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Abstract

MicroRNA profiling represents an important first-step in deducting individual RNA-based regulatory function in a cell, tissue,
or at a specific developmental stage. Currently there are several different platforms to choose from in order to make the
initial miRNA profiles. In this study we investigate recently developed digital microRNA high-throughput technologies. Four
different platforms were compared including next generation SOLiD ligation sequencing and Illumina HiSeq sequencing,
hybridization-based NanoString nCounter, and miRCURY locked nucleic acid RT-qPCR. For all four technologies, full
microRNA profiles were generated from human cell lines that represent noninvasive and invasive tumorigenic breast cancer.
This study reports the correlation between platforms, as well as a more extensive analysis of the accuracy and sensitivity of
data generated when using different platforms and important consideration when verifying results by the use of additional
technologies. We found all the platforms to be highly capable for microRNA analysis. Furthermore, the two NGS platforms
and RT-qPCR all have equally high sensitivity, and the fold change accuracy is independent of individual miRNA
concentration for NGS and RT-qPCR. Based on these findings we propose new guidelines and considerations when
performing microRNA profiling.
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Introduction

MicroRNAs (miRNAs) represent a class of small non-coding

RNAs (ncRNAs), approximately 22 nucleotides (nt) in length,

which regulate the expression of target genes at the posttranscrip-

tional level [1–4]. MiRNAs contribute to important biological

processes including cellular differentiation, proliferation, and

apoptosis [5–9]. Most miRNAs regulate gene expression by

guiding effector protein complexes (RISC) through binding to

complementary sequences in the 39 untranslated region (UTR) of

mRNAs, followed by subsequent inhibition of translation or

destabilization of the target mRNA sequence [10,11]. Conserved

miRNA targets sites have been predicted in as many as two thirds

of all human mRNAs [12]. Furthermore, one specific miRNA may

target different mRNAs and one specific mRNA may be regulated

by multiple miRNAs [13–16].

Aberrant miRNA expression may have serious consequences for

the cell, and miRNA species have been found to be involved in the

initiation and progression of many human diseases, including

cancer [17,18]. This makes miRNAs interesting candidates as

biomarkers in human cancer [19–21]. Indeed, miRNA profiling

has been shown to be an important approach in the molecular

characterization of tumor subtypes and disease progression

[22,23]. Consequently, such profiling strategies can provide

important guidance in the choice of treatment strategy, which

ultimately can increase cancer patient survival [9,24].

MiRNA profiling involves the measurement of the relative

amount of expressed miRNAs in a sample [25]. There are three

major technological approaches that dominate the research field:

MiRNA profiling based on hybridization (microarrays and

nCounter) [26–28], next generation sequencing (NGS) [29], and

amplification (reverse transcription quantitative real time-PCR,

RT-qPCR) [30]. Platform comparison studies have been per-

formed by comparing miRNA expression profiles obtained by RT-

qPCR- and NGS analyses to the more cost-efficient high-

throughput microarray analyses [31–33]. These studies conclude

that RT-qPCR and NGS have better sensitivity and accuracy than

hybridization-based microarray analyses. The performance of

different NGS platforms has also been compared [34–37]. Here,

the absolute values for individual miRNAs differ between the

platforms, even though their relative abundances remain constant.

Differences in the library preparation protocols appear to be the

main reason for this discrepancy. The nCounter platform was

recently included in a comparison study where microarray,

Illumina NGS platform, and RT-qPCR were evaluated [38].

However, as in many other platform comparison studies [31,37–

38], RT-qPCR is only include for verification thereby not allowing

the full potential of the method in correlation studies between

platforms. This approach may cause significant bias in the data
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generated as reference genes are required for normalization of the

results. In our study, we profile more than 700 miRNA species by

RT-qPCR and use the complete data set for normalization.

To work out the most reliable strategy for studying miRNA

expression patterns in biological samples, we compare the

performance of different profiling technologies. Breast cancer cell

lines were chosen as a model system since aberrant expression of

several miRNA species in breast tumor tissue has previously been

demonstrated, reflecting the heterogeneous nature of this disease

[39–40]. Recent established profiling platforms within each

technology group were included in the comparison: The nCounter

platform and miRCURY locked nucleic acid (miRCURY) as

representatives for the hybridization and RT-qPCR based

technologies, respectively, and Illumina HiSeq and SOLiD4 as

representatives for the NGS technology. Each platform was

compared and evaluated regarding sensitivity, accuracy, and

flexibility. Compared to previous reports, our study confer

additional strengths to such analyses by (1) including a high

number of miRNAs in all platforms that gives an un-biased robust

sensitivity comparison, (2) using a unique combination of miRNA

profiling platforms, including two NGS platforms in combination

with other profiling technologies and the novel nCounter platform,

(3) giving a deeper analysis of fold change agreement across

platforms, deducting clear guidelines regarding technical accuracy

of observed fold changes, and (4) for all analysis we have adjusted

for the numbers of detected miRNAs in order to give a nonbiased

comparison of platforms. We conclude that cross-platform

comparison studies are important in order to better understand

the nature of the results gained from novel technologies.

Materials and Methods

Cell Cultures
All cell lines were obtained from the American Type Culture

Collection (ATCC) and cultured in a humidified atmosphere at

37uC with 5% CO2. Hs 578T cells were maintained in Dulbecco’s

Modified Eagle Medium (DMEM) (Life Technologies, Inc)

supplemented with 10% fetal bovine serum (FBS) (EuroClone,

Italy), 2 mM L-glutamine, 0,01 mg/ml insulin, 100 U/ml peni-

cillin, and 100 mg/ml streptomycin (all from Sigma). Hs 578Bst

cells were maintained in Hybri-Care Medium supplemented with

10% FBS, 100 U/ml penicillin, 100 mg/ml streptomycin, 1.5 g/L

sodium bicarbonate, and 30 ng/ml mouse epidermal growth

factor (EGF). AU565 cells were maintained in DMEM, supple-

mented with 10% FBS, 100 U/ml penicillin, 100 mg/ml strepto-

mycin, and L-glutamine. SK-BR-3 cells were maintained in

McCoys 5A medium, supplemented with 10% FBS, antibiotics,

and L-glutamine. Cells were propagated in vitro for 5–8 passages

(86106 cells at 80% confluence) prior to total RNA isolation.

Total RNA Isolation and miRNA Enrichment
Total RNA was isolated from 86106 cells using TRIzol (Life

Technologies, Inc), with prolonged precipitation and centrifuga-

tion steps in order to preserve the small RNA fraction. Total RNA

quantification and integrity assessment were performed using

Quant-iT assay (Life Technologies, Inc) and Agilent 2100

Bioanalyzer (Agilent Technologies), respectively. All RNA used

in this study had RNA integrity number (RIN value) above 9.5.

The miRNA fraction was isolated from total RNA samples by

flashPAGETM Fractionator (Life Technologies, Inc) or Pure-

LinkTM miRNA Isolation Kit (Life Technologies, Inc) according to

the manufacturer instructions.

miRCURY LNA Analysis
Approximately 40 ng (per replicate) of total RNA were used for

MiRNA expression quantification using the miRCURY LNATM

Universal RT miRNA PCR system and the miRNA Ready-to-Use

PCR Panels V2M (Exiqon, Denmark) according to the manufac-

turer recommendations. Real time PCR (RT-PCR) amplification

followed by melt curve analysis was carried out on the Applied

Biosystems 7500 RT-PCR platform. Raw Cq values were

calculated with the SDS plate utility software v2.1 (Life

Technologies, Inc) with automatic baseline setting and manual

DRn threshold of 500 for all assays. Amplification curves for every

reaction were manually inspected to confirm log-phase amplifica-

tion. Cq values were adjusted according to interplate calibrators.

Cq values of 36 or higher were set as background (Not Detected),

outliers were manually removed, and fold change analysis where

all performed using Microsoft� Excel (Microsoft Corp, Redmond,

WA).

SOLiD4 Next Generation Sequencing Analysis
Approximately 100 ng of small RNA enriched samples were

subjected to adaptor ligation and subsequently cDNA synthesis.

The cDNAs were size selected based on expected size of miRNA

and adaptors (60–80 nt) using NovexH pre-cast gels (Invitrogen).

The purified cDNAs underwent 18 cycles of PCR using barcoded

primers. The PCR products were purified using PureLinkTM PCR

Micro Kit (Invitrogen) and analyzed for size and concentration on

Agilent 2100 Bioanalyzer using DNA 1000 or DNA HS chips.

Equal molar amount of each barcoded sample were pooled

together in one library, which subsequently were used in emulsion

PCR to a total concentration of 0.5 pM. Approximately 650

million enriched beads were deposited on a full glass slide for

SOLiD4 sequencing. The obtained raw color-space data were

analysed in CLC Genomics Workbench (CLCbio, Aarhus Den-

mark). Adaptors were trimmed, sequences were grouped, counted,

and annotated against mature miRNA sequence references.

Successful annotation of a miRNA was stringent and did not

include substitutions or length heteroplasmy. Hence, no isomiRs

were collected. From 192,296,821 raw sequence reads 24,081,459

reads were annotated as mature miRNA species.

Illumina HiSeq Next Generation Sequencing Analysis
Total RNA was shipped to Eurofins MWG operons facility in

Ebersberg, Germany. Barcoded small RNA libraries were created

from 1 ug total RNA according to Illuminas TruSeq small RNA

Sample Preparation Guide. Barcoded pre-trimmed sequences

were imported to CLC Genomic Workbench and followed the

same workflow as for SOLiD sequencing. Here, from 92,961,27

raw sequence reads, 28,885,488 reads were annotated as mature

miRNA species.

All raw sequences (SOLiD and Illumina) were submitted to the

National Center for Biotechnology Information (NCBI) Short

Read Archive, study SRP022047.

NanoString nCounter Analysis
Total RNA (150 ng) was shipped to the NanoString Technol-

ogies facility in Seattle, USA for nCounterH Human miRNA

Expression Assay analysis. RNA was incubated in the presence of

miRNA specific capture and reporter probes, and non-hybridized

probes were removed and the purified hybridized complexes were

immobilized and aligned for data collection as previously reported

[28]. All samples were analysed in triplicates. To account for

minor differences in hybridization and purification efficiencies raw

data was adjusted using a technical normalization factor calculated

Performance Comparison of Profiling Technologies
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from six internal positive spike controls present in each reaction.

Background hybridization was corrected by deducting the

negative control mean plus two standard deviations calculated

from eight negative controls.

Data Normalization
A significant challenge when analyzing and comparing data is

the difference in output generated by the various platforms.

Therefore the relative expression of combinations of cell lines was

used. Several normalization strategy methods, which including,

global mean normalization [41], quantile normalization [42],

linear total count scaling, and Trimmed Mean of M component

normalization [43], were tested for the different data sets. We,

however, found that implementation of different normalization

strategies for the different platforms had a negative impact on the

concordance between miRNA profiles (data not shown). In order

to reduce normalization based bias we chose a single normaliza-

tion strategy, linear total count scaling, for all four platforms. Since

RT-qPCR operates with logarithmic numbers, normalization was

achieved by linearization of the inverted expression value using the

cut off value as the zero base-line. After normalization RT-qPCR

expression values were converted back into log2 Cq values.

Exact Mature miRNA Sequence Data Base (Exma-miRDB)
In order to compare the results obtained by the PCR,

hybridization, and NGS technologies, we created an in house

reference based on a modified version miRBase v17 that includes

only mature human miRNA sequences. MiRNAs with identical

mature sequence, but originated from different genomic loci, were

merged. Similarly, miRNAs with different sequences but un-

distinguishable in one or more technologies, were also merged.

The hybridization-based nCounter assay included 664 specific

probes for human miRNAs. Some of these targets were in updated

revisions of miRBase found to be obsolete and certain miRNA

species were indistinguishable (e.g. hsa-mir-17 from hsa-mir-106a)

in this technology. Consequently, 33 targets were either merged or

excluded from this panel (Table S1). The prefabricated human

miRNA panels for RT-qPCR contained originally 742 miRNA

specific primers. Here, 20 miRNAs were obsolete and discarded.

The updated screening panels for the four different platforms

targets 631 (nCounter), 722 (miRCURY), and 1719 (SOLiD and

Illumina) miRNAs (Table 1). Out of these, 517 were found to be

concordant and hence preferred in the cross-platform comparison.

However, in individual platform analyses that include technical

correlation studies and side-by-side comparison, all mutual

miRNA targets respective to the platforms in question were

included.

Results

Reference Datasets
In this study three main technologies were used: (1) RT-qPCR

(Exiqon miRCURY LNA), (2) RNA deep sequencing, NGS (Life

Technologies SOLiD4 and Illumina HiSeq), and (3) hybridization

(NanoString nCounter) (Figure 1). In order to compare the

different output formats, a mutual reference database was

generated. Exact mature miRNA sequences were extracted from

the human miRNA database (miRBase v17, http://www.mirbase.

org/) in order to create an in-house local database (Exma-

miRDB). The final Exma-miRDB contained 1719 unique mature

human miRNA sequences.

MiRNA Data Generation
To evaluate the performance of the different technologies,

miRNA expression profiling was carried out on four human breast

cell lines; Hs 578Bst, Hs 578T, SK-BR-3, and AU565. Hs 578T is

a triple-negative basal-like breast cancer cell line originally isolated

from an infiltrating ductal carcinoma. Hs 578Bst was derived from

the same patient, but isolated from normal breast tissue of an

apparent myoepithelial origin. SK-BR-3 and AU565 were

luminal-type breast cancer cell lines derived from a pleural

effusion of a patient with breast carcinoma. Different cell lines

derived from tumorgenic and healthy tissues in the same patient

are of particular interest in miRNA profiling studies, as miRNA

profiles are less biased towards genetic differences. MiRNA

expression profiles were generated for all cell lines using the four

different platforms described above and using the Exma-miRDB

as reference.

Data generated from NGS covered the complete reference of

1719 miRNAs. Here, SOLiD sequencing detected 748 miRNAs in

at least one cell line and 313 in all four cell lines. Corresponding

values for Illumina HiSeq were 630 and 252, respectively. Of the

631 targeted miRNAs in the nCounter assay, 250 miRNAs were

detected in one or more cell lines, while 113 miRNAs were found

in all four cell lines. RT-qPCR quantification detected 424 (one or

more cell line) and 173 miRNAs (all four) out of the 722 different

targets assessed by this platform (Table 1).

Technical reproducibility analyses were carried out for three of

the platforms (miRCURY, nCounter, and SOLiD) by analyzing

linear relationships between all combinations of replicates within

each cell line. Pearson’s correlation analysis revealed a very high

level of reproducibility; R=0.99760.010 (miRCURY, three

replicates), R= 0.99260.008 (nCounter, three replicates), and

R=0.92460.026 (SOLiD, two replicates) (Figure S1). These

datasets, including data from Illumina, were used in the miRNA

expression data comparison to evaluate the performance of the

different platforms in terms of sensitivity, accuracy, and flexibility.

Sensitivity
The sensitivity of a platform was defined as the ability to detect

miRNAs present in a biological sample. The sensitivity is simply

calculated by dividing the number of detected true positive

miRNAs with the total number of true positive miRNAs in a

sample. Since the investigated biological samples were isolates

from cell lines, and not synthetic miRNA species, the true miRNA

counts in our samples were unknown. Therefore, to calculate the

sensitivity a miRNA was defined as a true positive if at least three

out of the four platforms identified the miRNA, and as a true

negative/absent if identified by only two or less platforms. MiRNA

profiles generated from all cell lines were used, but only miRNAs

screened for in all platforms (517) were included in the

comparison. Using the 517 concordant miRNAs and the four cell

Table 1. Platform screening potential.

Targeted
miRNAs

Observed
miRNA

Percentage of
reference

SOLiD 1719 748 (44%) 44%

Illumina 1719 630 (37%) 37%

nCounter 631 250 (40%) 15%

miRCURY 722 424 (59%) 24%

The theoretical number of possible miRNAs detected within each technology is
compared to the observed number found in this study. IsomiRs are not
included.
doi:10.1371/journal.pone.0075813.t001
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lines gave rise to a total of 2068 miRNA data points in the

sensitivity analysis. Out of these 777 miRNAs (38%) were regarded

as true positive based on the above-mentioned criteria. Here, 763

and 764 were detected by the NGS platforms resulting in a

sensitivity rating as high as 0.982 and 0.983, SOLiD and Illumina,

respectively (Table S2). miRCURY (RT-qPCR) came close to the

NGS platforms with a sensitivity of 0.959 (745 detected). nCounter

(hybridization), on the contrary, detected only 501 of the miRNAs,

which gave a sensitivity of 0.645.

The degree of convergence between each platform was then

examined (Figure 2A). We found 442 miRNAs to be detected by

all four platforms in the four cell lines. Additionally, 910 miRNAs

throughout the cell lines were detected by at least one single

platform. The percentile distributions of the individual miRNAs

within these two subsets were grouped according to their

individual concentration. Not surprisingly, the expression percen-

tile distribution clearly illustrated the correlation of individual

miRNA sample concentration and the ability to be identified by

the various platforms. The majority of miRNAs detected by only a

single platform were expressed at low levels, whereas the majority

of highly expressed miRNAs were detected by all four platforms

(Figures 2B and 2C). This is consistent with a postulate that the

probability to be detected by the various platforms is higher for an

extensively expressed miRNA than from a scarcely expressed

miRNA. In addition, the probability of an expressed miRNA to be

a false positive decrease as other platforms detects the same

miRNA. Together, these two postulations were used to create a

new weighted sensitivity comparison. Here, a highly expressed

miRNA detected by several of the platforms generated a higher

score, (positive if it were detected by both platforms, and negative

if it were only detected by one of the platforms), than a scarcely

expressed miRNA detected by few platforms. To overcome the

problem of having to create a hypothetical list of true and false

miRNAs in our samples, two and two platforms were grouped in

order to evaluate the sensitivity in pairs. The calculation was done

accordingly: 1) All miRNA were used to assess if the pair under

investigation detected the miRNA or not. If both members

identified the same miRNA it was given a positive value. In

contrast, if only one member detected the miRNA, it was given a

negative value. 2) The score was weighted in accordance to the

expression of the miRNA and in accordance to detection of the

miRNA by the two other platforms not under investigation. 3) The

total score was scaled in order to compare the different pair

combinations; a score of 21.000 corresponds to no commonly

detected miRNAs, while a score of 1.000 were given if both team

members detected the exact same set of miRNAs.

The result shows that every time nCounter is teamed up with

another platform, the sensitivity falls below the average of all

sensitivity comparisons. In contrast, all of the other platforms

perform very well in other pair conformation; the best being the

two NGS platforms (SOLiD and Illumina), followed by any

combinations of NGS and miRCURY (Table 2).

Accuracy
The accuracy of a platform was defined as the ability of the

platform to correctly identify fold change differences in biological

samples. In order to evaluate the accuracy, the relative expression

levels of miRNAs using all six combinations of the four cell lines

were included. For assessment of the accuracy, pairs of platforms

were compared. We found that for most miRNAs (average of

83%) the pattern of expression (up- or down-regulated) was

similar, but the relative amplitude of the fold changes varied

according to the different platforms being used.

Pearson’s correlation (R) was used to calculate the accuracy

across platforms. R-values were in accordance to the calculation

on the pattern of expression, and showed that the overall

correlation for all platforms was high (P= 0.703–0.797)

(Figure 3). However, we were not able to identify a specific pair

Figure 1. Project design. Relevant figure and table references are
noted. Human breast cell lines were cultured and total RNA was
extracted. MiRNA profiles were obtained using four different platforms;
Exiqon miRCURY LNA, Life Technologies SOLiD4, Illumina HiSeq, and
NanoString nCounter. A local miRNA database (Exma-miRDB) was
generated based on mature sequences found in miRBase v17. The
performances of the platforms were evaluated in regards to accuracy,
sensitivity, and flexibility.
doi:10.1371/journal.pone.0075813.g001

Performance Comparison of Profiling Technologies

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e75813



of platforms as significantly better than any of the other

combinations of platforms. These results are in accordance with

previously published platform comparison performances [31–

32,44–46]. We further noted that the number of data points

included in the correlation differed significantly between the

technologies, from 516 (miRCURY/nCounter) to 1545 (SOLiD/

Illumina). These differences were not only due to the limited

number of primers and probes in the miRCURY or nCounter

panels, but were also a result of the ability of NGS to identify more

miRNAs in general, as seen by the sensitivity comparison (Table 2,

Figure S2).

Figure 2. Platform sensitivity. (A) Venn diagram displaying the convergence of detected miRNAs by the four platforms. Dispersion of the
concentration of individual miRNAs detected by a single platform (B) and all platforms (C). The miRNAs are grouped in accordance to the percentile
distribution, where the 20% lowest expressed miRNAs within a platform are grouped, the miRNAs with an expression between the 20% lowest and
the 40% lowest are grouped, and so on.
doi:10.1371/journal.pone.0075813.g002

Table 2. Platform sensitivity.

nCounter paired
miRCURY

nCounterpaired
SOLiD

nCounterpaired
Illumina

miRCURY paired
SOLiD

miRCURY paired
Illumina

SOLiD paired
Illumina

miRNA detected in a single
platform

581 690 606 427 345 312

…no additional platforms (2) 166 222 140 204 122 178

…one additional platform (22) 107 178 177 177 178 107

…two additional platforms (222) 308 290 289 46 45 27

miRNA detected in both
platforms

483 508 494 779 764 860

…only these two platforms (+) 14 21 6 48 32 110

…one additional platform (++) 27 45 46 289 290 308

…two additional platforms (+++) 442 442 442 442 442 442

% miRNA detected by both
platforms

45% 42% 45% 65% 69% 73%

Weighted score 0.31 0.30 0.31 0.74 0.75 0.83

For each combination of platforms the identified miRNAs were used to calculate a weighted detection score based on the concordance of the two platforms (noted by
‘‘+’’ and ‘‘2’’). The score took into account both the expression value of the individual miRNAs and detection by the other platforms that were not under investigation.
The weighted score range from 21.0 (no agreement) to 1.0 (full agreement). Only miRNAs screened for in all platforms were included.
doi:10.1371/journal.pone.0075813.t002
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To further examine the accuracy, the fold change in relation to

miRNA expression was investigated. The accuracy was found to

be constant across the concentration of individual miRNAs for the

NGS platforms and for miRCURY (Figure 4A), with an average

of 81% 62%. A higher variation was seen for the comparisons

including the nCounter platform (82% 66%), with the accuracy

being proportional with increasing miRNA sample concentration

(Figure 4B).

Platform dependent differences were not identified when

analyzing the data in accordance to fold change value, but a

general trend was seen for all platforms. If the change was three

fold or more it was only a 2% likelihood of the fold change to be

contradictable when comparing the platforms in pairs (Figure 5,

Paired). However, if the fold change was close to one, 30% of fold

changes were found to be contradictory (Figure 5, Paired). When

exclusively examining the fold changes for miRNAs that were

mutually detected by all four platforms (AP) (Figure 5, AP, Figure

S2), nearly half (47%) of the miRNAs with an average fold change

close to one had at least one platform showing a contradictory fold

change. In contrast, all platforms were in agreement if changes

were above three fold. Thus, we conclude that the probability of

correctly identifying a true difference in expression increases with

the level of fold change.

Flexibility
The flexibility of a platform reflects its ability to serve additional

functions to the data collected. In this context, there are several

reasons for why we find NGS technology far more versatile than

RT-qPCR and hybridization based technologies. (i) In profiling,

NGS has the advantage of being the only technology that uses the

complete reference dataset. (ii) NGS is collecting data of miRNA

species not yet discovered or annotated in the reference data base.

RT-qPCR and hybridization technologies, however, are restricted

to pre-designed primers and probes combinations, and (iii) due to

the single nucleotide resolution of the NGS platforms, additional

level of information is collected in both length and site

heteroplasmy for each miRNA (isomiRs). By a simple search in

our SOLiD and Illumina datasets, we found approximately the

same number of isomiRs reads as mature miRNAs reads (Table

S3). We also find that sequences annotated as isomiRs behaved in

a similar manner as sequences annotated as canonical mature

sequences in regards to accuracy (Figure S3).

Discussion

Performance Evaluation
The strength and limitations for the main miRNA profiling

technologies, as well as for the individual commercial vendors,

have been thoroughly reviewed in [25]. In this work, however, we

challenge their conclusion regarding that RT-qPCR has a better

sensitivity than NGS. The two NGS platforms were here found to

have the highest sensitivity score. This was due to the fact that they

detected the highest number of miRNAs, which are likely to be

true positives as these miRNAs were also found to be expressed by

Figure 3. Fold change scatterplot. The miRNA fold change values are plotted for every combination of platforms. Fold change values were log2
transformed and Pearson’s correlation (R) was used to assess the accuracy. Confidence limits are included in brackets. Number of miRNA included in
the calculation (n). Asterisk (*) indicate p-value ,0,0001.
doi:10.1371/journal.pone.0075813.g003
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additional platforms. miRCURY also performed very well, and

when combined with the NGS platforms no obvious preference for

either SOLiD or Illumina could be observed. Surprisingly, in

contrast to NGS and miRCURY, the nCounter system was found

to have a low sensitivity. nCounter is a hybridization based

technology and the only platform in our study lacking an

amplification step. This may reduce the window between a true-

positive miRNA expression and the background, which thereby

accounts for at least some of the reduction in the sensitivity. This

was clearly visualized in the Venn diagram presented in Figure 2.

Here, miRCURY and the two NGS platforms detect 276

miRNAs, which were not identified by nCounter, a number that

is about half of the miRNAs detected by all four platforms (442

miRNAs). Hybridization based technologies, in general, have

limitations in distinguishing between highly similar target

sequences [47]. Indeed nCounter has this limitation as well,

particularly if the dissimilarity is located at the 59 end of the

miRNA. As for miRNA profiling there are lots of miRNA species

with only one nucleotide difference, including the highly cancer

relevant hsa-miR-17 and hsa-miR-106 (see Table S1). However, in

projects that involve large sample size and limited number of

highly expressed non-merged miRNAs, we find the nCounter

system to be highly capable due to its short hands-on time [25].

The accuracy was found to be similar for all combinations of the

four platforms. A slightly, but not significantly, better correlation

was seen for the nCounter system in combination with miRCURY

and for the combination of the two NGS platforms SOLiD and

Illumina. This could be due to a more similar library preparation

protocol between these platforms, which would be in accordance

to previous reports that library preparation method, and not the

sequencing platforms, appears crucial in miRNA expression

profiles [34,36–37]. One of these studies also concluded that

different library preparation methods gave different expression

ranks for the miRNAs detected [34]. Thus, the absolute expression

level cannot exactly be determent for any of the platforms. The

difference in miRNA rank outcome from library preparation will

not however affect the fold change as the same bias is introduced

for both the control and test sample. Here we show that the

accuracy of NGS and miRCURY is close to constant across the

individual miRNA concentrations (Figure 4). This means that in a

fold change comparisons there is not necessary to discard scarcely

expressed miRNAs involved in large fold changes as it is the

change itself and not the individual expressions that are

comparable across platforms. However, the expression levels will

affect the probability for detecting the miRNA by a different

platform. This is highly important in verification studies where

miRNAs that do not have large fold changes or are highly

expressed may fail verification.

When is a miRNA gene differentially expressed? A common

practice in profiling studies is to score a miRNA as differentially

expressed if the miRNA level shows change above two fold. This

Figure 4. Platform accuracy in relation to miRNA concentration. (A) The percent identity in fold change across the percentile distribution of
miRNAs for all platform combinations without the nCounter platform. Here, an even accuracy is seen across the full range of miRNA concentration.
(B) The same data for platform combinations involving the nCounter platform reveal a large drop in accuracy when the miRNA abundance is low.
doi:10.1371/journal.pone.0075813.g004

Figure 5. Platform accuracy across fold change level. Percent
identity across the fold change level for every combination of platforms
(Paired) and for miRNAs only mutually detected by all platforms (AP).
doi:10.1371/journal.pone.0075813.g005
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threshold might be sufficient to hide biological significant

differences. However, due to technical limitations of profiling

technologies and due to normal biological variations, this

threshold might in fact also be too low in order to avoid false

positive. We tested for normal variation by performing an

additional independent experiment that included a biological

replicate of the Hs 578T cell line. Here, we detected a median

fluctuation of 2.6 fold change between identical miRNA when

compared to our original sequencing experiment (Table S4).

These data are supported by the observation of 2–4 fold random

fluctuations for many genes in yeast [48,49]. In our study, we see a

technical agreement of only 81% at a fold change level below two

fold. We therefore conclude based on the combination of both

technical and biological variations that required level of fold

change should be increased to a change of at least 3–4 fold for a

miRNA to be defined as differentially expressed.

Only NGS platforms are able to detect isomiRs. Based on our

data analysis of the four cell lines, the abundance of isomiRs is

about equal to the amount of mature sequences (Table S3). As

more NGS miRNA profiling studies are being performed, the

mature sequences of present known miRNAs will probably be

redefined when isomiRs are discovered to be more dominantly

expressed than the canonical miRNA. The role of isomiRs has still

not been unraveled, but an increasingly number of recent reports

suggests important new and distinct functions for the isomeric

miRNAs compared to their canonical counterparts [50,51]. In this

study we build up on the statement of isomiR being real miRNA

variants and not sequencing errors by showing a similar behavior

for isomiRs and conical miRNAs in regards to profiling accuracy

for SOLiD and Illumina.

Concluding Remarks

Based on the sensitivity and accuracy obtained in this study of

the different platforms, we recommend an initial miRNA profiling

based on NGS or RT-qPCR. Furthermore, NGS has additional

strengths in regards to the flexibility, and the SOLiD and Illumina

platforms perform equally well. Recent developments in NGS

technologies have lowered the cost and hands-on time of high-

throughput profiling to a level comparable to RT-qPCR. These

considerations give in our view NGS an important advantage in

miRNA profiling. Regardless of the technology or platform used,

we strongly recommend that biological relevant miRNA should be

verified by an independent platform, and that expression

differences should be supported by a high fold change.

Supporting Information

Figure S1 Technical replicate scatter plots. The combi-

nations of every technical replicates were used to create the

scatterplot. Correlation coefficients were calculated using Pear-

son’s correlation (R). MiRNA replicates with a fold change

difference .2 are colored red. (A) miRCURY, three replicates

(4263 data points), (B) nCounter, three replicates (2491 data

points), (C) SOLiD, two replicates (1876 data points).

(TIF)

Figure S2 Heat map of miRNAs detected in all four
platforms. Only the relative expressions found in all platforms

from the combination of the cell line Hs 578Bst versus Hs 578T

are shown. Fold change values are log2 transformed, and miRNAs

are clustered according to hclust function (R-package). (A)
Histogram showing the fold change distribution. (B) Green color

represent a downregulation in Hs 578T compared to Hs 578Bst,

and red color represent an upregulation in Hs 578T compared to

Hs 578Bst. Hierarchical clustering was performed to display the

data. Differentially expressed miRNAs that were reported by all

platforms (.3 fold) are marked in bold.

(TIF)

Figure S3 Next generation sequencing platform accura-
cy for canonical miRNAs versus isomiR. The miRNA fold

change values are plotted for the combination of SOLiD and

Illumina for (A) canonical miRNAs and (B) isomiRs. Fold change

values were log2 transformed and Pearson’s correlation (R) was

used to assess the accuracy. Confidence limits are included in

brackets. Number of miRNA included in the calculation (n).

Asterisk (*) indicate p-value ,0,0001. Platform accuracy in

relation to miRNA concentration for the combination of SOLiD

and Illumina for (C) canonical miRNAs and (D) isomiRs. The

percent identity in fold change is plotted across the percentile

distribution of miRNAs. Platform accuracy across fold change

level for the combination of SOLiD and Illumina for (E) canonical
miRNAs and (F) isomiRs.

(TIF)

Table S1 miRCURY and nCounter panlels updated according

to miRBase v17. Changes are synchronized with the local miRNA

database (Exma-miRDB).

(PDF)

Table S2 Sensitivity and specificity calculation. A positive

miRNA was defined as a miRNA that were detected by at least

3 platforms. In total 777 miRNAs were defined as true positive

and 1291 miRNAs were defined as true negatives. Only miRNAs

screened for in all platforms were included. (A) nCounter, (B),

miRCURY, (C) SOLiD, (D) Illumina, (E) Sensitivity and

Specificity calculation.

(PDF)

Table S3 IsomiR quantitated in NGS data. NGS data were

mapped against Exma-miRDB (includes only the mature miRNA

sequences in miRBase v17), as well as the hairpin sequences of all

annotated miRNA in miRBase v17. Both sets of NGS data

generated from Illumina and SOLiD were used for isomiR

quantification.

(PDF)

Table S4 MicroRNA profile of two biological replicates using

SOLiD sequencing. Values are log2 transformed and the

differences are presented as absolute fold change values.

(PDF)
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