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Abstract 

Background:  DNA Methylation is one of the most important epigenetic processes 
that are crucial to regulating the functioning of the human genome without altering 
the DNA sequence. DNA Methylation data for cancer patients are becoming more 
accessible than ever, which is attributed to newer DNA sequencing technologies, 
notably, the relatively low-cost DNA microarray technology by Illumina Infinium. This 
technology makes it possible to study DNA methylation at hundreds of thousands 
of different loci. Currently, most of the research found in the literature focuses on the 
discovery of DNA methylation markers for specific cancer types. A relatively small num-
ber of studies have attempted to find unified DNA methylation biomarkers that can 
diagnose different types of cancer (pan-cancer classification).

Results:  In this study, the aim is to conduct a pan-classification of cancer disease. 
We retrieved individual data for different types of cancer patients from The Cancer 
Genome Atlas (TCGA) portal. We selected data for many cancer types: Breast Can-
cer (BRCA), Ovary Cancer (OV), Stomach Cancer (STOMACH), Colon Cancer (COAD), 
Kidney Cancer (KIRC), Liver Cancer (LIHC), Lung Cancer (LUSC), Prostate Cancer (PRAD) 
and Thyroid cancer (THCA). The data was pre-processed and later used to build the 
required dataset. The system that we developed consists of two main stages. The 
purpose of the first stage is to perform feature selection and, therefore, decrease the 
dimensionality of the DNA methylation loci (features). This is accomplished using an 
unsupervised metaheuristic technique. As for the second stage, we used supervised 
machine learning and developed deep neural network (DNN) models to help classify 
the samples’ malignancy status and cancer type. Experimental results showed that 
compared to recently published methods, our proposed system achieved better classi-
fication results in terms of recall, and similar and higher results in terms of precision and 
accuracy. The proposed system also achieved an excellent receiver operating charac-
teristic area under the curve (ROC AUC) values varying from 0.85 to 0.89.

Conclusions:  This research presented an effective new approach to classify different 
cancer types based on DNA methylation data retrieved from TCGA. The performance 
of the proposed system was compared to recently published works, using different 
performance metrics. It provided better results, confirming the effectiveness of the pro-
posed method for classifying different cancer types based on DNA methylation data.
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Background
Cancer is a growth of tissue that originates from an abnormal division of eukaryotic 
cells that eventually destroy normal surrounding tissues. It is soon expected to top the 
list of non-communicable diseases, and currently, one-sixth of all deaths worldwide are 
caused by cancer [1]. Therefore, it is very important to help find and develop techniques 
to detect and treat it. One of the major challenges in doing so is that cancer can mimic 
other diseases [2–4], which hinders a lot of effort trying to diagnose it using traditional 
methods that rely on differential diagnosis and involve many medical scans and tests that 
are often very expensive. Diverse factors like genetics, viruses, and environmental agents 
cause such malignancy; at the same time, newer ones are frequently being discovered.

DNA methylation is an epigenetic process that regulates gene expression without 
altering the DNA sequence. It is widely believed to be a key to better cancer diagnosis 
[5, 6]. It can be used to study different gene functions that are otherwise incomprehen-
sible using traditional alterations in DNA sequences. DNA methylation is dynamically 
affected by various external factors such as environmental risks, and internal factors 
such as complex disease pathology [7]. In mammals, such as humans, DNA methyla-
tion works by transferring a methyl group onto the C5 position of the cytosine to form 
5-methylcytosine, where the gene expression is regulated by using proteins involved in 
gene repression or by inhibiting the binding of transcription factor to the DNA [8].

New technologies that employ next-generation sequencing (NGS) and microarrays, 
such as those provided by Illumina Infinium [9, 10], can provide very high throughput 
with relatively low prices, especially since they can be reused many times on different 
patients. Enormous data availability helped advance cancer associated research because 
much valuable information could be extracted. Yet at the same time, it created a massive 
problem concerning the application of traditional data mining and analysis techniques 
[11]. The Human Genome Project indicates that approximately 30× 106 CpG dinucleo-
tides can exist in methylated or unmethylated states. Therefore, the possible combina-
tions of methylation arrangements are enormous. The work proposed in this research 
relies on big data techniques, specifically metaheuristic approaches [12–14] to decrease 
data dimensionality, followed by deep learning techniques to help classify the different 
types of cancers.

Liteature review

In this regard, Akalin et al. [15] proposed MethylK, a software package written in R-lan-
guage to analyse DNA methylation data using unsupervised learning methods to extract 
useful information. They demonstrated the software capabilities using breast cancer 
samples. While the software package is multi-threaded, it can only operate on a single 
machine, which negatively impacts its performance for massive datasets that involve pan 
classification of various cancer diseases.

Celli et  al. [16] introduced BIGBIOCL, an algorithm that uses a supervised clas-
sification technique to extract relevant features from DNA methylation data. The 
algorithm was tested using data on three different types of cancers retrieved from 
the Cancer Genome Atlas (TCGA). The suggested technique used 70% of the data 
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to build the classification model, while 30% was reserved for testing. The proposed 
model worked iteratively, where a set of new features (genes) is added with each itera-
tion. However, since Fabrizio Cellia et al. did not intend to build the model to classify 
new data, it can be readjusted to build a classification model using 100% of the input 
to further validate the results. It should be noted that the authors’ primary target was 
to extract the relevant cancer features rather than classifying cancer types.

Recently, Zheng et al. [17] proposed a deep neural network (DNN) model that can 
work with DNA methylation data to predict cancer origins based on data retrieved 
from the cancer genome atlas (TCGA). Their method included a feature selection 
technique that can remove the noise in the data. The authors used a one-way analysis 
of variance (ANOVA) to filter the CpG methylation sites with very similar beta values 
(p >0.01) for different tissues, resulting in 18,976 CpG sites. Next, the authors applied 
Tukey’s honest significance difference test to remove the CpG locations with maximal 
mean beta values of less than 0.15. Ultimately, they were able to identify 10,360 CpG 
sites that acted as the input for the deep learning model. The multilayer perceptron 
(MLP) was used to construct the deep neural network. The results have shown excel-
lent potential in diagnosing cancer of unknown primary origin and identifying circu-
lating tumour cells. Their work helped prove that DNN models for DNA methylation 
have great potential in diagnosing cancer of unknown origins and detecting cancer 
cell types related to circulating tumour cells.

In 2021, Modhukur et al. [18] used different machine learning approaches to classify 
primary and metastasised cancers using DNA methylation samples retrieved from 
TCGA and other sources. They applied Support Vector Machines (SVM), Extreme 
Gradient Boosting, Naive Bayes (NB), and Random Forest (RF) approaches to clas-
sify the cancer types. They achieved the highest average accuracy of 99% using the RF 
method.

By inspecting the recent relevant research in the literature, it seems that the perfor-
mance and scalability of the implemented methods are major challenges, especially 
since we are dealing with huge datasets. Moreover, challenges also arise because the 
DNA methylation mechanism and its relation to cancer are not currently well under-
stood and are still being investigated [19]. Also, the literature focuses on classify-
ing individual cancer types rather than pan classification. The work proposed in this 
research tackles these issues using a scalable solution that supports multi-threading 
and multiple host capabilities to implement feature extraction. Since the DNA meth-
ylation mechanism is not yet well understood; the proposed system first implements 
an unsupervised metaheuristic technique that performs feature selection, then it 
builds a supervised classification model based on a deep neural network (DNN) to 
classify cancer types based on the malignancy information found in the data.

Methodology and tools
The proposed system encompasses two main stages. The first stage is based on an unsu-
pervised metaheuristic technique that implements the feature selection and reduces 
dataset dimensionality. The second stage of the system is a deep learning pan classifica-
tion model. This chapter presents the dataset and demonstrates the proposed system.
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Datasets

The proposed technique is tested using real-world datasets built using data collected 
from the cancer genome atlas (TCGA) project. The most critical measure that reflects 
the level of DNA methylation is known as the beta value. The DNA methylation 
file (for each sample) includes a column that contains the beta values and rows that 
reflect the various CpG locations. The CpG locations are the features that we need to 
reduce. The beta value for each CpG site is calculated as follows [20]

where Mn and Un are the methylated and unmethylated gene intensities, at location n. It 
is also worth noting that the beta value ranges from 0 to 1, where a value of 0, under per-
fect conditions, means that no methylated molecules were detected at these CpG sites, 
and a value of 1 indicates that all molecules were completely methylated. The α value is 
a constant offset added to the denominator to calibrate the beta value when both the 
unmethylated and the methylated values at a given location have very low intensities. 
Illumina recommends this value for their DNA methylation assays, and it has a default 
value of 100.

To test the proposed system, a basic pilot study that uses the three types of cancer 
diseases listed in Table 1 was conducted. These samples are synthesized using the Illu-
mina Infinium 27k metyhlation platform. More information about the samples can be 
found in files [Breast.csv, Ovary.csv and Stomach.csv] in the additional files section.

To further test the scalability and performance of the proposed method, another 
study that encompasses more cancer diseases and that uses samples profiled using 
the superior Illumina Infinium 450k metyhlation platform, was conducted. Table  2 
lists the cancer diseases for the second study. Information about these samples can be 

(1)βn = Max(Mn, 0)

Max(Mn, 0)+Max(Un, 0)+ α

Table 1  Cancer samples based on Illumina Infinium 27k metyhlation platform

Cancer name TCGA project Number of 
samples

Number of 
malignant 
samples

Cancer type

Breast TCGA-BRCA​ 342 312 Breast invasive carcinoma

Ovary TCGA-OV 613 567 Ovarian serous cystadenocarcinoma

Stomach TCGA-STAD 73 47 Stomach adenocarcinoma

Table 2  Cancer samples based on Illumina Infinium 450k metyhlation platform

Cancer name TCGA project Number of 
samples

Number of 
malignant samples

Cancer type

Breast TCGA-BRCA​ 596 499 Breast invasive carcinoma

Colon TCGA-COAD 344 307 Colon adenocarcinoma

Kidney TCGA-KIRC 439 319 Kidney renal clear cell carcinoma

Liver TCGA-LIHC 258 209 Liver hepatocellular carcinoma

Lung TCGA-LUSC 291 249 Lung squamous cell carcinoma

Prostate TCGA-PRAD 399 349 Prostate adenocarcinoma

Thyroid TCGA-THCA 454 398 Thyroid carcinoma
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found in files [Breast450.csv, Colon450.csv, Kidney450.csv, Liver450.csv, Lung450.csv, 
Prostate450.csv and Thyroid450.csv] in the additional files section.

The data was retrieved from the cancer genome atlas (TCGA) portal using custom-
written software, since at the time of writing this manuscript, the portal did not allow 
batch download of samples. The retrieved data were first processed to handle some 
missing methylation values, since the microarray technology is always susceptible to 
some noises and the data almost always suffer from losses.

A linear regression method is considered reliable for this task and was used to inter-
polate the missing values and handle the situation [21]. DNA methylation samples with 
more than 10% and 20% of missing values for 27k profiles and 450k profiles, respectively, 
were rejected and removed from the training process.

The final dataset for each cancer type was built by transposing all the CpG locations 
for each sample into columns. By repeating the process for all the samples, we have a 
dataset that contains a massive matrix in which the rows correspond to different sam-
ples, and the columns represent the various CpG beta values.

Unsupervised metaheuristic feature selection

The proposed metaheuristic technique uses evolutionary learning algorithms to perform 
feature selection, hence, reduce data dimensionality. In the field of machine learning, 
evolutionary learning algorithms [22, 23] are search-based techniques that can be uti-
lised to solve optimisation problems. As previously highlighted, the CpG methylation 
process suffers from incomplete biological comprehension. Therefore, we think selecting 
metaheuristic techniques to approach this problem is more realistic because of its supe-
rior global search capabilities. The proposed metaheuristic system is based on genetic 
algorithms (GAs) [24], where two GAs work together to extract the features. The GAs 
are designed to work in a nested hierarchy, where the fitness function of the inner GA 
layer is passed to the outer layer.

One GA performs unsupervised clustering by taking advantage of the data’s mathe-
matical similarities and elemental structure, while the other GA extracts features. The 
unsupervised clustering technique is only used to evaluate the selectivity of the features. 
This nested hierarchy sets the fitness of the clustering GA as a crucial feedback (multi-
plied by selected features) to the feature selection GA. The ultimate task for the clus-
tering GA is not to explicitly achieve a clustering configuration; instead, it is to use an 
appropriate clustering separability measurement that reflects better feature selection.

At first, a random group of features are selected to cluster the data, and then the 
separability of the resulting clusters is evaluated using the proposed fitness function. 
Therefore, better separation of clusters signifies better feature selection and noise 
elimination. It is crucial to note that DNA methylation data are not only limited to 
cancer. So, the final data for this stage must only include DNA methylation data for 
patients with an established cancer history. It is to ensure that the unsupervised clus-
tering technique would find similarities across the different samples. Chromosome 
size is based on the number of samples for the data clustering GA. In the begin-
ning, the chromosome is divided into logical clusters with random sizes and count. 
Throughout the convergence process, the clusters start to form optimum partitions. 
The genes are integers representing each patient (sample) from the dataset. During 
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the convergence process, the different CpG beta values for each patient are fetched 
from the cache and used for the calculations.

Two setups were initially considered for the GAs. The first setup uses the clustering 
GA as the outside layer. The chromosome is initialised with random clusters encom-
passing all the existing features in this scenario. For each of these chromosomes, a 
complete fork of feature selection GA (inner layer) will be executed, which will then 
modify the features of the clustered data. The second setup swaps the clustering and 
the feature selection GAs. The outer layer chromosomes will be initialised with ran-
dom binary features in this scenario. The inner layer clustering GA will be executed to 
cluster the data based on these selected features. The fitness value is calculated based 
on cluster separability and is explained further on. Since the logical clusters’ configu-
ration are set by each chromosome, the number of clusters does not need to be set a 
priori, as this is expected to reach a near optimum value with the convergence of the 
GA.

The second setup, illustrated in Fig. 1, was selected since as evident from the litera-
ture, clustering the DNA methylation data without decreasing unnecessary features 
is computationally intensive. Also, data clustering without prior feature selection will 
produce inferior results because insignificant features are considered as noise during 
the clustering process [25, 26].

Fig. 1  Illustration of the selected nested GAs architecture
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Outer layer genetic algorithm (OLGA)

The outer layer GA performs the feature selection based on the inner layer GA feedback. 
For the crossover, a standard single-point crossover operator was implemented. Selec-
tion is made based on a roulette-wheel operator. Since this is a simple binary-based GA, 
the crossover only swaps the genes on both ends of the selected cut-off point. The muta-
tion operator was non-uniform, and its probability was calculated based on the best and 
the average fitness of the latest generation. The maximum probability for the mutation 
operation was set to 5%, and it worked by flipping the bits. The selected features were 
assigned a value of ’1’ and passed to the clustering layer, while ’0’ was assigned to unse-
lected features.

Elitism was also used to copy the fittest individual to the new generation. As already 
explained, the fitness value of the outer layer GA was not independently calculated. 
Instead, it was retrieved from the inner GA layer after convergence. This is crucial to 
create a feedback mechanism between the separability of the clusters and the selectivity 
of features.

Inner layer genetic algorithm (ILGA)

The inner layer genetic algorithm is mainly used to evaluate the fitness of the selected 
features assigned from the outer GA layer. It is done by clustering the data and evaluat-
ing their separability, where better separability means a better selection of features and 
superior noise elimination.

The objective function for the inner GA layer is based on Ward’s hierarchical method. 
This method minimises the intra-cluster distance (inside the cluster) while maximising 
the inter-cluster distance (between clusters). Ward’s method mainly relies on variance 
analysis, where the ultimate objective is to reduce the variance within the clusters. One 
of the major inconveniences of hierarchical methods, such as Ward’s method, is that it 
gravitates towards breaking the resulting clusters into smaller ones [27]. However, this 
can be alleviated by using a custom mutation operator that allows the merging of neigh-
bouring clusters. Ward’s method is illustrated in Fig. 2 below.

Fig. 2  Illustration of Ward’s method
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To evaluate Ward’s outcome and determine the fitness value for each chromosome, we 
calculated two values, α and γ , which represent the inter-clustering and intra-clustering 
distances, respectively.

where lc is the number of clusters inside the chromosome at location c. F̄n is the mean 
value of the features inside the cluster at location n. F̂  is the centre of mass of the chro-
mosome at location c. D F̄n, F̂

2

 is the sum of squared differences (SSD) of the selected 

samples’ features, and Sn is the size of the cluster at location n.

where lc is the number of clusters inside the chromosome at location c. Sh is the size of 
the cluster at location h. Ch is the samples inside the cluster at location h. D

(

Fm, F̄n
)2 is 

the SSD of selected samples’ features. From the above equations, αc reflects the distance 
and separation between the different clusters, while γc measures the proximity of data 
inside the same cluster. So, the objective is to increase the value of αc and decrease this 
of γc . The Calinski-Harabasz index was used to achieve this:

where N is the number of clusters inside the chromosome at location c, and K is the 
number of samples. FCH is the fitness value for the chromosome, where a higher value 
means a better fitness, which translates to superior cluster separation with better feature 
selection and less noise.

As for the crossover operator, we used a modified version of a subtype of the edge 
recombination family, known as the maximal perseverance operator (MPX), which was 
initially suggested by Mühlenbein et al. [28]. This operator was used to explicitly transfer 
all the edges (loci) of the selected parents to their offspring while still maintaining its 
ability to generate new edges independently. Thus, this operator was used to preserve 
the original relation between the clustering groups while still allowing the forging of new 
local edges. This way, clustering configurations created by each chromosome would not 
be wiped out with a new generation.

To explain how the MPX operator works, we first select two parents according to 
the selection operator and then remove a random substring from the first parent. We 
then remove the remaining items (from the first parent) from the second parent. The 
items that remain from the second parent are then sequentially added to the first par-
ent. Hence, we can guarantee that the same parents can generate many unique offspring, 
which are subjected to the selected substring’s location and size.

Since the intent is to maximise the distance between the clusters, the modified MPX 
operator was designed to target the selection of clusters with the shortest distance 
from the overall centroid. Subsequently, a random cut-off value relative to the cluster 

(2)αc =
lc
∑

n=1

D
(

F̄n, F̂
)2

.Sn

(3)γc =
lc
∑

h=1

1

2Sh

∑

Fn∈Ch

∑

Fm∈Ch

D(Fn, Fm)
2

(4)FCH = αc

γc
× N − K

K − 1
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and a random size was calculated. Therefore, the MPX operator can totally or par-
tially replace the selected cluster and substitute it with the cluster generated by the 
other parent. The crossover probability was set at 30%. Fig. 3 shows an illustration for 
the MPX operator. The second cluster is chosen in the example because it is assumed 
to have minimum inter-cluster distance relative to the first parent. Subsequently, the 
cut-off index and size were selected as 2 and 3, respectively. Therefore, the substring 
[9,4,2] was selected and removed from the first parent. The remaining items [1, 10, 
3, 5, 7, 8, 6] were removed from the second parent. Then, the remaining items were 
consecutively inserted into the first parent. This process is done for the two selected 
parents and the offspring with the highest fitness value is selected, while the other is 
discarded.

Elitism was also implemented for the inner GA layer. This is important to assure that 
the fittest inner layer chromosome matches the corresponding outer layer chromosome 
and maintains the achieved clustering configuration throughout the convergence of the 
outer GA layer. A Roulette-wheel operator was used for selection. As for the mutation, a 
non-uniform operator similar to the one in the outer GA layer was implemented. How-
ever, the mutation operator in the inner GA layer works by either splitting or merging 
neighbouring clusters. The probability of the mutation operator increased with GA con-
vergence and could reach a peak value of 10%. It ensured that the GA would not fall into 
a local-minimum clustering phenomenon during the convergence process.

Fig. 3  Illustration of the MPX operator
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Supervised deep learning classification

In this stage, a deep neural network (DNN) classification model was implemented to use 
the features extracted from the previous metaheuristic stage. For this stage, two deep 
learning models are trained. The first is a binary classification model that combines the 
extracted features from the different cancer types to classify malignancy in samples, 
and the second model is a multi-classifier system that implements pan-classification for 
selected cancer diseases, using the common features.

Adam optimisation [29] was used to build the DNN models and accelerate training. 
Adam optimisation combines the root mean square propagation (RMSprop) and Sto-
chastic Gradient Descent (SGD) with momentum descendant. It is accomplished using 
two estimations of moments (first and second) to readjust the learning rate. These two 
moments are the mean and the uncentered variance.

where mtand vt are moving averages and gt is the gradient of the current mini-batch. β1
and β2 correspond to the exponential decay for the first and second moments estimate. 
Adam also implements epsilon, an extremely small number that prevents zero-division 
during the calculations.

We used a Multilayer Perceptron (MLP) with three hyperparameters to construct the 
neural network. β1 , β2 and epsilon were retained at default values (0.9, 0.999 and 1e-08), 
as recommended by the original authors. The other hyperparameters (learning rate, hid-
den layer size, and the number of hidden layers) were optimised using different tests. 
Three learning rates (0.1, 0.01 and 0.001), four hidden layer sizes (512, 256, 128 and 64) 
and three hidden layer counts (1, 2, 4) were considered.

We used a grid search technique [30] to select the optimum hyperparameter values. 
The best combination according to the evaluation set was (learning rate = 0.001, hidden 
layer size = 512 and the number of hidden layers = 1) for the first model, and (learning 
rate = 0.001, hidden layer sizes=(256,128) and the number of hidden layers = 2) for the 
second model. A rectified linear unit (ReLU) activation function was used for all models. 
Fig. 4 shows a schematic illustration for the DNN architectures.

The input layers have been set to accept the maximum number of CpG features 
according to the DNA profiling platform (27,578 for 27k profiles and 485,764 for the 
450k profiles). Unselected features were assigned zero weights. The output classifiers for 
the binary classification model are malignant and benign. As for the pan-classification 
model, the output classifiers represent all the selected cancer diseases and a normal 
(benign) output. All the hidden layers are dense, which means that each neuron receives 
input from all neurons of its previous layer.

Software application framework

This subsection describes the functionality of the application software used to imple-
ment the proposed system. An application, MetaMethyLib, was developed to implement 
the proposed system. The application was developed using the .NET framework and the 
C# programming language.

(5)mt = β1mt−1 + (1− β1)gt

(6)vt = β2vt−1 + (1− β2)g
2
t
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The software application starts by retrieving the DNA methylation data from TCGA 
according to the selected cancer disease and the tissue type (malignant or benign). It 
proceeds with data pre-processing and building the dataset for each cancer type. The 
application software was designed using a modular architecture. Each module per-
formed a specific task, such as the data retrieval and processing, the nested GA imple-
mentation, and deep neural network implementation.

The dataset is expected to be very big and the literature review shows that most sys-
tems suffer from low performance with such enormous data sizes. Hence, the applica-
tion software was developed using a parallel-processing architecture, using the .NET 
task parallel library. It allows the independent convergence of each outer layer chromo-
some for every generation using a logical CPU core to achieve maximum performance. 
Moreover, network convergence was implemented to increase the performance and 
scalability of the application software and its ability to handle more extensive datasets. 
Hence, the system can divide the GA convergence process over a group of connected 
clients where the primary host manages the entire process of executing and terminat-
ing the workload assigned to each client. For convenience, network clients can join or 
leave the workload queue at any time during GA convergence. It is important to note 
that the clients participating in the convergence process must have access to the dataset. 
Otherwise, the primary host will have to send the data remotely, which would result in 
excessive delays.

The host monitors the workload sent to each network client and maintains an ongoing 
connection. If a network client disconnects or stops responding, the host will resend the 
data to another client or choose to evolve it locally, depending on the workload queue. It is 
important to note that such implementation was only possible due to the proposed system 
architecture, which allows it to evolve with the help of other network clients. Each outer 

Fig. 4  Schematic illustration of the two DNN architectures
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layer chromosome can be converged individually, and the results of each outer generation 
are forgathered by the host, before GA evolving operators like crossover or mutation are 
executed.

As for the DNN classification stage, TensorFlow 2 using Keras.Net was used to build an 
addon module that implements the proposed architectures. The system was designed to 
run seamlessly on both the CPU and GPU. Fig. 5 shows the application software workflow.

Experimental results and discussion
The developed application software processed the datasets to handle the missing meth-
ylation values using simple linear regression. However, samples with more than 10% and 
20% (27k DNA profile and 450k DNA profile, respectively) missing features were rejected 
entirely from the final dataset. We adopted accuracy, precision, recall and Matthews Cor-
relation Coefficient (MCC) for performance evaluation.

Recall measures the ability of the DNN to find all the positive samples, while the preci-
sion reflects the ability of the classifier not to label a sample as positive when it is negative.

MCC is a vigorous coefficient that sums up the classifier performance using −1 to +1 
values, where +1 indicates a perfect classifier. We included the MCC metric because it 
has shown superiority with bioinformatics applications and generates a more insightful 
response than other metrics [31]. The formulae for these metrics are shown below:

Where TP and TN values represent the correct predictions by the DNN, while FP and 
FN are the erroneous predictions for all samples.

(7)Accuracy = TP + TN

TP + TN + FP + FN

(8)Recall = TP

TP + FN

(9)Precision = TP

TP + FP

(10)MCC = (TP.TN )− (FP.FN )√
(TP + FP).(TP + FN ).(TN + FP).(TN + FN )

Fig. 5  Workflow for the developed application software
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Feature selection

The DNA methylation datasets were divided into two random groups. The first group 
encompassed 70% of the samples and was used by the feature selection technique, and 
later on, to train the MLP DNN. The second group contained 30% of the samples and 
was used in the second stage to test the MLP DNN. The technique was tested five times 
before the results were averaged. The outer layer GA was set to run for 100 generations, 
while the inner layer GA was set to run for 200 generations for each outer layer chromo-
some. Since GA is a stochastic probabilistic technique, statistical methods were used to 
confirm the precision of the experiments.

All the experiments were executed on a high-performance computing (HPC) unit 
with an Intel Cascade Lake processor with 16 virtual central processing units (CPU) and 
64GB of random-access memory (RAM). The HPC was also equipped with an NVIDIA 
Tesla P4 GPU. This HPC unit served as the primary host, while 16 other processing 
units, each with an Intel i7 9750H CPU and 16GB of RAM, served as network clients. 
After the system completed its convergence, The suggested feature selection technique 
successfully reduced data dimensionality for all cancer types.

Table 3 shows the data dimensionality reduction for the 27k DNA methylation profile 
dataset, and Fig. 6 shows the change in the data dimensionality throughout the conver-
gence process.

The normalised 95% confidence interval for all the selected cancer types was ±0.48%, 
±0.24% and ±0.077% for Breast, Ovary and Stomach, respectively.

The number of common features (CpG loci) extracted from all the tested cancer dis-
eases was 3,391.

Table 4 shows the data dimensionality reduction for the 450k DNA methylation profile 
dataset, while Fig. 7 shows the change in the data dimensionality throughout the conver-
gence process.

For the 450k DNA methylation profile, the normalised 95% confidence interval for all 
the selected cancer types was ±1.22%, ±0.71%, ±0.84%, ±0.34%, ±0.66%, ±0.94% and 
±1.13% for Breast, Colon, Kidney, Liver, Lung, Prostate and Thyroid, respectively. The 
number of common features (CpG loci) extracted from all the tested cancer diseases was 
4,273. The extracted common features will be applied on the input during the classifica-
tion stage.

DNN pan‑classification

As previously stated, the DNA methylation datasets were randomly divided into two 
groups for training and testing the MLP DNN. The training group encompassed 70% of 
the dataset, and the testing group contained 30%.

Table 3  Data dimensionality reduction for the 27k DNA methylation profile

Cancer name Number of selected features

Breast 18,904 ( ∼31.5% reduction)

Ovary 17,380 ( ∼37% reduction)

Stomach 19,707 ( ∼28.6% reduction)
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Fig. 6  Surface plot showing data dimensionality changes for the 27k DNA methylation profile dataset

Table 4  Data dimensionality reduction for the 450k DNA methylation profile

Cancer name Number of selected features

Breast 242,978 ( ∼50.0% reduction)

Colon 220,111 ( ∼65.0% reduction)

Kidney 252,373 ( ∼48.0% reduction)

Liver 245,703 ( ∼49.5% reduction)

Lung 254,645 ( ∼47.6% reduction)

Prostate 245,042 ( ∼50.0% reduction)

Thyroid 221,770 ( ∼54.4% reduction)

Fig. 7  Surface plot showing data dimensionality changes for the 450k DNA methylation profile dataset
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Tables 5 and 6 show the number of samples used to train and test the system for the 
27k DNA methylation profile dataset and the 450k DNA methylation profile dataset, 
respectively.

For the binary classification model, the malignant groups for each cancer type were 
aggregated together, and the same was done for the benign groups. Figs. 8 and 9 below 
show the normalised heat map confusion matrix for the binary classification model for 
both DNA methylation profiles (27k and 450k).

Figs. 10 and 11 show the normalised heat map confusion matrix for the pan-classifica-
tion DNN model for both DNA methylation profiles as well.

Tables  7 and 8 show the calculated performance metrics of the binary classification 
models for both DNA methylation profiles.

The results are compared with the recent work by Zheng et  al. [17] and Modhukur 
et al. [18] for the compatible cancer types from primary sources.

Table 5  Dataset (27k DNA Methylation profile) used to train and test the DNN models

Dataset Total number of 
samples

Accepted 
samples

Training group 
(70%)

Testing 
group 
(30%)

Breast Cancer (BRCA) 342 341 237 104

Ovary Cancer (OV) 613 567 396 171

Stomach Cancer (STAD) 73 72 49 23

Table 6  Dataset (450k DNA Methylation profile) used to train and test the DNN models

Dataset Total number of 
samples

Accepted 
samples

Training group 
(70%)

Testing 
group 
(30%)

Breast Cancer (BRCA) 596 584 408 176

Colon Cancer (COAD) 344 341 238 103

Kidney Cancer (KIRC) 439 433 303 130

Liver Cancer (LIHC) 258 226 158 68

Lung Cancer (LUSC) 291 286 200 86

Prostate Cancer (PRAD) 399 394 275 119

Thyroid Cancer (THCA) 454 454 317 137

Fig. 8  Normalised heat map confusion matrix of the binary classification DNN model, for the 27k DNA 
methylation profile dataset
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The MCC values of the pan-classification DNN models were +0.981 and +0.984 for 
the 27k DNA methylation profile and the 450k DNA methylation profiles, respectively.

For the first study (pilot) that uses the 27k DNA methylation profile dataset, the pro-
posed method outperformed the other two methods and achieved higher precision and 
accuracy for the breast cancer (BRCA).

For the stomach cancer(STAD), the proposed technique outperformed the DNN tech-
nique proposed by Zheng et al. in terms of precision and recall, and achieved better recall 
compared to the RF method proposed by Modhukur et  al. As for ovary cancer(OV), 
the system was able to achieve results that are very similar to the RF method. As for 
the results of the second study that uses the 450k DNA methylation profile dataset, the 
proposed method outperformed the other two methods and achieved higher precision 
and accuracy for colon(COAD), liver(LIHC) and lung(LUSC) cancers. The proposed 

Fig. 9  Normalised heat map confusion matrix of the binary classification DNN model, for the 450k DNA 
methylation profile dataset

Table 7  Performance metrics of the binary classification model for the 27k DNA methylation profile

Performance metric Tumour state

Benign (Normal) Malignant 
(Cancer)

Accuracy 0.953 0.992

Precision 0.891 0.996

Recall 0.953 0.992

MCC +0.916

Table 8  Performance metrics of the binary classification model for the 450k DNA methylation 
profile

Performance metric Tumour state

Benign (Normal) Malignant 
(Cancer)

Accuracy 0.939 0.991

Precision 0.953 0.988

Recall 0.938 0.991

MCC + 0.935
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technique was able to outperform the RF method in terms of precision and recall for 
breast (BRCA), kidney (KIRC) and prostate (PRAD) cancers. For the thyroid cancer 
(THCA), the proposed system achieved a higher recall value compared with the DNN 

Fig. 10  Normalised Heat map confusion matrix of the pan-classification DNN model, for the 27k DNA 
methylation profile dataset

Fig. 11  Normalised Heat map confusion matrix of the pan-classification DNN model, for the 450k DNA 
methylation profile dataset
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method and close results compared to the RF method. Tables  9 and 10 highlight the 
results of the pan-classification DNN models for both DNA methylation profiles, based 
on the precision and recall metrics. Tables 11 and 12 present the accuracy and F1-score 
metrics of the proposed system for both DNA methylation methods, respectively.

It is important to note that the importance of these performance metrics must be 
interpreted according to the target application. In the case of cancer (or any other dis-
ease), false negatives must be averted since they can lead to lethal outcomes. In other 
words, recall is much more important than precision in this case.

Another very popular metric that represents the accuracy of the proposed system, 
at different threshold values, is the receiver operating characteristic (ROC) curves and 
their respective areas [32].

The ROC curves for the pan classification model are shown in Fig. 12. These curves 
can help visualize how well the classification model is performing. ROC works by plot-
ting the true positive rate (TPR), also known as sensitivity, against the false positive rate 
(FPR), known as specificity.

Since we are calculating the AUC for a multi-class model, two values: macro-average 
and micro-average, were calculated.

The macro-average computes the metric for each class independently, then averages 
the resulting values, hence treating all classes equally.

Whereas a micro-average combines the contribution of all classes to calculate the 
mean metric, taking into consideration the imbalance in the number of samples. The 
area under the curve (AUC) for ROC reflects the ability of the classifier to distinguish 
between the different classes.

When the value of AUC is equal to 1, this means that the classification model can per-
fectly distinguish between all various classes correctly.

An AUC value between 0.5 and 1 indicates a higher probability that the classification 
model will be able to distinguish the positive class values from the negative ones. A value 
of 0.5 for AUC (e.g., 45 degrees diagonal line) means that the classification model has no 
discriminatory ability (no skill).

The calculated AUC values of the pan classification model for the first study (27k 
DNA methylation profile)were 0.87 and 0.89 for the micro-average and macro-average, 
respectively.

Table 9  Performance comparison (precision and recall) with recent methods based on the first 
study with the 27k DNA methylation profile dataset

Cancer type Method Precision Recall

Breast Cancer (BRCA) DNN (Zheng et al.) 0.9810 1.00

RF (Modhukur et al.) 0.976 0.932

Proposed method 0.995 1.00

Stomach Cancer (STAD) DNN (Zheng et al.) 0.8721 0.9375

RF (Modhukur et al.) 0.944 0.964

Proposed method 0.9142 1.00

Ovary Cancer (OV) DNN (Zheng et al.) – –

RF (Modhukur et al.) 1.0 1.0

Proposed method 0.994 0.997
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As for the second study (450k DNA methylation profile), the AUC values of the 
pan classification model were 0.85 and 0.86 for the micro-average and macro-aver-
age, respectively. An AUC of 0.6 to 0.7 is considered poor, 0.7 to 0.8 is considered 
good and 0.8 to 0.9 is considered excellent [33].

Finally, it is noteworthy to highlight that current research shows evidence that 
some DNA methylation markers derived from blood can mimic DNA methylation 
signatures found in internal tissues from primary cancer sources [34]. Therefore, this 
research can potentially help identify early-stage cancer by testing blood-derived 
samples using the proposed classification model.

Table 10  Performance comparison (precision and recall) with recent methods, based on the 
second study with the 450k DNA methylation profile dataset

Cancer type Method Precision Recall

Breast Cancer (BRCA) DNN (Zheng et al.) 0.981 1.0

RF (Modhukur et al.) 0.976 0.932

Proposed method 0.986 0.986

Colon Cancer (COAD) DNN (Zheng et al.) – –

RF (Modhukur et al.) 0.993 0.980

Proposed method 0.988 0.988

Kidney (KIRC) DNN (Zheng et al.) 1.0 1.0

RF (Modhukur et al.) 1.0 0.974

Proposed method 1.0 0.99

Liver (LIHC) DNN (Zheng et al.) 0.66 1.0

RF (Modhukur et al.) 1.0 0.99

Proposed method 1.0 1.0

Lung (LUSC) DNN (Zheng et al.) 1.0 0.66

RF (Modhukur et al.) 0.91 0.953

Proposed method 1.0 0.986

Prostate (PRAD) DNN (Zheng et al.) 1.0 1.0

RF (Modhukur et al.) 1.0 0.980

Proposed method 1.0 0.980

Thyroid (THCA) DNN (Zheng et al.) 1.0 0.987

RF (Modhukur et al.) 1.0 1.0

Proposed method 0.975 0.99

Table 11  Performance comparison (f1-score and accuracy) with the RF method, based on the first 
study with 27k DNA methylation profile dataset

Cancer type Method F1-Score Accuracy

Breast Cancer (BRCA) RF (Modhukur et al.) 0.954 0.926

Proposed method 0.997 1.0

Stomach Cancer (STAD) RF (Modhukur et al.) 0.954 0.939

Proposed method 0.955 1.0

Ovary Cancer (OV) RF (Modhukur et al.) 1.0 1.0

Proposed method 0.996 0.997
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Conclusion
This research presented an effective new approach to classify different cancer types based 
on DNA methylation data retrieved from TCGA. The system first used a metaheuristic 
technique to perform feature extraction to decrease data dimensionality. It then imple-
mented deep neural network techniques to classify different cancer diseases. The impor-
tance of using a metaheuristic technique is indicated by its ability to discover relevant 
hidden patterns and substantial information in the data, especially since, as stated in the 
literature, the biological process of DNA methylation is still not completely understood.

Table 12  Performance comparison (f1-score and accuracy) with the RF method, based on the 
second study with 450k DNA methylation profile dataset

Cancer type Method F1-score Accuracy

Breast Cancer (BRCA) RF (Modhukur et al.) 0.954 0.926

Proposed method 0.986 0.986

Colon Cancer (COAD) RF (Modhukur et al.) 0.987 0.980

Proposed method 0.988 0.989

Kidney Cancer (KIRC) RF (Modhukur et al.) 0.987 0.993

Proposed method 0.99 0.989

Liver Cancer (LIHC) RF (Modhukur et al.) 0.99 0.99

Proposed method 1.0 1.0

Lung Cancer (LUSC) RF (Modhukur et al.) 0.931 0.951

Proposed method 0.99 0.986

Prostate Cancer (PRAD) RF (Modhukur et al.) 0.98 0.98

Proposed method 0.99 0.98

Thyroid Cancer (THCA) RF (Modhukur et al.) 1.00 0.99

Proposed method 0.98 0.99

Fig. 12  ROC plot for the pan-classification model
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An initial pilot study using three cancer types (breast, stomach and ovary) that were 
sampled using the Illumina Infinium 27k DNA methylation platform, was conducted. 
Then to test the scalability and performance of the proposed method, another study 
that encompasses other major cancer types (colon, kidney, liver, lung, prostate and 
thyroid) that were sampled using the superior Illumina Infinium 450k DNA methyla-
tion platform, was conducted.

The performance of the proposed system was compared to recently published 
works. It provided better results for most cancer types, confirming the effectiveness 
of of the proposed system for classifying different cancer types based on DNA meth-
ylation data (Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10).
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