mediated by
the TGF-β pathway in renal fibrosis, and these two signaling
pathways play a mutual promoting role both in vivo and
in vitro. On the one hand, the TGF-β pathway was reported
to upregulate the ligand of Notch, such as jagged1 (Liu et al.,
2013) and Hey1 (Zavadil et al., 2004) in kidney cells. Moreover,
Wang et al. (2017) found that the TGF-β inhibitor reduced
the expression of Notch and its target genes, including Notch1,
Hes1, and Hes5, in the rats with tissue fibrosis, demonstrating
a stimulating function of the TGF-β pathway in Notch signal
transduction. On the other hand, a previous study reported that
treatment with (−)-epigallocatechin gallate (EGCG) inhibited
the Notch pathway in kidney cells, which is mainly through
the inhibition of TGFβRII and Smad3 (Zhu et al., 2020).
Xiao et al. (2014) also found that the administration of the
Notch inhibitor dibenzazepine (DBZ) inhibited the activation
of the Notch pathway, as well as the expression of TGF-β and
the phosphorylation of Smad2 and Smad3, which markedly
ameliorated the severity of renal fibrosis. It was also observed
that the inhibitory effect of sh-Notch1 or GSI on the Notch
pathway increased the expression and activity of MMP-2
and MMP-9, reduced the level of TGF-β1, and inhibited the
expression of type IV collagen and laminin in mouse podocytes
(Yao et al., 2015).

Furthermore, studies observed a direct link between TGF-
β and Notch signaling pathways in renal fibrosis. NICD, an
active form of Notch that is closely related to the extent of
tubulointerstitial fibrosis (Murea et al., 2010), was found to
interact directly with Smad3, which was enhanced by TGF-β
administration (Klüppel and Wrana, 2005). In addition, Blokzijl
et al. (2003) discovered that Hes-1, a confirmed Notch target
gene, also acts as a direct downstream gene of the TGF-
β pathway. The activation of Hes-1 by either the TGF-β or
Notch pathway contributes to the fibrogenesis in kidney cells
(Zavadil et al., 2004). In summary, these all indicate that Notch
signaling and TGF-β signaling have a functional synergism in
regulating renal fibrosis.

Cross-Talk Between Notch and Wnt
Pathways
It has been reported that the Wnt pathway has a positive cross-
talk with the Notch pathway (Bertrand et al., 2012; Perkins
et al., 2016). Estrach et al. (2006) concluded that JAG1, a
known ligand of the Notch pathway, also acts as a β-catenin
target gene that is stimulated by the activation of Wnt/β-catenin
signaling. To further verify it, Chen et al. (2010) inhibited the
Wnt signaling and observed a reduction in JAG1 expression.
Mödder et al. (2011) also found that Wnt10b could promote
the activation of Wnt and Notch signaling, indicating that
Wnt/β-catenin signaling performed as an upstream mediator of
the Notch pathway.

In conclusion, there is a close connection between the TGF-
β pathway and other pro-fibrosis pathways, and the mechanism
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FIGURE 3 | Cross-talks among signaling pathways. (A) PI3K/Akt signaling pathway: PI3K is activated to transform PIP2 into PIP3, which promotes the accumulation
of Akt with the assistance of PDK1 at the plasma membrane. Activated Akt then translocates into nucleus to exert its biological function. (B) JAK/STAT signaling
pathway: The signaling cascade of JAK/STAT signaling pathway including JAK activation, tyrosine phosphorylation, and STAT recruiting. Then, the STAT is
transported to nucleus to regulate gene transcription. (C) TGF-β/Smad signaling pathway: Activated TGF-β binds to its receptors and thus phosphorylates Smad2
and Smad3. Smad2/3 then forms an oligomeric complex with Smad4, which translocates into the nucleus to regulate the transcription of target genes.
(D) Wnt/β-catenin signaling pathway: The Wnt binds to the frizzled receptor, which works together with the LRP5 and LRP6 co-receptors to inhibit the ubiquitination
of destruction complex. Therefore, the degradation activity of β-catenin is limited, causing the accumulation of β-catenin, which translocates from the cytoplasm to
the nucleus to regulate the transcription. (E) Notch signaling pathway: Upon the combination of the receptor Notch, and the ligand JAG and DL, Notch transforms to
the activated form NICD, which enters the nucleus to regulate the expression of downstream targets. (F) TGF-β directly activates PI3K and subsequently stimulates
Akt production. (G) TGF-β can activate both JAK and STAT, and the activation of JAK subsequently stimulates the phosphorylation of STAT3. (H) The activation of
the TGF-β/Smad pathway stimulates MAPK, while MAPK directly induces the phosphorylation of the linker of Smad3, thereby promoting the transcriptional activity of
Smad. Extracellular MAPK activation can stimulate latent TGF-β in mesangial cells via TSP-1 or AP-1. (I) TGF-β pathway activates Wnt pathway by downregulating
the level of Wnt antagonist DKK1. β-catenin can bind with Smad3, promoting the transcription of Smads. (J) TGF-β pathway upregulates the ligand of Notch, such
as JAG, to transform Notch to NICD. NICD can interact directly with Smad3, which is enhanced by TGF-β administration. PI3K, phosphoinositide 3-kinase; PIP2,
phosphatidylinositol 4,5-biphosphate; PIP3, phosphatidylinositol 3,4,5-triphosphate; PDK1, 3-phosphoinositide-dependent protein kinase 1; JAK, Janus kinase;
STAT, signal transducer and activator of transcription; LRP, low-density lipoprotein receptor-related proteins; NICD, notch intracellular domain; TSP-1,
thrombospondin-1; AP-1, activator protein 1; DKK-1, Dickkopf-1.

of fibrosis progression with TGF-β as the core has been
established (Figure 3).

NEW THERAPIES FOR RENAL FIBROSIS

New Drugs Designed for Renal Fibrosis
Roxadustat, a new drug designed for renal anemia (Chen et al.,
2019b), has been shown to inhibit hypoxia-inducible factor
(HIF) and alleviate the progression of renal fibrosis (Packer,
2020). Li et al. (2020b) have implemented animal research
to figure out that Roxadustat may retard the progression of
fibrosis by regulating Akt/GSK-3β-dependent Nrf2 activation. Li

et al. designed a randomized, multicenter, and active-controlled
study (NCT02652806) of the efficacy of Roxadustat in anemia
treatment in CKD patients (Chen et al., 2019a), but there
is still a lack of clinical evidence to support this antifibrotic
effect of Roxadustat.

Paricalcitol (PC) is a vitamin D analog that retains similar
vitamin D bioactivity but has fewer side effects (Sprague et al.,
2003; Fryer et al., 2007). Tan et al. (2009) found that Paricalcitol
inhibited the expression of fibronectin, collagen, vimentin, as well
as Snail1 in UUO mice, showing a remarkable amelioration in
fibrogenesis. Nolan et al. (2015) observed that PC affected the
progression of renal fibrosis via targeting the TGF-β1/Smad2
pathway, Notch/Jagged1 pathway, and PI3K pathway in cultured
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human renal epithelial cells. In comparison, Chung et al. (2017)
figured out that PC might also alleviate renal fibrosis through the
MAPK signaling pathway. In addition, PC shows a synergistic
effect on the blocking of RAAS by ACEI (Martínez-Arias
et al., 2021), which possibly participates in the mitigation of
EMT and renal fibrosis. A randomized clinical trial (PALIFE
NCT01820078) has been designed to explore the effect of
Paricalcitol on fibrosis on chronic renal diseases, but the trial has
been terminated.

It has been well established that overactivation of the
mineralocorticoid receptor (MR) results in renal fibrosis and
is closely linked to the progression of renal injury in DKD
(Shrestha et al., 2019; Patel et al., 2020). Therefore, new drugs
targeting MR are considered as potential therapies that slow the
progression of renal fibrosis. Finerenone is a novel, non-steroidal,
selective MR antagonist (MRA) with fewer negative effects on
serum potassium and renal function in comparison with steroidal
MRAs (Rico-Mesa et al., 2020). This medication is in phase 3
clinical trials and shows promising results in CKD progression,
composite kidney outcome, and cardiovascular events (Agarwal
et al., 2020). The ARTS-DN trial (NCT01874431) conducted by
Kabris et al. proved that DKD patients with the administration
of Finerenone for 90 days had lower urine albumin creatinine
ratio (UACR) in a dose-dependent way compared to placebo
(Bakris et al., 2015). The FIGARO-DKD (NCT02545049) trial
designed by Agarwal et al. is a randomized, double-blind,
placebo-controlled, parallel-group, and multicenter phase 3
study. It assessed the efficacy and safety of Finerenone on
the reduction of all-cause mortality and the onset of kidney
failure and its influence on eGFR and UACR in DKD patients
(Ruilope et al., 2019). The study has been completed, but
the results have not been published yet. Another randomized,
double-blind phase 3 study (FIDELIO-DKD NCT02540993) has
similar inclusion criteria and intervention with FIGARO-DKD.
The results indicated that the experimental group had lower
composite kidney outcomes (kidney failure, a sustained ≥ 40%
decrease in eGFR from baseline, or renal death) (Filippatos et al.,
2021) and reduced risks of CKD progression and cardiovascular
events compared to placebo (Bakris et al., 2020).

Pirfenidone is an antifibrotic drug widely used in the
clinical treatment of idiopathic pulmonary fibrosis (IPF) (Nathan
et al., 2019). However, recent studies have figured out that
Pirfenidone also exerts its anti-fibrotic effect in renal fibrosis.
Takakura et al. (2012) observed that Pirfenidone ameliorated
renal interstitial fibrosis partly through decreasing the expression
of TGF-β-induced collagen, fibronectin, CTGF, and plasminogen
activator inhibitor type 1 (PAI-1) in rat proximal tubular
epithelial cells. In addition to the TGF-β pathway, Li et al.
(2017c) found that Pirfenidone could attenuate EMT and renal
fibrosis by antagonizing the MAPK pathway both in vivo and
in vitro. Therefore, Pirfenidone can inhibit related signaling
pathways and reduce the expression of fibrotic markers to slow
the process of renal fibrosis (Chen et al., 2013). A randomized
phase 3 study has been designed to evaluate the efficacy of
Pirfenidone on GFR and albuminuria in DKD patients1. This

1https://clinicaltrials.gov/NCT02689778

study will assess the improvement of GFR and the changes
of 24-h urine microalbuminuria and TGF-β concentrations
to determine the therapeutic effects Pirfenidone takes in the
progression of DKD and renal fibrosis. It is still on the recruiting
stage and has no result yet. Another phase 2 clinical study also
in recruitment is to assess the change from baseline in renal
fibrosis by diffusion-weighted magnetic resonance imaging (DW-
MRI) and urinary markers in CKD patients (2NCT04258397).
Moreover, the trial NCT00063583 has already provided evidence
that subjects assigned to the Pirfenidone group (1200 mg/day)
had higher mean eGFR than placebo after 6 months of treatment
(Sharma et al., 2011; Table 1).

Moreover, these drugs have shown anti-fibrosis benefits in
other organs besides the kidney. Roxadustat was found to take
effect in the pulmonary fibrosis mice model via the inhibition
of the TGF-β/Smad signaling pathway (Huang et al., 2020).
Similarly, Paricalcitol showed relevant beneficial effects in the
alleviation of liver fibrosis (Reiter et al., 2019), peritoneal fibrosis
(Ko et al., 2019), and myocardial fibrosis (Panizo et al., 2013) by
blocking the TGF-β pathway. Pirfenidone is a broad-spectrum
anti-fibrosis drug that has been approved for the treatment
of IPF (Rogliani et al., 2016). It inhibits the myofibroblast
differentiation and collagen production in the lung by blocking
the overexpressed pathways, including the TGF-β signaling
pathway (Li et al., 2018), PI3K-Akt pathway (Kurita et al., 2017),
and Wnt/β-catenin pathway (Ballester et al., 2019). It is also
involved in liver fibrosis by inhibition of the TGF-β pathway and
downregulation of Smads (García et al., 2002).

In addition to their anti-fibrosis effects, it is also important
to understand the adverse effects of these drugs. According
to the previous clinical trials, Roxadustat was generally well
tolerated with few treatment-emergent adverse events (TEAEs).
Common TEAEs were diarrhea, vomiting, contusion (Akizawa
et al., 2020a), back pain, and nasopharyngitis (Akizawa et al.,
2020b). It was also reported that patients taking Roxadustat
had relatively higher risks of upper respiratory infection,
hyperkalemia (Chen et al., 2019a), and metabolic acidosis (Chen
et al., 2019b). With the administration of Paricalcitol, patients
are more likely to develop hypercalcemia, hyperphosphatemia,
and excessive suppression of parathyroid hormone, which could
return to normal with the reduction of drug dose (Oblak
et al., 2018). The most reported adverse events of Finerenone
were diarrhea, muscle spasms, blood creatine phosphokinase
increased, dizziness (Bakris et al., 2015), nasopharyngitis,
constipation, and bronchitis (Katayama et al., 2017). In terms
of adverse effects of Pirfenidone, gastrointestinal disorder (King
et al., 2014), skin-related disease, and fatigue (Maher et al., 2020)
were most reported. However, the overall percentage of patients
with these adverse events was only slightly higher than in the
placebo group, indicating an acceptable level of drug safety.

RNA Interference (RNAi) Therapy in
Renal Fibrosis
RNA interference technique is an emerging therapeutic by which
messenger RNA (mRNA) could be degraded selectively and the

2https://clinicaltrials.gov/TOP-CKD
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TABLE 1 | New drugs that target renal fibrosis.

Number Randomized
controlled trial

(NCT)

Drug Actual
enrollment

Status Locations

1 NCT02652806 FG-4592 305 patients completed China

2 PALIFE
(NCTO1820078)

Paricalcitol 127 patients terminated Spain

3 ARTS-DN (NCTO
1874431)

Finerenone 823 patients completed United States

4 FIGARO-DKD
(NCT02545049)

Finerenone 7437 patients completed United States

5 FIDELIO-DKD
(NCT02540993)

Finerenone 5734 patients completed United States

6 NCT02689778 Pirfenidone 62 patients recruiting Mexico

7 TOP-CKD
(NCT04258397)

Pirfenidone 200 patients recruiting United States

8 NCT00063583 Pirfenidone 77 patients completed United States

Number Primary outcomes Results

1 Hb mean change from baseline Roxadustat led to a numerically greater mean (±SD) change in
hemoglobin level from baseline to weeks 23 through 27 (0.7 ± 1.1 g/dl)
than epoetin alfa (0.5 ± 1.0 g/dl)

2 Albuminuria in proteinuric CKD patients No result

3 Change of urinary albumin-to-creatinine ratio from baseline
to 90 days

UACR reduction: Finerenone: for 7.5 mg/day, 0.79 [90% CI, 0.68–0.91;
p = 0.004]; for 10 mg/day, 0.76 [90% CI, 0.65–0.88; p = 0.001]; for
15 mg/day, 0.67 [90% CI, 0.58–0.77; p < 0.001]; for 20 mg/day, 0.62
[90% CI, 0.54–0.72; p < 0.001]

4 Time to first occurrence of the following composite
endpoints: onset of kidney failure, a sustained decrease in
estimated glomerular filtration rate (eGFR) of ≥40% from
baseline over at least 4 weeks and renal death Time to
all-cause mortality Change in UCAR from baseline to month
4

No result

5 Time to the first occurrence of the composite endpoint of
onset of kidney failure, a sustained decrease of estimated
glomerular filtration rate (eGFR) ≥40% from baseline over at
least 4 weeks and renal death

The composite kidney outcome (kidney failure, a sustained ≥40%
decrease in eGFR from baseline, or renal death) reduced in the
Finerenone group

6 Effect of oral Pirfenidone (1800 mg) in albuminuria and
glomerular filtration rate

No result

7 Change from baseline in kidney fibrosis, as assessed by
diffusion-weighted magnetic resonance imaging (DW-MRI)
and urinary markers of tubulo-interstitial fibrosis

No result

8 The change in renal function from baseline to the end of the
study period (12 months)

The mean eGFR increased in the Pirfenidone 1200-mg/day group
(+ 3.3 ± 8.5 ml/min per 1.73 m2) whereas the mean eGFR decreased
in the placebo group (−2.2 ± 4.8 ml/min per 1.73 m2; p = 0.026 versus
Pirfenidone at 1200 mg/day)

Data from clinical trials (https://clinicaltrials.gov/).

expression of specific proteins was inhibited (Saw and Song,
2020). Hence, RNAi is involved in renal fibrosis by inhibiting
the overexpression of related genes, most commonly TGF-β1
(Takabatake et al., 2005) along with its downstream genes,
such as CTGF (Ren et al., 2015) and proliferator-activated
receptor coactivator-1 alpha (PGC-1α) (Wang et al., 2018) and
phosphorylation of Drp1 at serine 616 (p-Drp1S616) (Wang et al.,
2020b). Researchers found that small interfering RNA (siRNA)-
mediated gene silencing effectively suppressed the expression
of corresponding mRNA and protein and thus significantly
inhibited the secretion of fibrogenic factors and delay the

progression of renal fibrosis (Khaja et al., 2016; Isaka, 2018). The
RNAi strategy offers a potential therapy for renal fibrosis, but the
research is still in its initial stage and requires more attention.

These studies suggest that some progress has been made in
the treatment of organ fibrosis, especially renal fibrosis. The
process of renal fibrosis is divided into three stages, namely,
inflammatory reaction, fibrosis formation, and scar formation
(Liu, 2011). Blocking the transformation of renal intrinsic cells
into myofibroblasts and degrading fibrous tissue by targeting the
fibrotic pathway can block or even reverse the progression of
the disease in the first two phases (Sun et al., 2016). However,
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once renal fibrous tissue develops into scar tissue, it can never
be reversed (Nastase et al., 2018). Therefore, we emphasized
that renal fibrosis may be blocked and renal function may
be improved with effective anti-fibrosis therapy in the early
stage of fibrosis.

Kidney biopsy is difficult to perform in clinical trials
due to its complexity, high cost, and considerable pain to
patients. Therefore, there is a lack of solid evidence to support
the anti-fibrosis effects of these drugs. Future studies with
repeated biopsies should be conducted to demonstrate whether
tubulointerstitial fibrosis can be reversed with novel therapies and
to reveal the specific mechanisms of them.

CONCLUSION

Renal fibrosis is a pivotal pathological change in DKD
and markedly increases the mortality rate of late-stage
DKD patients. In this paper, we discussed various signaling
pathways involved in renal fibrosis, including the TGF-β,
MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch
pathways. These pathways all play a significant role in
the accumulation of ECM, the expression of collagen and
fibronectin, and the secretion of other related proteins.
Moreover, an increasing number of novel therapies are under
clinical study, and many efforts have been made to delay
or even try to reverse the progression of renal fibrosis.

Despite this progress, the exact effects of new drugs on renal
tubulointerstitial fibrosis are still not clear and need to be
further studied employing renal biopsies. With the development
of modern medical technology, renal fibrosis is expected to
become a reversible process, and the prognosis of DKD is
expected to be improved.
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