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ABSTRACT

Genetic differences inferred from sequencing reads
can be used for demultiplexing of pooled single-cell
RNA-seq (scRNA-seq) data across multiple donors
without WGS-based reference genotypes. However,
such methods could not be directly applied to
single-cell ATAC-seq (scATAC-seq) data owing to the
lower read coverage for each variant compared to
scRNA-seq. We propose a new software, scATAC-
seq Variant-based EstimatioN for GEnotype ReSolv-
ing (scAVENGERS), which resolves this issue by call-
ing more individual-specific germline variants and
using an optimized mixture model for the scATAC-
seq. The benchmark conducted with three synthetic
multiplexed scATAC-seq datasets of peripheral blood
mononuclear cells and prefrontal cortex tissues
showed outstanding performance compared to exist-
ing methods in terms of accuracy, doublet detection,
and a portion of donor-assigned cells. Furthermore,
analyzing the effect of the improved sections pro-
vided insight into handling pooled single-cell data in
the future. Our source code of the devised software
is available at GitHub: https://github.com/kaistcbfg/
scAVENGERS.

INTRODUCTION

The degree of chromatin accessibility is one of the ma-
jor epigenetic factors used to decipher the functional role
of non-coding regions in gene regulation. Assays com-
bined with high-throughput sequencing technologies have
been developed to obtain a genome-wide profile of acces-
sible chromatin regions (1). Among these methods, As-
say for Transposase-Accessible Chromatin using sequenc-

ing (ATAC-seq) (2) has become very popular because of
its simple and time-saving protocol. These advantages en-
abled ATAC-seq to be easily ported to single-cell level ex-
periments (3,4), which allowed single-cell ATAC-seq to be-
come one of the most successfully established single-cell
profiling methods after being combined with droplet-based
technologies (5).

Although the development of sequencing technology has
resulted in increased efficiency, the cost and batch effect still
hinder scaling up single-cell experiments to a large num-
ber of samples. To overcome such limitations, an exper-
imental design that multiplexes samples with diverse ge-
netic backgrounds and deconvolves them with detected ge-
netic variants in sequenced reads was proposed in single-
cell RNA-seq. A method named Demuxlet (6) which mea-
sures the likelihood of observing RNA-seq reads contain-
ing single-nucleotide polymorphisms (SNPs) sets using a
statistical model, was developed and successfully applied
to single-cell multi-omics integrative analyses (7). How-
ever, a reference genotype database for individuals must
be created. This was addressed by calling genetic vari-
ants directly from the scRNA-seq reads and utilizing them
for the demultiplexing. Methods such as souporcell (8),
Vireo (9) and scSplit (10) were developed based on this
concept.

However, there are hurdles to apply this approach di-
rectly to the scATAC-seq. The scATAC-seq reads are sam-
pled directly from genomic DNA, which has lower copy
numbers compared to RNA molecules. Furthermore, the
genomic regions where the reads are sampled are broader
compared to those in scRNA-seq since scATAC-seq col-
lects reads from accessible chromatin regions while scRNA-
seq collects reads from only exonic regions. As the loci
to be covered by the cell barcode per drop increases and
the amount of genetic material in each locus decreases,
the read coverage per variant in scATAC-seq becomes
lower than those of scRNA-seq. These inherent differ-
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ences might cause the algorithms used in demultiplexing
of pooled scRNA-seq to produce inappropriate results,
which indicates that several modifications that consider
the characteristics of scATAC-seq are needed, rather than
directly applying the demultiplexing method for scRNA-
seq. In response, we devised a scAVENGERS pipeline,
which introduces an appropriate read alignment tool, vari-
ant caller, and mixture model to appropriately process the
demultiplexing of scATAC-seq data. Benchmarks showed
that scAVENGERS successfully demultiplexes samples in
human peripheral blood mononuclear cell (PBMC) and
human prefrontal cortex scATAC-seq datasets, achiev-
ing better performance compared to the conventional
method.

MATERIALS AND METHODS

Single-cell ATAC sequencing dataset preparation

Single-nucleus ATAC sequencing (snATAC-seq) datasets
from two human PBMCs (in-house generated and pub-
lic) and public human prefrontal cortices were prepared
for the benchmark (Supplementary Table 1). For the in-
house dataset, blood acquisition and isolation of five donor
samples were conducted by referring to Lee et al.’s pro-
tocol (11). Following the isolation, snATAC-seq libraries
were generated using the ChromiumTM Single Cell ATAC
Library & Gel Bead Kit v1 (10X genomics, Pleasanton,
CA) and sequenced by DNBSEQ-G400 (MGI, Shenzhen,
China). The public data were acquired by You et al.’s ten
PBMC data (12) and Morabito et al.’s 12 human prefrontal
cortex data (13) from Sequence Read Archive (SRA, ac-
cession number: PRJNA718009 and PRJNA729525, re-
spectively). Individual samples were processed by the Cell
Ranger ATAC pipeline (14) with ‘-p -t 4 -M -R’ options and
hg38 reference genome (refdata-cellranger-atac-GRCh38-
1.2.0). Generated BAM files of each dataset were merged
by the ‘samtools merge’ command to make synthetic mul-
tiplexed snATAC-seq datasets with known donor labels.
After merging, read group information was removed by
the ‘samtools addreplacerg’ command. In this process, the
snATAC-seq barcode information was also merged, us-
ing the overlapping barcodes as the synthetic doublet la-
bels. Subsampling cell barcodes were done by Linux com-
mand ‘shuf | head -n N’, where N is the number of cell
barcodes to sample. For making a subset of BAM file
by these subsampled cell barcodes, we used subset-bam
program.

Variant calling and processing

Strelka2 software (15) was used as a main variant caller for
the scAVENGERS. The ‘configureStrelkaGermlineWork-
flow.py’ script in strelka2 package was first executed with
the –bam, –referenceFasta, and –runDir options. Then,
‘runWorkflow.py’ script generated in the path provided as
an input to –runDir was executed with ‘-m local -j 20’ pa-
rameters. Default values were used for the other input pa-
rameters. The output Variant Call Format (VCF) file from
strelka2 was further processed by the Linux AWK com-
mand to extract SNPs (awk ‘{if ($0∼“#” || length($4)==1

&& length($5)==1) {print}’). Further filtration based on
the VCF FILTER tag is provided by using the bcftools.
‘bcftools view -f PASS -Ob’ command was used to extract
the variants with a certain quality (PASS or lowGQX) from
the raw VCF file.

The scAVENGERS pipeline also supports freebayes soft-
ware for the variant calling process. The freebayes param-
eters of ‘-iXu -C 2 -q 20 -n 3 -E 1 -m 30 –min-coverage
20 –pooled-continuous’ were used. After the variant call,
the variants with a Phred-scaled quality score (QUAL field)
<100 were filtered by using the bcftools.

The prepared variant file was converted to ref.mtx
and alt.mtx file using VarTrix software to express
reference/alternative allele counts on each locus for
each cell barcode.

Benchmark against existing methods

We compared the performance of scAVENGERS against
souporcell (8), demuxlet (6) and scSplit (10). For all these
programs, we used default or recommended settings in the
documentations of each program. For souporcell, we used
a default pipeline, which uses freebayes as variant caller and
VarTrix as allele count matrix generator. We remapped the
reads by minimap2 in default.

Before running demuxlet, we obtained reference-
genotypes by calling variants from each donor using
Strelka2. Then, we ran demuxlet using these reference-
genotypes for individual donors, alignment and cell
barcodes generated by Cell Ranger ATAC-seq pipeline.
After we acquired results, we interpreted ambiguous cell
barcodes marked with prefix ‘AMB’ as unassigned cell
barcodes.

We performed variant calling for scSplit (10) by using
freebayes with parameters ‘-iXu -C 2 -q 1’, which is an op-
tion recommended in documentation of scSplit. Then, we
ran ‘scSplit count’ in default option to create allele count
matrix. The matrices are used for demultiplexing by ‘scSplit
run’ command.

Implementation details

The overall pipeline was implemented by using the Python
programming language. For the likelihood computation
and parameter update by maximum likelihood, the just-in-
time (JIT) compiler for Python (Numba package) was used
for faster computation. Since the barcode-variant count
matrix is a very sparse matrix, scAVENGERS uses Scipy’s
sparse matrix structure to enable large data processing
with a memory-efficient structure. By adopting the troublet
method for the doublet detection part, Rust programming
language was also used.

Detailed information of used external software is listed
below.

Cell Ranger ATAC-seq: Release 1.2.0. https://github.
com/10XGenomics/cellranger-atac

samtools: Release 1.14. https://github.com/samtools/
samtools/releases/tag/1.14

subset-bam: Release 1.1.0. https://github.com/
10XGenomics/subset-bam

https://github.com/10XGenomics/cellranger-atac
https://github.com/samtools/samtools/releases/tag/1.14
https://github.com/10XGenomics/subset-bam
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BWA: Release 0.7.17. https://github.com/lh3/bwa/
releases/tag/v0.7.17

Strelka2: Release 2.9.2. https://github.com/Illumina/
strelka/releases/tag/v2.9.2

freebayes: Release 1.3.5. https://github.com/freebayes/
freebayes/releases/tag/v1.3.5

VarTrix: Release 1.1.22. https://github.com/
10XGenomics/vartrix/releases/tag/v1.1.22

troublet (souporcell): Release 2.0. https://github.com/
wheaton5/souporcell/releases/tag/2.0

Rust (souporcell): Release 1.55.0. https://www.rust-lang.
org/

Design of scATAC-seq specific mixture mode

The generative model in scAVENGERS aims to estimate
the probability of each cell being annotated to a specific
donor. Unlike scRNA-seq, the read coverage of each vari-
ant in scATAC-seq has a value of 0, 1 or 2 in the diploid
genome. The probability of scATAC-seq read being cap-
tured is determined by the sampling of accessible chromatin
regions with attachment of cell barcodes and the sampling
of PCR amplified DNA sequences, which can be modeled
by hypergeometric distribution and binomial distribution,
respectively. Descriptions for each parameter are summa-
rized in Table 1.

Complete log-likelihood. The objective is to maximize the
expected value of the complete log likelihood that is given
below:

logL = log

⎛
⎝ ∏

c∈{1,...C}
Lc,kc

⎞
⎠ =

∑
c∈{1,...,C}

logLc,kc

Because kc is unknown, we will use the expected complete
log-likelihood as follows:

Ekc |ac ,rc ,α [logL] =
∑

c∈{1,...,C}

∑
k∈{1,...,K}

P (kc = k|ac, rc,α) log (Lc,k)

where,

Lc,k = P(ac, rc, kc = k|α) = P(kc = k|α)P(ac, rc |kc = k,α)

= P(kc = k|α)
∏

l∈{1,...,L}
P(ac,l, rc,l|kc = k,α)

which is the likelihood of each cell and donor being anno-
tated.

P(kc = k|ac, rc,α) is the probability of a specific cell bar-
code being assigned to certain donor. In detail, it is a prob-
ability such that kc is assigned to donor k, given observed
reference and alternative allele counts ac, rc and the ac-
tual alternative allele counts for every donor and locus α.
If the genotype is known, P(kc = k|ac, rc,α) has a value of
0 or 1, which labels the genotype for each cell. We did not
model P(ac,l, rc,l|kc = k,α) in case when the reference and
alternative read counts are both zeros. Instead, we coerced
P(ac,l = 0, rc,l = 0|kc = k,α) into 1 since most of variant
loci from scATAC-seq data are covered by zero read count,
which reduces the computational cost.

Likelihood for each cell, loci and cluster. The mixture
model describes observed reference and alternative read
counts from the actual alternative read counts. The model
is divided into two parts as presented below, and each part
is intended to model the PCR amplification and the attach-
ment of reads to the barcode sequences, respectively.

From the DNA sequences of accessible chromatin re-
gions, whose actual alternative read counts are denoted as
αk,l, a fraction of reads is selected by the attachment of cell
barcodes. Because the counts of these selected alleles are not
observable due to the following sampling process after PCR
amplification, we denoted them ‘latent allele count.’ The la-
tent count of reference and alternative alleles for these reads
are denoted as r′

c,l and a′
c,l each. The sampling of reads af-

ter PCR amplification stage then leads to observable refer-
ence and alternative allele read counts, denoted as rc,l and
ac,l respectively.

P(ac,l, rc,l|kc = k,α)

=
∑

a′
c,l,r

′
c,l, where a′

c,l+r′
c,l≤n

P(ac,l, rc,l|a′
c,l, r′

c,l, kc = k, αk,l)

P(a′
c,l, r′

c,l|kc = k, αk,l)

Attachment of reads to cell barcode sequences. The model
below describes the latent reference and alternative read
counts, given the genotype. The latent reads are originated
from the template DNA sequences in each cell, not from
the duplicate DNA sequences from PCR amplification. To
note, the notation of random variables is different from how
they are usually denoted. The detailed explanation is in Sup-
plementary Information.

P(a′
c,l, r′

c,l|kc = k, αk,l) = P(a′
c,l, a′

c,l + r′
c,l|kc = k, αk,l)

= P(a′
c,l|a′

c,l + r′
c,l, kc = k, αk,l)P(a′

c,l + r′
c,l|kc = k, αk,l)

P(a′
c,l|a′

c,l + r′
c,l, kc = k, αk,l) follows a hypergeometric

distribution since the sampling of template DNA sequences
by cell barcode attachment is done without replacement.

P(a′
c,l|a′

c,l + r′
c,l, kc = k, αk,l) =

(
αk,l
a′

c,l

) (
n − αk,l

r′
c,l

)
(

n
a′

c,l + r′
c,l

)

P(a′
c,l + r′

c,l|kc = k, αk,l) is expressed as a binomial dis-
tribution, which models the process of taking reads from a
cell.

P(a′
c,l + r′

c,l|kc = k, αk,l) =
(

n
a′

c,l + r′
c,l

)
pa′

c,l+r′c,l (1 − p)n−a′
c,l−r′c,l

Since most variants are covered by zero read
count, P(a′

c,l + r′
c,l = 0|kc = k, αk,l) approximates to

P(ac,l + rc,l = 0|kc = k, αk,l) well, which is utilized to
obtain p.

p = 1 − P(a′
c,l + r′

c,l = 0|kc = k, αk,l)
1
n

≈ 1 − P(ac,l + rc,l = 0|kc = k, αk,l)
1
n

PCR amplification. From latent reference and alternative
read counts, the probability of occurrence of observed ref-

https://github.com/lh3/bwa/releases/tag/v0.7.17
https://github.com/Illumina/strelka/releases/tag/v2.9.2
https://github.com/freebayes/freebayes/releases/tag/v1.3.5
https://github.com/10XGenomics/vartrix/releases/tag/v1.1.22
https://github.com/wheaton5/souporcell/releases/tag/2.0
https://www.rust-lang.org/
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Table 1. Lists of parameters used in scAVENGERS probability model

symbol Aggregated symbol Description Additional description

n - ploidy n = 2 for typical human cells. This is defined by
users.

C - number of the cells
c - label for an arbitrary cell A single cell is represented as c ∈ [1, C].
K - number of the donors This is defined by users.
k, κ label for an arbitrary donor A single donor is represented as k ∈ [1, K] or

κ ∈ [1, K].
kc - donor label corresponding to a certain cell c scAVENGERS estimates this label.
L - number of loci
l - label for an arbitrary locus A single locus is represented as l ∈ [1, L]
ac,l, rc,l ac = [ac,l]l∈[1,L]

rc = [rc,l]l∈[1,L]

number of observed reference and
alternative alleles for a specific cell c and
locus l

Number of reference and alternative alleles for
reads selected after PCR amplification. A
vector of every observed reference and
alternative allele counts for a cell are
represented as ac and rc. This is given in
variant-barcode matrix as an input.

a′
c,l, r′

c,l a′
c = [a′

c,l]l∈[1,L]
r′

c = [r′
c,l]l∈[1,L]

number of latent reference and alternative
alleles for a specific cell c and locus l

Number of alternative alleles for reads after
selection by barcode attachment.

αk,l α = [αk,l]k∈[1,K],l∈[1,L] number of actual alternative alleles for a
specific cell c and locus l

Number of alternative alleles for reads in a cell.
A matrix of every actual alternative alleles are
denoted α. α in the t’th iteration in the EM
algorithm is denoted α(t). The generative model
aims to find maximum likelihood estimate of
this value.

ε - correction factor Correction factor to prevent taking logs of
zeros. This is defined by users.

erence and alternative read counts is calculated as given be-
low. A detailed explanation of how random variables are
denoted is in Supplementary Information.

P(ac,l, rc,l|a′
c,l, r′

c,l, kc = k, αk,l)

= P(ac,l, ac,l + rc,l|a′
c,l, r′

c,l, kc = k, αk,l)

= P(ac,l|ac,l + rc,l, a′
c,l, r′

c,l, kc = k, αk,l)

= P(ac,l + rc,l|a′
c,l, r′

c,l, kc = k, αk,l)

P(ac,l|ac,l + rc,l, a′
c,l, r′

c,l, kc = k, αk,l) follows a binomial
distribution, under the assumption that the PCR amplifi-
cation is sufficient to regard the process of taking reference
and alternative reads as sampling with replacement.

P(ac,l|ac,l + rc,l, a′
c,l, r′

c,l, kc = k, αk,l)

=
(

ac,l + rc,l
ac,l

) (
a′

c,l

a′
c,l + r′

c,l

)ac,l
(

r′
c,l

a′
c,l + r′

c,l

)rc,l

P(ac,l + rc,l|a′
c,l, r′

c,l, kc = k, αk,l) is calculated from the
observed aligned read counts given locus l in cell c under
the assumption that it does not depend on the cell, locus,
and genotypes.

Correction factor. Because the Expectation-Maximization
(EM) algorithm used in scAVENGERS conveys the pro-
cess of selecting actual alternative allele counts α to max-
imize the expected value of total log-likelihood, a probabil-

ity value of zero inevitably appears during the calculation of
likelihood for suboptimal α. The correction factor ε defined
by users prevents taking logs of zeros.

(1 − ε) P(ac,l, rc,l|kc = k,α) + ε

Deterministic anneal expectation-maximization algorithm
for parameter optimization

Expectation step. The probability of each cell being as-
signed to a specific donor is defined as follows.

P
(
kc = k|ac, rc,α

(t)) = P(ac, rc|kc = k,α(t))P(kc = k|α(t))
P(ac, rc|α(t))

= P(ac, rc, kc = k|α(t))∑
κ∈{1, ...,K} P(ac, rc, kc = κ|α(t))

≡ e
logL(t)

c,k
T

∑
κ∈{1,...,K} e

logL(t)
c,κ

T

The deterministic annealing variant of the Expectation
Maximization (EM) algorithm (16) uses the temperature
parameter to adjust the probability of donor assignment
over multiple iterations (step = t). The temperature param-
eter T is initialized to the average value of the sum of total
read counts in a cell.
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Given the above probability, the expected log-likelihood
is calculated as given below:

Q(α|α(t)) ≡ Ek|A,R,α(t) [log (L)]

=
∑

c∈{1,...,C}

∑
k∈{1,...,K}

P
(
kc = k|ac, rc, α

(t)) log (Lc,k)

=
∑

c∈{1,...,C}

∑
k∈{1,...,K}

P
(
kc = k|ac, rc, α

(t)) log

⎛
⎝P(k|α)

∏
l∈{1,...,L}

P(ac,l, rc,l|k, α)

⎞
⎠

=
∑

c∈{1,...,C}

∑
k∈{1,...,K}

P
(
kc = k|ac, rc, α

(t)) P(k|α)

+
∑

c∈{1,...,C}

∑
k∈{1,...,K}

∑
l∈{1,...,L}

P
(
kc = k|ac, rc, α

(t)) log P(ac,l, rc,l|k, α)

Maximization step. For the maximization of the expected
log-likelihood, the term where αk,l is involved is maximized.

α(t+1) = argmaxαQ(α|α(t))

= argmaxα

∑
c∈{1,...,C}

∑
k∈{1,...,K}

∑
l∈{1,...,L}

P
(
kc = k|ac, rc,α

(t)) log P(ac,l, rc,l|k,α)

= argmaxα

∑
k∈{1,...,K}

∑
l∈{1,...,L}

∑
c∈{1,...,C}

P
(
kc = k|ac, rc,α

(t)) log P(ac,l, rc,l|k,α)

α
(t+1)
k,l = argmaxαk,l

⎛
⎝ ∑

c∈{1,...,C}
P

(
kc = k|ac, rc,α

(t)) log P(ac,l, rc,l|k, αk,l)

⎞
⎠

In the maximization step, an appropriate α
(t+1)
k,l is cho-

sen among integers from 0 to n, and then the process is re-
peated from the E step until convergence. If the difference
between Q(α(t+1)|α(t+1)) and Q(α(t)|α(t)) is not bigger than
the stop criterion, which is 0.1 by default, the algorithm de-
clares convergence. After convergence, the iteration goes on
with the halved temperature until 1. After convergence at
the final temperature 1, the entire iteration stops. If the iter-
ation in the EM algorithm does not converge, it is forced to
stop when the number of iterations exceeds a certain stop
criterion for each temperature step.

Donor-cluster matching for the evaluation procedure

The clustering by mixture model assigns the given cell bar-
codes into n clusters according to the similarity of the set
of their variants. However, the relationship between donor
and cluster cannot be specified as no reference genotypes
are given. Therefore, the accuracy was measured after re-
matching the donors and clusters. In the case of n = 5,
A-E donors and doublet were sequentially assigned for six
clusters (5+ doublet), and then a confusion matrix was
generated. By using the Python numpy package’s argmax
function, the cluster that matches the most for each donor
is assigned. When the argmax values overlap, the combi-
nation of donor and cluster that maximizes the macro-
average F1-score was assigned. As we generated a synthetic
pooled scATAC-seq dataset by merging multiple indepen-
dent scATAC-seq results, each cell barcode was assigned to
the corresponding donor. If the cell barcode was assigned to
multiple donors, we defined them as a doublet. For all the
classified cell barcodes, we evaluated the performance based
on whether the classified barcodes match the actual donor
(precision) and whether the barcodes from a certain donor

are correctly classified (recall). Python scikit-learn package
was used for the evaluation.

RESULTS

Workflow of scAVENGERS

The core design principle of scAVENGERS is mainly com-
posed of four steps: read alignment, variant calling, geno-
type clustering, and doublet assignment for final demulti-
plexing (Figure 1A). The overall architecture is similar to
the read variant-based demultiplexing methods for scRNA-
seq, such as souporcell. However, different software and
mixture model were used according to the characteristics of
scATAC-seq reads in alignment and clustering procedures.

In the case of alignment, Burrows-Wheeler Aligner
(BWA) (17) with MEM option was used for efficient map-
ping of ATAC-seq reads to achieve proper variant call-
ing and ultimately more accurate clustering. Followed by
the changes in the read mapping method, variant caller
software was upgraded to extract proper individual-specific
variants to distinguish donors in the pooled sample. In
the existing method (8), freebayes was used while scAV-
ENGERS incorporated strelka2 (15), which showed supe-
rior speed and accuracy in the benchmark (18). The option
for post-filtering variants based on the quality score pro-
vided by strelka2 was also implemented, which was not of-
fered in freebayes-based pipelines.

The mixture model was also modified for the scATAC-
seq reads (Figure 1B). Unlike scRNA-seq reads, which have
multiple copies, scATAC-seq reads have limited copies as
they are sampled from the diploid genome. The barcod-
ing and PCR amplification processes under the limited con-
dition of initial genetic materials were modeled by com-
bining hypergeometric and binomial distribution. The EM
algorithm was used to estimate the likelihood of the cell
barcodes for being assigned to each donor-specific cluster.
‘Troublet’ of the souporcell pipeline was applied to the fi-
nal process of the clustering, which yields the final donor
assignment (including the unassigned cells and doublets) of
each barcode as a final output.

Benchmark on human PBMC scATAC-seq datasets

For the performance evaluation, we used synthetic multi-
plexed human PBMC scATAC-seq datasets for the bench-
mark. A synthetic set with source-labeled barcodes was
generated by merging individually sequenced scATAC-seq
BAM files from multiple donors. The barcodes overlap-
ping between donors were used as synthetic doublets (Fig-
ure 1C). Two datasets were created by applying the syn-
thetic procedure to the in-house generated dataset consist-
ing of five donors and the published dataset consisting of
ten donors (12).

For the quantitative comparison, donor-wise
precision/recall, doublet detection accuracy, and a fraction
of donor assigned barcodes were measured. In the in-house
PBMC datasets, scAVENGERS achieved an average of
0.997 precision and 0.986 recall (macro-average), while
souporcell achieved an average precision of 0.702 and recall
of 0.739 (Figure 2A left). In doublet detection, precision
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Figure 1. (A) Overall workflow of scAVENGERS pipeline. (B) A schematic of probability model for scATAC-seq read generation. (C) Schematic showing
benchmark process using synthetic pooled datasets.

of 0.105 and 0.482 and recall of 0.451 and 0.825 were
observed, respectively, by souporcell and scAVENGERS,
which shows more than two-fold performance improve-
ment in scAVENGERS (Figure 2A middle). The ratio
of unassigned barcodes to a specific donor owing to the
ambiguous likelihood values was also significantly reduced
from 7% to 1% (Figure 2A right).

This trend was also reproduced in the benchmark con-
ducted with the public dataset. Overall accuracy (precision:
0.732–0.985 and recall: 0.57–0.989, macro-average), dou-
blet detection accuracy (precision: 0.095–0.753 and recall:
0.607–0.731), and genotype assigned barcode ratio (45–
99%) all increased in the scAVENGERS processed result
(Figure 2B). Principal component analysis (PCA) of the
log-likelihood profile between barcodes and donors was
also conducted to intuitively demonstrate the demultiplex-
ing performance. On the PCA plot of the in-house dataset,
the pooled samples showed clear, distinguished clusters
where the doublets are located between the clusters (Fig-
ure 2C). The PCA plot of the public dataset was not well

differentiated as the PCA of the in-house dataset, but the
distinction between samples could be observed (Figure 2D).

We further confirmed the performance of scAVENGERS
using in-house PBMC datasets in comparison to demuxlet
(6), a method with reference-genotypes (Supplementary
Figure 1A). We found that scAVENGERS showed a com-
parable or slightly better performance compared to de-
muxlet in terms of donor-wise precision/recall, doublet de-
tection accuracy, and a fraction of donor assigned bar-
codes. We also conducted benchmark by taking 500 cell
barcodes from each donor of in-house PBMC datasets to
compare another scRNA-seq demultiplexing method with-
out reference genotypes, scSplit (10), due to its memory-
inefficient storage of allele counts. Again, scAVENGERS
outperformed scSplit in terms of precision, recall, and dou-
blet detection rate (Supplementary Figure 1B). Our results
also indicated that the low number of cell barcodes itself did
not degrade the performance of scAVENGERS much by
taking only 500 cell barcodes from each donor. The bench-
mark results with different methods and conditions strongly
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Figure 2. (A and B) Benchmark results of the in-house dataset (A) and You et al.’s dataset (B) showing sample demultiplexing accuracy (left), doublet
detection accuracy (middle), and the fraction of clusters assigned barcodes (right). The color indicates the results from the scAVENGERS (yellow) and
souporcell (blue). The purple portion of the stacked bar chart indicates cells assigned to a certain donor. (C and D) Plots showing PCA applied to the
barcodes’ log-likelihood profile for each donor after processing benchmark datasets (C: in-house and D: You et al.) by scAVENGERS. Color markers
indicate the true labels (source donor and synthetic doublet) of the dataset’s barcodes.

supported the performance improvement and robustness of
scAVENGERS.

Effect of variant discovery and quality on performance

Given the outstanding performance of scAVENGERS, we
investigated how the improved factors affected the perfor-
mance. We first examined the effect of the read mapping and
variant calling steps. In in-house as well as public datasets,
more variants were called when the alignment software was
switched from minimap2 to BWA if the variant caller was
fixed to freebayes (Figures 3A and B for left). Change of
variant caller to strelka2 yielded more than 1.5-fold of vari-
ants compared to freebayes in both datasets. As the donor
assignment for each cell is estimated with the variant combi-
nations obtained from individual cells, the sufficient discov-
ery of the variants through the improvement of alignment
and variant caller may have brought an increase in the per-
formance of scAVENGERS.

Strelka2 provides the variant quality information by
‘PASS’ for high-quality variants and ‘lowGQX’ for low-
quality variants in the FILTER fields. A total of 49% and
47% of the variants were classified as PASS in in-house and
public datasets, respectively (Figures 3A and B for right).
To check the relationship between performance and variant

quality, performance evaluation was conducted by dividing
the variants into two sets based on quality. Interestingly,
the variant set only consisting of the lowGQX showed com-
parable performance to the entire dataset while the PASS-
only set showed performance degradation (Figures 4A–C).
This result is presumed to occur as the germline variant
caller was applied to the pooled sample. In general, germline
callers assume variants on the diploid genome and make
calls from the supporting reads. However, the pooled data
violates this assumption. A unique variant that can distin-
guish a specific individual from the others is rather likely to
be considered as low quality as the allele frequency is diluted
by the reads from the other donors.

To test this hypothesis, the pooled sample and each
donor’s variant call results were compared. As a variant be-
comes more common among the donors (denote as com-
mon in n-individuals), it was more likely to be considered
as PASS in the pooled sample (Figure 4D). In contrast,
the majority of individual-specific variants were assigned as
lowGQX. For this reason, it is estimated that the lowGQX-
only set has better discrimination ability than the PASS-
only set. We further examined whether donor-specific vari-
ants can be distinguished from true low-quality variants
based on quality scores and read depth. We found that
the distributions of genotype quality score (GQ score) and
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Figure 3. (A and B) Bar plot and stacked bar plot pairs showing the number of called variants obtained from different combinations of alignment and
variant caller (color markers) and the fraction of variant quality in strelka2-called result in two benchmark datasets (A: in-house and B: You et al.).

Figure 4. (A and B) Performance evaluation of PASS only variants (jade green) set and lowGQX-only variants set (yellow) compared to the total dataset
(orange). Macro-average was used to summarize multiple donors’ results (A: in-house and B: You et al.). (C) Barplot showing the number of unassigned cell
barcodes for diverse variant input sets. (D) Barplot showing the number of PASS (jade green) and lowGQX (yellow) variants in the intersection set between
the pooled and n-common variant sets. (E) Bar plots showing quality (Strelka2’s) distribution of freebayes-called variants reproduced in the strelka2 results
(top: in-house and bottom: You et al.). Unmatch: the number of variants uniquely identified by freebays, matched to lowGQX: the number of variants
identified by freebays and annotated as lowGQX by Strelka2, and matched to PASS: the number of variants identified by freebays and annotated as PASS
by Strelka2.
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Figure 5. Mixture model performance evaluation result using the in-house dataset. (A) Sample demultiplexing accuracy. (B) Doublet detection accuracy.
Macro-average of F1-score was used. The color marker indicates the original (light blue and orange) and variant set exchanged clustering result (dark blue
and red.

read depth for donor-specific variants were not sufficient to
clearly distinguish donor-specific variants from low-quality
variants (Supplementary Figure 2).

Analysis of the variant quality distribution also provides
an explanation for the performance difference between free-
bayes and strelka2. Among reproduced variants between
two callers, we checked the strelka2-assigned quality (Fig-
ure 4E). Approximately 68% of freebayes variants were re-
produced in strelka2 variants, and ∼64% of them were as-
signed to the PASS quality. Enrichment of freebayes results
in the PASS set shows that freebayes-called variants are bi-
ased towards common variants with less distinguishing abil-
ity, which explains the lower performance when the free-
bayes is used.

Discovering unique variants is thought to be less prob-
lematic in the demultiplexing of scRNA-seq as RNA
molecules exist in multiple copies. By contrast, this issue is
likely to be intensified in scATAC-seq, where the amount
of genetic material is limited, and eventually decreases the
coverage for a specific variant. These results support the re-
quirements for scATAC-seq specific pipeline development,
again.

The robust performance of scAVENGERS with a limited
number of variants

Next, we also evaluated the mixture model of scAV-
ENGERS in terms of performance robustness. Owing to
the alignment and variant calling software difference be-
tween souporcell and scAVENGERS, we measured the per-
formance variability according to the variant call results by
exchanging the set of freebayes-called variants of soupor-
cell and scAVENGERS in the in-house dataset. When a suf-
ficient number of variants obtained from the BWA-using
pipeline was provided, souporcell’s original mixture model

for scRNA-seq also showed enhanced performance simi-
lar to scAVENGERS in terms of the donor assignment ac-
curacy and doublet detection accuracy (darkblue and red
bars in Figures 5A and B). In contrast, scAVENGERS
’s scATAC-seq optimized model showed robustness as the
performance was not significantly degraded even when very
few variants from the minimap2-freebayes were given (yel-
low and red bars in Figures 5A and B). Thus, it is thought
that both models produce similar results in an optimal sit-
uation where there are sufficient variants, but the scAV-
ENGERS’s optimized model performs better when the
number of variants is insufficient.

Other factors affecting the performance of scAVENGERS

Although scAVENGERS outperformed scRNA-seq de-
multiplexing tools for every benchmarking result and
showed robust performance with a limited number of vari-
ants, performance variations between public and in-house
PBMC datasets remain to be explained. To identify factors
that drive lower accuracy in public PBMC datasets, we com-
pared multiple properties including the number of multi-
plexed samples, the number of cells per donor, and the num-
ber of identified variants per donor of both public and in-
house PBMC scATAC-seq results.

We first excluded the factor of a number of variants
since scAVENGERS is highly robust against the number
of identified variants (Figure 5) and we identified a simi-
lar number of variants between public and in-house PBMC
scATAC-seq datasets. Next, to test the effect of the num-
ber of multiplexed donors, we measured the demultiplex-
ing performance by increasing the number of multiplexed
samples from 3 to 12 donors with the human prefrontal
cortex tissue scATAC-seq dataset. We excluded the fac-
tor of a number of multiplexed donors since there is no
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Figure 6. (A) Benchmark results with different numbers of multiplexed donors from human prefrontal cortex scATAC-seq. (B) Performance evaluation
with an unbalanced pooled sample with equal priors (blue) and with adjusted priors (red). The number of cell barcodes for each donor is shown together
in each donor marker.

critical performance degradation in scAVENGERS unlike
souporcell (Figure 6A). Lastly, we tested the effect of the
number of cells per donor since the public PBMC dataset
showed more deviation in the number of cells per donor
compared to those in the in-house dataset (Supplementary
Table 2). To further examine the association between the
imbalanced number of cells per donor and the lowered de-
multiplexing performance, we made a synthetic mixture by
sampling a certain number of cell barcodes per donor with
human prefrontal cortex tissue scATAC-seq. We took 1000
cell barcodes from one donor, and 3000 cell barcodes from
three other donors. When we applied default parameters, we
observed slightly lower macro-average precision and recall
with 0.969 and 0.867, respectively (Figure 6B). Such perfor-
mance degradation was mainly caused by the donor with
1000 cell barcodes, showing the lowest accuracy with 0.902
and 0.786 precision and recall, respectively.

The performance degradation of the imbalanced multi-
plexed dataset is supposed to be associated with the pa-
rameter of priors. In the default option, scAVENGERS ap-
plies equal priors assuming that cell numbers are similar
across donors. However, when we adjusted priors based on
the proportion of the number of cells for each donor, scAV-
ENGERS achieved the precision of 0.936 and the recall of
0.938 for the donor with 1000 cell barcodes (Figure 6B).
Thus, we can conclude that the higher deviation of the num-
ber of cells for each donor will degrade the demultiplex-
ing performance, but scAVENGERS can rescue the per-
formance degradation through the estimation of the proper
priors.

DISCUSSION

In this paper, we describe scAVENGERS, a new computa-
tional pipeline that can perform genotype-based deconvolu-
tion of multiplexed scATAC-seq results. Pooled sequencing
and demultiplexing of multiple samples reduce the total cost
and batch effect, which gradually resolves issues related to
the current single-cell sequencing technology. This advan-
tage is particularly evident in research designs that require
multiple cohorts, where it is difficult to sequence all sam-
ples. The results of this study provided that demultiplexing
can be used appropriately in scATAC-seq by identifying and
solving issues in the existing pipelines. The improvements
achieved in this study can also be fed back to the exist-
ing scRNA-seq demultiplexing techniques without special
modification of conventional pipelines.

Careful consideration of the variant calling process
showed considerable impact on the demultiplexing perfor-
mance. We hypothesized that applying germline variant
callers in the pooled sample induces variant quality-related
bias, which was verified by examining the quality of the vari-
ants in demultiplexing performance. It was confirmed that
variants with differentiation ability tend to be judged as low
quality, and some individual specific variants with low cov-
erage may be lost in this process. By applying a proper vari-
ant caller and quality filter, procedures to acquire a proper
variant set were established.

The use of an appropriate statistical model was an-
other axis of performance improvement in this study. Un-
like RNA-seq, the read generation situation of ATAC-seq,
which inevitably has limited coverage per each variant, was
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well-simulated. Although scRNA-seq and scATAC-seq are
most frequently used, single-cell methods for exploring var-
ious genomic features are being developed, and it is chal-
lenging to provide proper modeling specific to each genomic
feature. Thus, it is necessary to create a model that allows
more flexible assumptions about the prior distribution and
a clustering algorithm should be built based on it.

For future development, detection of ambient DNA from
multiplexed scATAC-seq, demultiplexing of heterogeneous
ploidy genome such as cancer genome, and accurate esti-
mation of priors are required. For instance, in the case of
souporcell, besides demultiplexing, it also provides a func-
tion for detection of ambient RNA released during cell ly-
sis, which is a major confounder of scRNA-seq analysis (8).
Therefore, developing a new function to estimate the con-
tamination of ambient DNA in scATAC-seq is necessary.
In addition, the incorporation of heterogeneous ploidy in
the current scAVENGERS model for the donor estimation
would be important for the broad application of our new
method in various cellular contexts. Finally, the imbalance
of the number of cells among donors is critical in accurate
demultiplexing of pooled scATAC-seq results, albeit such
an issue can be rescued by providing proper priors (Figure
6B). Thus, development of a new function for an accurate
estimation of the number of cells for each donor will be re-
quired.

In summary, scAVENGERS achieved the application of
demultiplexing from scRNA-seq to scATAC-seq. By using
human scATAC-seq data, we confirmed the superior per-
formance of scAVENGERS compared to the pipeline op-
timized for scRNA-seq, and identified factors affecting the
performance for future improvement.
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