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Abstract

Despite wide margins and high dose irradiation, unresectable malignant glioma (MG) is less responsive to radiation and is
uniformly fatal. We previously found that cytosolic phospholipase A2 (cPLA2) is a molecular target for radiosensitizing
cancer through the vascular endothelium. Autotaxin (ATX) and lysophosphatidic acid (LPA) receptors are downstream from
cPLA2 and highly expressed in MG. Using the ATX and LPA receptor inhibitor, a-bromomethylene phosphonate LPA (BrP-
LPA), we studied ATX and LPA receptors as potential molecular targets for the radiosensitization of tumor vasculature in MG.
Treatment of Human Umbilical Endothelial cells (HUVEC) and mouse brain microvascular cells bEND.3 with 5 mmol/L BrP-
LPA and 3 Gy irradiation showed decreased clonogenic survival, tubule formation, and migration. Exogenous addition of
LPA showed radioprotection that was abrogated in the presence of BrP-LPA. In co-culture experiments using bEND.3 and
mouse GL-261 glioma cells, treatment with BrP-LPA reduced Akt phosphorylation in both irradiated cell lines and decreased
survival and migration of irradiated GL-261 cells. Using siRNA to knock down LPA receptors LPA1, LPA2 or LPA3 in HUVEC,
we demonstrated that knockdown of LPA2 but neither LPA1 nor LPA3 led to increased viability and proliferation. However,
knockdown of LPA1 and LPA3 but not LPA2 resulted in complete abrogation of tubule formation implying that LPA1 and
LPA3 on endothelial cells are likely targets of BrP-LPA radiosensitizing effect. Using heterotopic tumor models of GL-261,
mice treated with BrP-LPA and irradiation showed a tumor growth delay of 6.8 days compared to mice treated with
irradiation alone indicating that inhibition of ATX and LPA receptors may significantly improve malignant glioma response
to radiation therapy. These findings identify ATX and LPA receptors as molecular targets for the development of
radiosensitizers for MG.
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Introduction

Malignant glioma (MG) is characterized by neovascularization

and invasion into surrounding brain parenchyma, which nega-

tively impacts successful resection [1]. Unresectable MG is

uniformly fatal with a median survival time of one year [2].

Therefore, response to chemotherapeutic and radiation approach-

es are essential to control growth and spread. However, disease

progression occurs within the field of irradiation despite increased

dosage. The identification of new molecular targets for drug

development could significantly improve therapeutic outcomes in

MG.

ATX was originally discovered as a tumor motility protein [3]

from melanoma cells and is a type II membrane protein secreted

by cells [4,5]. It is known to contribute to invasive properties in

non-small cell lung cancer [6], renal cell cancer [7] and most

recently glioblastoma multiforme (GBM) [8]. ATX converts

extracellular lysophosphatidylcholine (LPC) to lysophosphatidic

acid (LPA) through its lysophospholipase D activity [9]. It has been

demonstrated that specific G-protein coupled receptors (GPCRs)

mediate the cellular effects of LPA, such as proliferation and

migration in cancer [10]. Three of seven identified LPA-specific

receptors, Edg-2/LPA1, Edg-4/LPA2, and Edg-7/LPA3, belong

to the endothelial cell differentiation gene (EDG) family and share

approximately 60% homology [11,12]. ATX and LPA receptors

are both highly expressed in MG, and invading MG cells show

increased gene expression of ATX compared to cells in the

originating tumor core [8,13]. Octa-decenyl thiophosphate (OTP),
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a LPA receptor agonist showed radioprotective effect in cell lines

transfected with LPA2 but not LPA1 and LPA3 [14]. OTP also

protected intestinal crypt cell viability in irradiated wild type but not

in irradiated LPA2 null mice.[14] Recently, VPC-12249, an LPA1

and LPA3 receptor antagonist was reported to attenuate radiation-

induced pneumonitis in mice [15]. LPA receptors on endothelial

cells can contribute to angiogenesis through the increased

expression and production of neovascularizing factors such as

interleukin (IL) -6, IL-8 and vascular endothelial growth factors

(VEGF) [16]. The ability of a tumor to recruit and generate new

vasculature leads to growth and invasion into surrounding tissue.

The protein kinase B (PKB) or Akt pathway has been implicated

in various diseases like cancer, diabetes and autoimmunity [17,18].

Increased activation of Akt have been reported in melanoma,

breast, colon, ovarian, pancreatic and prostrate cancers

[18,19,20,21] and implicated as a leading cause of chemo- and

radio resistance [21,22]. The effectiveness of radiotherapy is often

limited by the response of the tumor microvasculature [23]. We

previously found that ionizing radiation (IR) induces the activation

of cytosolic phospholipase A2 (cPLA2) in tumor endothelium

which leads to the production of LPC and Akt phosphorylation

resulting in radioresistance of endothelial cells [24]. Moreover, the

inhibition of cPLA2 prior to irradiation leads to the disrupted

endothelial cell function and the destruction of tumor blood

vessels, which translates into suppressed tumor growth [25]. Since

LPC is a known substrate for ATX, we hypothesized that ATX

and LPA receptors might be the effectors of cPLA2 -induced

radioresistance in vascular endothelial cells (Fig. S1). Therefore, in

this study, we investigated whether ATX and LPA receptors could

serve as novel molecular targets for the radiosensitization of MG

through enhanced cytotoxic effects in the tumor vasculature by

using a dual ATX and LPA receptor inhibitor, a-bromomethylene

phosphonate LPA(BrP-LPA)[26,27] .

We found that ATX and LPA receptor inhibition enhanced

radiation-induced endothelial cell death, disrupted endothelial cell

biological function, and reduced glioma cell viability and

migration. Most importantly, BrP-LPA treatment prior to

irradiation repressed glioma tumor growth in vivo. These findings

suggest that ATX and LPA receptors represent potential

molecular targets to enhance the efficacy of radiation therapy.

Results

Inhibition of ATX and LPA receptors enhances cell death
in irradiated HUVEC and bEnd.3 vascular endothelial cells

We recently found that cPLA2 inhibition enhanced cell death in

irradiated 3B11 murine vascular endothelial cells [25]. We

hypothesized that LPC produced by radiation-activated cPLA2 is

converted to LPA by ATX and could activate signaling pathways

through its LPA receptors. To determine whether inhibition of

ATX and LPA receptors leads to radiosensitization of brain

microvascular endothelial cells, we used a-bromomethylene

phosphonate LPA (BrP-LPA), an inhibitor of ATX activity and

a pan-antagonist of four LPA receptors [26,27], to assess

clonogenic survival of irradiated HUVEC. Treatment with BrP-

LPA enhanced cell death in irradiated cells at 2, 4, and 6 Gy

(Fig. 1A). At 2 Gy, ATX and LPA receptors inhibition led to a

45% decrease in survival compared to cells treated with vehicle

control (surviving fractions 0.23 versus 0.07, respectively,

p = 0.009; Fig. 1A). Similar effects were observed in bEnd.3 cells

(Fig. 1B). The most pronounced effect occurred at 4 Gy, in which

treatment with BrP-LPA enhanced radiation-induced cell death by

70% compared to corresponding control cells (survival fractions

0.51 versus 0.92, respectively, p = 0.04; Fig. 1B).

To determine whether the LPA receptors mediate radiation-

induced cellular responses, we treated HUVEC with 10 mM LPA

in serum free medium with or without 5 mM BrP-LPA. HUVEC

treated with exogenous LPA showed increased survival and

radioprotection compared to untreated cells (Fig. 1C and 1D).

Treatment with BrP-LPA abrogated this radioprotective effect

triggered by exogenous LPA suggesting that radiosensitization by

BrP-LPA could be mediated through the ATX and LPA receptors.

ATX and LPA receptors inhibition attenuates tubule formation

in irradiated vascular endothelial cells. To determine if ATX and

LPA receptors inhibition disrupts the ability of endothelial cells to

form capillary-like tubule structures, HUVEC were plated on

Matrigel-coated 96-well plates. Cells were treated with 5 mM BrP-

LPA or H20 as vehicle control for 45 min before irradiation

(3 Gy). Tubule formation was monitored and recorded at 16 h

after irradiation. Treatment with 3 Gy or BrP-LPA alone resulted

in a slight decrease in the ability of cells to form tubule structures

(Fig. 2A and B). However, the combination of ATX and LPA

receptor inhibition with irradiation resulted in a 53% attenuation

of tubule formation compared to corresponding controls (Fig. 2B,

p = 0.0006). Similar results were observed in bEnd.3 cells (Fig. 2C)

in which ATX and LPA receptors inhibition produced a 50%

reduction in the number of tubules formed compared to its

corresponding control (p = 0.0039).

Inhibition of ATX and LPA receptors attenuates migration
in irradiated endothelial cells

To determine whether inhibition ATX and LPA receptors

results in reduced endothelial cell migration, a scratch assay was

performed by treating HUVEC and bEnd3 cells with 5 mM BrP-

LPA or H20 as vehicle control for 45 min prior to irradiation

(3 Gy). Migrated cells ware counted and normalized relative to

surrounding cell density at 24 h after irradiation. Combined

treatment with BrP-LPA and 3 Gy significantly attenuated

endothelial cell migration compared to radiation alone in both

HUVEC (Fig. 3A, 70% versus 30%) and bEnd3 cells (Fig. 3B,

80% versus 9%). These results indicate that BrP-LPA is able to

attenuate migration in both HUVEC and bEnd3 cells.

Inhibition of ATX and LPA receptors attenuates migration
and enhances cell death in irradiated GL261 glioma cells

Since glioma cells express high levels of ATX and multiple LPA

receptors [8] , we investigated the effects of BrP-LPA on cell

migration and colony formation in GL261 cells. Treatment of

GL261 cells with either 5 mM BrP-LPA or 3 Gy alone resulted in

a minor reduction in cell migration (81% and 98% of control,

respectively; Fig. 4A and 4B). However, combined treatment with

BrP-LPA and irradiation reduced GL261 migration to 65% of

control (Fig. 4B, p = 0.018). In clonogenic survival studies,

irradiated GL261 cells treated with 5 mM BrP-LPA showed a

modest but significantly reduced survival at the radiation dose of

2 Gy compared to cells treated with radiation alone (Fig. 4C).

Inhibition of ATX and LPA receptors disrupts pro-survival
signals in irradiated bEnd.3 and GL261 cells grown in co-
culture

We previously found that irradiation induces cPLA2 activation

in endothelial cells, which leads to LPC production and the

subsequent activation of Akt in tumor endothelium [24]. ATX

expressed by glioma cells may contribute to this pro-survival

signaling by converting LPC to LPA, thereby activating LPA

receptors. To investigate whether ATX and LPA receptors

inhibition can disrupt Akt activation, bEnd.3 and GL261 cells

Inhibition of ATX/LPA Receptor
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were grown in co-culture and treated with 5 mM BrP-LPA or

vehicle control 45 min prior to 3 Gy irradiation. Treatment with

5 mM BrP-LPA prior to 3 Gy irradiation reduced Akt activation in

bEnd.3 endothelial cells relative to treatment with 3 Gy radiation

alone (0.54 versus 1.09 fold change relative to control, respectively;

Fig. 5). In GL261, Akt phosphorylation was also reduced in cells

treated with 5 mM BrP-LPA prior to 3 Gy irradiation compared to

treatment with either drug or irradiation alone (0.59 versus 1.01

versus 0.94 fold change relative to control, respectively; Fig. 5).

Knockdown of LPA1 and LPA3 receptors leads to decreased

tubule formation in HUVEC. To determine the role of LPA

receptors in clonogenic survival, proliferation and tubule forma-

tion of irradiated vascular endothelial cells, we used siRNA to

knock down LPA1, LPA2 or LPA3 in HUVEC. Knockdown of

either LPA1 or LPA3 had no effect on cell survival in irradiated

HUVEC compared to the nonsilencing control (Fig. 6A and 6B).

In contrast, knockdown of LPA2 showed increased survival of

irradiated HUVEC in both the clonogenic and proliferation assays

(Fig. 6A and 6B). In tubulogenesis assays, compared to nonsilen-

cing control, knockdown of LPA1or LPA3 demonstrated signifi-

cant decrease in tubule formation (Fig. 6C and 6D) whereas

knockdown of LPA2 showed increased tubule formation (Fig. 6C

and 6D). Upon treatment with 3 Gy, tubules were undetectable in

HUVEC with knocked down LPA1or LPA3; while knockdown of

LPA2 did not show any change in tubule formation compared to

nonsilencing control. These results indicate that LPA2 is involved

in radiation-induced cell death and decreased tubule formation in

endothelial cells, and likely, does not take part in radiosensitizing

effects of BrP-LPA. On the contrary, while LPA1 and LPA3 do

not play noticeable role in radiation-dependent viability of

endothelial cells, they are critical for tubule formation.

Inhibition of ATX and LPA receptors represses tumor
growth in irradiated GL261 mouse model

To determine the efficacy of ATX and LPA receptor inhibition

in vivo, a heterotopic mouse brain tumor model was used. GL261

Figure 1. Inhibition of ATX and LPA receptors enhances cell death in irradiated vascular endothelial cells. (A) HUVEC or (B) bEnd.3 cells
were treated with vehicle control (&) or 5 mM BrP-LPA (m) for 45 min prior to irradiation. (C) HUVEC were treated with 0.1% fatty acid free BSA (N),
10 mM LPA (#) or 10 mM LPA plus 5 mM BrP-LPA (&) in serum free medium for 45 min prior to irradiation. The cells were then irradiated with 0, 2, 4
and 6 Gy and plated for clonogenic survival assay. After 2–3 wks, cells were stained with 1% methylene blue and colonies consisting of .50 cells
were counted by microscopy. Surviving colonies were normalized for plating efficiency. Shown are average survival fractions and SEM from three
experiments; * p,0.05. (D) Equal numbers of HUVEC were plated in 96 well plates and treated with carrier control 3% fatty acid free BSA, 10 mM LPA
or 10 mM LPA with 5 mM BrP-LPA in serum free medium for 45 min prior to irradiation. After 96 h, the cell viability was determined using a
colorimetric cell proliferation assay (Promega). Shown is the average absorbance at 490 nm with SEM from three experiments; * p,0.05.
doi:10.1371/journal.pone.0022182.g001

Inhibition of ATX/LPA Receptor
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cells (16105) were injected s.c. into the right hind limbs of nude

mice. Tumor-bearing mice were then treated with vehicle alone,

irradiation alone (5 fractions of 3 Gy), 3 mg/kg BrP-LPA alone, or

3 mg/kg BrP-LPA for 45 min followed by irradiation (5 fractions

of 3 Gy). Treatment with either BrP-LPA or irradiation alone

delayed tumor growth relative to control (1.2 days and 12.0 days,

respectively; Fig. 7). The most pronounced tumor growth delay,

however, was observed in mice receiving a combination of BrP-

LPA and irradiation. In this treatment group, the tumor growth

delay was 6.8 days relative to treatment with irradiation alone

(p = 0.03). This difference remained statistically significant

(p = 0.0005) after using Holm’s correction for multiple compari-

sons, and a 22 factorial design study of tumor growth delay

revealed an additive interaction between BrP-LPA and irradiation.

Discussion

Despite the use of multiple treatment modalities including

chemotherapy and radiation therapy, unresectable MG is

characterized by poor cure rates and high frequencies of

Figure 2. Inhibition of ATX and LPA receptors attenuates tubule formation in irradiated vascular endothelial cells. (A, B) HUVEC or (C)
bEnd.3 cells were plated on matrigel-coated 96 well plates and treated with vehicle control or 5 mM BrP-LPA for 45 min prior to irradiation with 3 Gy.
(A) Shown are the representative photomicrographs of tubule formation taken 16 h after irradiation. (B) Tubule formation was quantified as number
of tubules per high power field (HPF). Shown are bar graphs of mean number of tubules per HPF relative to control and SEM from three experiments;
* p,0.05.
doi:10.1371/journal.pone.0022182.g002

Inhibition of ATX/LPA Receptor
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recurrence. A significant contributor to poor treatment outcomes

is the highly motile phenotype exhibited by MG that allows

invasion into surrounding parenchyma and makes it incurable by

localized therapies [28]. Tumor growth and spread require a

vascular framework that depends on endothelial cell migration

and angiogenesis [29]. In addition, the endothelium is important

because it has been shown that tumor vascular responses to

ionizing radiation largely affect tumor radiosensitivity [23,24].

While it is possible that some cytotoxicity could occur within the

normal vasculature, it would be limited since radiation is

primarily cytotoxic to rapidly dividing cells. Tumor endothelial

cells proliferate 20 to 2000 times faster than normal tissue

endothelium[30].

We previously found that cPLA2 activation in endothelial cells

occurs within minutes of exposure to IR. Inhibition of cPLA2 leads

to decreased survival and angiogenesis in irradiated endothelial

cells, as well as enhanced lung cancer radiosensitivity in vivo [25].

The significance of this pathway may be amplified in MG, where

radiosensitizing the tumor vasculature may not only improve

tumor response to radiotherapy, but may also diminish angiogen-

esis-dependent tumor growth and spread. In the present study, we

found that ATX and LPA receptors, molecular targets down-

stream of cPLA2, can be inhibited in MG to enhance radiation-

induced destruction of endothelial cell functions and improve

tumor response to irradiation. Using a clonogenic survival assay,

we first found that inhibition of ATX and LPA receptors prior to

irradiation enhances endothelial cell death. In HUVEC, reduced

clonogenicity was observed after treatment with BrP-LPA and

radiation compared to treatment with radiation alone. Similar

effects were observed in brain microvascular endothelial cells

(Fig. 1). These results support previously observed enhanced

cytotoxicity after inhibition of the upstream molecular target,

cPLA2, in HUVEC and 3B11 tumor vascular endothelial cells

[25].

LPA is present in the serum in the concentrations of 5–

10 mmol/L [31]. Exogenous addition of LPA to serum free

medium protected HUVEC from radiation damage (Fig. 1C and

1D) confirming a critical role for LPA in radiosensitivity of

Figure 3. Inhibition of ATX and LPA receptors reduces irradiated vascular endothelial cell migration. (A) bEnd.3 or (B) HUVEC were
plated on 60 mm plates and allowed to grow to 70% confluency. The semi-confluent cell layer was scraped using a sterile pipette tip to create a
scratch devoid of cells. The remaining cells were treated with vehicle control or 5 mM BrP-LPA for 45 min prior to irradiation with 3 Gy. Migration was
observed at 36 h. Cells were fixed with ethanol and stained with 1% methylene blue. Migrated cells were counted and normalized to surrounding cell
density per HPF. Shown are representative photomicrographs and bar graphs representing the mean percentages of migrating cells relative to
corresponding controls with SEM from three experiments, * p,0.05.
doi:10.1371/journal.pone.0022182.g003
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vascular endothelial cells. Addition of BrP-LPA to HUVEC

abrogated LPA-induced radioprotection (Fig. 1C) suggesting

involvement of LPA receptors in activation of pro-survival

radioprotective signaling pathway in vascular endothelial cells.

Interestingly, the effects of BrP-LPA were not limited to

endothelial cells, and enhanced cell death was also observed in

irradiated GL261 glioma cells (Fig. 4). One potential mechanism

may involve diminished activation of the pro-survival kinase Akt.

LPA, which is produced by ATX and acts through LPA receptors,

has been shown to transiently phosphorylate Akt in C6 glioma

cells [32]. Moreover, cPLA2 inhibition reduces phospho-Akt in

irradiated endothelial cells [25]. Akt inhibitor IV has been shown

to inhibit colony formation in malignant glioma cell line SF763. It

has been shown that Akt activation is linked to glioma radio-

resistance and down regulation of Akt signaling induces apoptosis

and reduced motility of these cells [33]. Consistent with these

findings, we demonstrated that ATX and LPA receptors inhibition

reduced Akt phosphorylation in both irradiated brain endothelial

and glioma cells (Fig. 5).

We also found that ATX and LPA receptors inhibition

enhances the efficacy of radiation to disrupt endothelial cell

tubule formation and migration. In HUVEC and bEnd.3

endothelial cells, treatment with 5 mM BrP-LPA prior to 3 Gy

significantly reduced endothelial cell tubule formation and

migration compared to treatment with 5 mM BrP-LPA or

irradiation alone (Fig. 2 and Fig. 3). Angiogenesis is a complex

process that requires both endothelial cell migration and tubule

formation [29]. The growth and spread of cancer requires an

underlying vascular framework to provide nutrients for expanding

cells [34,35]. MG is particularly prone to invade normal brain

which complicates the ability of current treatment regimens to

prevent recurrence [28]. Therefore, the disruption of endothelial

cell angiogenic functions like tubule formation and migration may

be particularly important in MG. In the present study, the anti-

migratory effects of BrP-LPA were not limited to endothelial cells,

and ATX and LPA receptors inhibition also reduced the ability of

irradiated GL261 glioma cells to migrate in the scratch assay

(Fig. 4). Although ATX and LPA receptors have never been

Figure 4. Inhibition of ATX and LPA receptors attenuates
migration and enhances cell death in irradiated GL261 cells. (A,
B) Mouse glioma GL261 cells were plated on 60 mm plates and allowed
to grow to 70% confluency. Plates were scraped with a pipette tip to
create a scratch devoid of cells and treated with vehicle control or 5 mM
BrP-LPA for 45 min before irradiation with 3 Gy. After 24 h, cells were
fixed and stained with methylene blue. Migrated cells were counted
and normalized to surrounding cell density per HPF. Shown are
representative photomicrographs (A) and a bar graph (B) representing
the mean percentages of migrating cells relative to corresponding
controls with SEM from three experiments; * p,0.05. (C) For clonogenic
survival assay, GL261 cells were plated and allowed to attach. After 6 h,
cells were treated vehicle control or with 5 mM BrP-LPA for 45 min and
irradiated with 0, 2, 4, and 6 Gy. After 10 days, surviving colonies (.50
cells) were counted and normalized for plating efficiency. Shown is the
clonogenic survival curve and mean surviving fractions and SEM from
three experiments; * p,0.05.
doi:10.1371/journal.pone.0022182.g004

Figure 5. Inhibition of ATX and LPA receptors reduces Akt
phosphorylation in irradiated glioma and endothelial cells
grown in co-culture. bEnd.3 and GL261 cells were grown in co-
culture for 24 h. Cells were treated with vehicle or 5 mM BrP-LPA control
for 45 min before treatment with 3 Gy. Cells were lysed at 5 min after
irradiation. Shown are immunoblot analyses using specific antibodies to
phospho-AktThr308/Ser473, total Akt, and actin. Numbers represent the
ratios of phospho-Akt to total Akt protein normalized to actin (fold
change relative to control).
doi:10.1371/journal.pone.0022182.g005
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studied in combination with radiation, previous studies have

suggested important roles for these molecular targets in tubule

formation and cell motility. In ovarian cancer cell lines, LPA

contributes to angiogenesis by stimulating the neovascularizing

factors IL-6, IL-8, and vascular endothelial growth factor (VEGF)

expression [16], and ATX modulates cell responsiveness to VEGF

[36]. Diminished mRNA levels of LPA receptors are associated

with abolished HUVEC migration in response to upstream

signaling lipids LPC and LPA [36], and ATX has been shown

to induce LPA receptor-dependent glioma cell motility [8].

Interestingly, LPA induces the phosphorylation of the regulatory

light chain of myosin II in glioma cells [37], which may play a role

in the disrupted motility we observed in irradiated GL261 cells

(Fig. 5).

The ATX and LPA receptors inhibitor BrP-LPA we used has

also been studied in A549 non-small cell lung cancer [27] and

MDA-MB-231 breast cancer [38] cells at doses ranging from 10 to

40 mM, but its effects have never been studied in endothelial cells

or in conjunction with radiation. BrP-LPA is both an ATX and

pan LPA receptor antagonist [27], making it difficult to study the

differential effects of each molecular target individually. We found

potential therapeutic benefit of inhibiting both these targets

downstream from cPLA2, thus indicating that the development

of more potent, specific inhibitors of ATX and LPA receptors is

needed. A specific ATX substrate LPC is abundantly present in

plasma, ranging 100–200 mM [39]. In the presence of such high

concentration of a substrate, BrP-LPA is less likely to inhibit ATX

activity. It is more likely that BrP-LPA is acting at the level of the

LPA receptors. LPA1 and LPA3 have been reported to be

involved in inflammation leading to radiation pneumonitis [15].

LPA2 has been reported to protect against radiation induced

intestinal injury [14]. In our studies, we observed that LPA2

knockdown produced increased viability and proliferation in

irradiated HUVEC compared to nonsilencing controls, while

knockdown of LPA1 or LPA3 did not show any effect (Fig. 6A,

and B). These results suggest that LPA2, but neither LPA1 or

LPA3, is an important factor in transduction of radiation-induced

cell death in vascular endothelial cells. Further, we observed that

knockdown of either LPA1 or LPA3 led to no tubule formation in

HUVEC (Fig. 6 C and D), demonstrating that LPA1 and LPA3

are critical for endothelial cell functions. These results also imply

that LPA1 and LPA3, but not LPA2, involved in radiosensitizing

effects of BrP-LPA. This observation is supported by the results

from another group stating that LPA1 and LPA3 are involved in

Figure 6. Effects of knockdown of LPA1, LPA2 and LPA3 on survival and tubule formation of irradiated HUVEC. HUVEC were
transiently transfected with the non-silencing (N) or LPA1- (&), LPA2- (m) or LPA3- (¤) specific siRNA. (A) The knocked down cells were then irradiated
with 0, 2, 4 and 6 Gy and plated for clonogenic survival assay. After 2–3 wks, cells were stained with 1% methylene blue and colonies consisting of
.50 cells were counted by microscopy. Surviving colonies were normalized for plating efficiency. Shown are average survival fractions and SE from
three experiments; * p,0.05. (B) Equal numbers of knocked down cells were plated in 96 well plates and irradiated with 3 Gy. After 96 h, the cell
viability was determined using a colorimetric cell proliferation assay (Promega). Shown is the average absorbance at 490 nm with SEM from three
experiments; * p,0.05. (C, D) The knocked down cells were plated on matrigel-coated 96 well plates and treated with 3 Gy. (C) Shown are the
representative photomicrographs of tubule formation taken 16 h after treatment. (D) Tubule formation was quantified as number of tubules per HPF.
Shown are bar graphs of mean tubules per HPF relative to control and SEM from three experiments; * p,0.05.
doi:10.1371/journal.pone.0022182.g006

Inhibition of ATX/LPA Receptor
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inflammation leading to radiation pneumonitis and are targets for

radiosensitization [15]. Therefore, we conclude that LPA1 and

LPA3 on vascular endothelial cells are molecular targets for

radiosensitization and tumor control as endothelium plays a vital

role in tumor growth and invasion, Based on the published

literature, in addition to inhibiting LPA1 and LPA3 on endothelial

cells, BrP-LPA could also function by inhibiting ATX and LPA

receptors on cancer cells (Fig. S1). This possible mode of BrP-LPA

action requires further investigation.

Summarizing the present study, we characterize the important

role of ATX and LPA receptors in the vascular response to

irradiation. We found that the inhibition of these targets enhances

the ability of radiation to induce endothelial cell death, disrupt

endothelial cell tubule formation, and attenuate endothelial cell

migration. Most importantly, inhibition of ATX and LPA

receptors along with radiation therapy in a heterotopic mouse

model repressed overall GL261 tumor growth (Fig. 7). Moreover,

radiosensitization of the tumor vasculature may contribute to

tumor growth delay. These findings suggest that pre-treatment

with drugs that inhibit ATX and LPA receptors may significantly

improve malignant glioma response to radiation therapy. Clinical

trials with such drugs will be required before any clinical benefit

can be determined.

Materials and Methods

Cell cultures and treatment
Mouse brain microvascular (bEnd.3) cells were obtained from

ATCC and maintained in DMEM with 10% FBS and 1%

penicillin/streptomycin (Life Technologies, Gaithersburg, MD).

Human umbilical vein endothelial cells (HUVEC) were obtained

from and quality tested by Lonza and maintained in endothelial cell

growth medium (Lonza, Switzerland). GL261 cells were obtained

from Dr. Yancie Gillespie (University of Alabama-Birmingham,

Birmingham, AL) and maintained in DMEM-F12 with 10% FBS

and 1% penicillin/streptomycin. GL261 cells were MAP tested by

Department of Comparative Medicine at Washington University

and were negative for mycoplasma. All cells were grown in a 5%

CO2 incubator at 37uC. To inhibit ATX and LPA receptors, we

used a-bromomethylene phosphonate LPA (BrP-LPA) which was

purchased from Echelon (Salt Lake City, UT). For the radiation of

cells, a PANTAK pmc1000 x-ray machine with a 0.1 Cu+ 2.5 AL

filter was used at a dose rate of 88.7 cGy/min.

Clonogenic survival
Cells were plated in triplicate onto 6 cm plates and allowed to

attach for 6 h. Cells were then treated with 5 mM BrP-LPA or H20

Figure 7. Inhibition of ATX and LPA receptors represses tumor growth in irradiated GL261 mouse model. GL261 cells were injected into
the hind limbs of nude mice. Tumors were irradiated with 3 Gy for 5 consecutive days for a total of 15 Gy. Mice were treated with 3 mg/kg BrP-LPA or
vehicle control for 45 min prior to irradiation on days 1, 3, and 5. (A) Shown are mean tumor volumes with SEM from each treatment group of 5 mice.
(B) Tumor growth delay was calculated as the number of days for tumors to reach a 6-fold volume increase compared to control. Shown is a bar
graph representing the mean tumor growth delay with SEM from each treatment group of 5 mice; * p,0.05.
doi:10.1371/journal.pone.0022182.g007
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as vehicle control for 45 min before irradiation with 0, 2, 4, or

6 Gy. Cells were incubated at 37uC in 5% CO2 for 10–20 days

depending on cell type. Cells were fixed with 70% ethanol and

stained with 1% methylene blue and colonies comprised of more

than 50 cells were counted using microscopy. Average survival

fraction of the treatment was calculated as (number of colonies/

number of cells plated)/(number of colonies of corresponding

control/number of cells plated) with standard error.

Colorimetric cell proliferation assay
Cell proliferation was determined using cell titer 96 Aqueous

Non-Radioactive Cell Proliferation Assay reagent (Promega). The

assay was done following the manufacturers protocol. Briefly equal

numbers of HUVEC cells of various treatments were plated into

different wells of a 96-well plate. Cell viability was determined

colorimetrically by measuring absorbance at 490 nm after

96 hours after treatment. Experiments were done in triplicate

and average fold changes relative to control and standard errors

were calculated.

Matrigel-based tubule formation assay
96-well plates were coated with 75 mL per well of Matrigel

(BD Biosciences, San Jose, CA) and incubated overnight at

37uC. bEnd.3 cells (1.56104 ) or HUVEC cells (104) were plated

over the solidified matrigel and allowed to attach at 37uC for

45 min prior to treatment. Cells were treated with 5 mM BrP-

LPA or H20 as vehicle control for 45 min and irradiated with

3 Gy. Capillary-like tubule formation was monitored in control

wells (16–24 h) using a microscope, photomicrographs of the

cells were recorded, and the number of tubules per 4 randomly

selected high power fields (HPF) was counted. Tubule formation

was quantified as the average number of tubules per HPF

normalized to control. The experiment was done in triplicate

and the mean and standard error were calculated for each

treatment group.

Cell migration assay
BEnd.3, HUVEC, or GL261 cells were plated in triplicate onto

6 cm plates and allowed to grow to 70% confluency. The semi-

confluent cell layer was scratched with a sterile pipette tip to create

a scratch devoid of cells and plates were washed twice with PBS to

remove nonadherent cells and debris. Cells were treated with

5 mM BrP-LPA or H20 for 45 min prior to irradiation with 3 Gy,

and then incubated at 37uC in 5% CO2. Control plates were

monitored for cell migration (20–24 h). Cells were fixed with 70%

ethanol and stained with 1% methylene blue. To quantify

migration, cells in 3 randomly selected high power fields (HPF’s)

in the scratched area were counted and normalized for

surrounding cell density. Mean and standard error for each

treatment group were calculated.

Transfection of siRNA
The silencer select pre-designed siRNAs targeting LPA1, LPA2,

and LPA3 and nontarget control siRNA were obtained from

Applied Biosystems/Ambion. siRNAs were delivered into cells

using HiPerFect transfecting reagent according to the manufac-

turer’s protocol (QIAGEN Valencia, CA). siRNA induced gene

knockdown was confirmed by immunoblotting for LPA1, LPA2

and LPA3 48 hours after siRNA deliveryLPA treatment LPA was

purchased from Avanti Polar Lipids Inc. LPA was applied to the

cells complexed with 3% fatty acid free bovine serum albumin

(Sigma chemical Co., St Louis, MO). Briefly, HUVECs cells were

serum-starved with endothelial cell growth medium (Lonza) for1 h

and treated with 10 mM LPA prior to irradiating or treating with

BrP-LPA.

Co-culture Western immunoblot analysis bEnd.3 cells

(2.56105) were plated in 6 well plates and after 24 h, GL261

(56105) cells were plated onto transwell inserts (Corning Inc.,

Corning, NY). After co-culture for 24 h, cells were treated with

5 mM BrP-LPA or H20 for 45 min prior to treatment with 3 Gy.

After 5 min, bEnd.3 and GL261 cells were harvested for protein

extraction using M-PER kit (Pierce, Rockford, IL). Protein

concentrations were estimated using BCA Reagent (Pierce,

Rockford, IL) and 30 mg of each sample was subjected to

Western immunoblot analysis using specific antibodies to

phospho-Akt and total Akt (both from Cell Signaling Technol-

ogies, Danvers, MA). Antibody to actin (sigma) was used to

evaluate protein loading in each lane. Immunoblots were

developed using the Western Lightning Chemiluminescence Plus

detection system (PerkinElmer, Wellesley, MA) according to the

manufacturer’s protocol. Band densities were quantitated using

BioRad Quantity One software.

Mice, treatment and tumor growth delay
All animal procedures used in this study were approved by the

Department of Comparative Medicine (DCM) at Washington

University (Animal Studies Committee approval number

20090226), and the housing and handling of animals followed

DCM guidelines. GL261 cells (16105) were injected into the right

hind limb of nude mice. Once tumors were palpable (The

average tumor size was 96.82 mm3), mice were stratified into four

treatment groups of 5 mice representing similar distributions of

tumor sizes. Tumors from two groups of mice were irradiated

with 3 Gy fractions daily for 5 consecutive days for a total of

15 Gy. These mice received 3 mg/kg BrP-LPA or H20 as vehicle

control i.p. 45 min prior to irradiation on the first, third, and fifth

day of treatment. The two groups of non-irradiated mice received

3 mg/kg BrP-LPA or H20 alone at the same times as the

irradiated mice. Tumor volumes were measured using external

caliper. Tumor volumes for each animal were normalized to the

initial tumor volume at the start of treatment, and the mean

tumor fold increase and standard error were calculated for each

treatment group.

Statistical analyses
The mean and SE of each treatment group were calculated for

all experiments. The number of samples is indicated in the

description of each figure. Statistical analysis was done using a

student’s t-test to compare two means with p,0.05 representing

statistical significance. For the in vivo tumor growth delay study, a

22 factorial design was used. The t-test using Holm’s correction for

multiple comparisons was used to test significance between group

means. The standard deviation used for the multiple comparisons

was obtained by pooling the standard deviations of the test groups.

The factorial design was also analyzed in terms of variable effects

in order to determine if BrP-LPA/IR interaction was synergistic or

additive.

Supporting Information

Figure S1 Schematic representation of proposed auto-
taxin (Lyso PLD) signaling in cancer. Ionizing radiation

induces production of lipid second messenger LPC. LPC is

converted to LPA by ATX which is highly expressed in cancer

cells. LPA in turn activates LPA receptor signaling leading to

angiogenesis, cancer cell migration and vascular permeability.

(TIF)
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