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Abstract

Many chemicals are present in our environment, and all living species are exposed to them. However, numerous chemicals pose
risks, such as developing severe diseases, if they occur at the wrong time in the wrong place. For the majority of the chemicals, these
risks are not known. Chemical risk assessment and subsequent regulation of use require efficient and systematic strategies. Lab-based
methods—even if high throughput—are too slow to keep up with the pace of chemical innovation. Existing computational approaches
are designed for specific chemical classes or sub-problems but not usable on a large scale. Further, the application range of these
approaches is limited by the low amount of available labeled training data. We present the ready-to-use and stand-alone program
deepFPlearn that predicts the association between chemical structures and effects on the gene/pathway level using a combined
deep learning approach. deepFPlearn uses a deep autoencoder for feature reduction before training a deep feed-forward neural
network to predict the target association. We received good prediction qualities and showed that our feature compression preserves
relevant chemical structural information. Using a vast chemical inventory (unlabeled data) as input for the autoencoder did not reduce
our prediction quality but allowed capturing a much more comprehensive range of chemical structures. We predict meaningful—
experimentally verified—associations of chemicals and effects on unseen data. deepFPlearn classifies hundreds of thousands of
chemicals in seconds. We provide deepFPlearn as an open-source and flexible tool that can be easily retrained and customized to
different application settings at https://github.com/yigbt/deepFPlearn.
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Introduction

Exposure to a vast amount of chemicals threatens the
health of humans and ecosystems. Chemical products
are essential for maintaining our standard of living, and
chemicals form the building blocks of life. Some chemi-
cals are hazardous upon exposure, and their safety needs
to be thoroughly evaluated. The number of chemicals
that we are exposed to and the set of chemicals of
anthropogenic origin has been rapidly growing from 20
million in 2002 to currently 169 million unique chemicals
in The Chemical Abstracts Registry Service [8]. Many
of those chemicals are not relevant for exposure since
they are not used in larger quantities. The estimated
number of chemicals available on the global market
highly varies between 30 000 and 350 000 [6, 15, 16,
39]. The number of chemicals detected in human bodies
is of similar order of magnitude. Mattingly et al. [25]

compiled more than 50 000 chemicals from scientific
texts in the Blood Exposome DB. Rappaport [35] defined
our lifestyle and the change in environmental determi-
nants [19, 22] rather than genetic factors as the primary
cause for many chronic diseases. Contamination with
anthropogenic chemicals is of similar concern in the
environment [3, 7]. The NORMAN database lists ∼ 3000
chemicals as emerging pollutants across Europe [28].
Chemical exposure was considered a major threat for
wildlife populations [10, 17, 18]. For example, up to 26 %
of aquatic species loss may be attributed to exposure to
chemical mixtures [15,p . 245] and [31].
Risk assessment fails to keep up with the pace of
chemical innovation. This enormous chemical exposure
and observed hazards require an efficient and effective
risk assessment and specific regulation of chemical use.
While the EU [14] designated a ‘toxic-free environment’ a
key priority, the European Environment Agency forecasts
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that chemical exposure will further increase [15,pp. 248–
249]. For 86% of the ∼21 000 chemicals registered under
REACH, the European legislation regulating industrial
chemicals, the need for suitable regulatory actions still
needs to be determined [12]. However, the throughput
of regulatory processes is slow compared with the pace
of chemical innovation. The evaluation of a chemical
of concern takes 7–9 years, during which exposure may
continue, under REACH regulation [15,pp. 248–249]. Also,
the European Chemicals Agency [13] found that ∼70 %
of the evaluated registration dossiers are incomplete
or not compliant. In summary, traditional approaches
to chemical regulation perform well; however, they
are too slow to master the number and growth of
chemicals on the market. Predictive in silico approaches
may support this challenge—not necessarily by replacing
experimental approaches, but by prioritizing chemicals
for further evaluation.
In silico approaches predict toxicity. Different in silico
approaches exist to predict toxicity. Structural alerts
and rule-based models constitute a simple but powerful
approach to toxicity prediction and build on using
individual chemical substructures as indicators for
toxicity [21]. These methods rely on either human-
expertise-based or data-derived rules and are easy to
interpret. However, since no mechanism enforces the
completeness of rules, there is a high risk of false-
negative predictions [33]. Read-across predicts the
unknown toxicity by extrapolation from a set of highly
related chemicals with known toxicological properties
as an alternative to animal experiments. Naturally, this
restricts to the subset of chemicals for which sufficient
information of related chemicals is available [38].
Quantitative Structure Activity Relationships (QSAR)
[33] relate molecular descriptors to toxicity or other
properties of a chemical [9, 30]. QSARs are built on
a set of related chemicals or expert knowledge on
several chemicals’ shared mode of action or are derived
from a diverse set of chemicals. Descriptors in QSARs
include physicochemical properties, different molecular
structure representations or properties thereof, and high-
throughput screening-derived data on biological activity.
A frequently used family of descriptors are molecular
fingerprints that record the occurrence of local and
regional substructures [24]. QSAR approaches utilize
multivariate statistical models and more recently also
machine learning to relate molecular descriptors to
toxicity.

Machine learning in 21st-century toxicology. Toxicol-
ogy experiences a paradigm shift from relying on api-
cal endpoints in animal models to integrated strate-
gies, combing prediction and high-throughput testing for
different endpoints. Screening initiatives, e.g. the Tox21
program [37], test thousands of chemicals in hundreds
of bioassays to inform on an effect on the molecular
processes which are relevant in toxicity. The availability
of these data enabled the development of a new vari-
ant of QSARs: the machine-learning-based prediction of

the association of substances with molecular pathway
responses.

The Tox21 Challenge was announced in 2014 to reveal
how well independent researchers could predict the
interference between chemicals and biochemical path-
ways given a dataset of chemical structures only. The
challenge initiators provided a set of 12 000 chemicals
with toxicity effect information for 12 assays along with
the task to predict the effects computationally. The win-
ning method was the DeepTox[26] pipeline with reported
AUC values above 82%. In brief, they normalized the
molecular representation of the chemicals, computed a
large number of descriptors and trained deep learning
DL models, which they evaluated on the provided test
data. Later, the challenge initiators successfully validated
these models on withheld data. Further, the authors
observed that the models learn simple structures in
the lower and more complex structures in the higher
layers, as shown for image recognition. In their DL
models, hidden neurons represent known molecular sub-
structures—toxicophores, identified manually by experts
for decades.

Pu et al. [32] developed eToxPred to quickly estimate
the toxicity of extensive collections of low molecular
weight organic chemicals. It employs a Restricted Boltz-
man Machine classifier and a generative probabilistic
model to predict a Tox-score. The reported accuracy is
72%.

Sun et al. [36] used support vector machine and ran-
dom forest single- and multilabel models to predict tox-
icity on the Tox21 Challenge data. They used under-
sampling to resolve the problem of class imbalance in
the data and reported accuracies between 74 to 81%.

Liu et al. [23] described TarPred, a web application for
predicting therapeutic and side effect targets of chemi-
cals. It is not available anymore.

The DeepChem Project [34] is a Python library that pro-
vides datasets, functions and user-contributed tutorials,
intending to democratize DL for science in general and
chemistry in particular. It is helpful to develop or, as a
reference, to compare custom computational approaches
in the field.

None of these approaches provides a ready-to-use pro-
gram for classification or retraining. The main limitation
of those (and other) ML approaches in toxicology is the
lack of applicability to chemicals outside the training
data and the availability of sufficient amounts of training
data. A specific challenge is that the descriptors need
to be fine-grained enough to capture the particularities
of molecular substructures and coarse-grained enough
to allow for ML. In particular, the representation of a
chemical structure should preserve relevant information
which allows for the target association, while it should
also summarize structural features to reduce the degrees
of freedom of the descriptor space. However, the (high)
dimensionality of the features stands in considerable
contrast to the (low) amount of available labeled training
data.
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Here, we present deepFPlearn—a ready-to-use DL
program that predicts the association of chemical struc-
tures and targets on the gene/pathway level. We applied
feature reduction via a deep autoencoder (AE) of a simple
representation of the chemicals’ structure—the binary
fingerprint of moderate size. Subsequently, we predicted
the association of the encoded/compressed fingerprint
representation with a deep feed-forward neural network
(FNN). We overcame the domain extrapolation problem
by training the autoencoder on a considerable repertoire
of chemical structures and showed that the prediction
quality on the subset of labeled training data remained
high. Further, we demonstrated that deepFPlearn

could classify selectively interacting chemicals, which
have been experimentally classified recently, with
significantly higher confidence than other chemicals.

Methods and data
Representation, similarity and visualization of chem-
ical structures. The molecular structure of chemicals
was encoded in binary topological fingerprints—referred
to as molecular fingerprint or FP in the following—
using Python’s RDKit [20,version 2022.03.1] function
Chem.rdmolops.RDKFingerprint with minimum path
size: 1 bond, maximum path size: 7 bonds, fingerprint
size: 2048 bits, number of bits set per hash: 2, minimum
fingerprint size: 64 bits, target on-bit density 0.0. These
FPs were generated from respective InChI or SMILES
strings of the chemicals. All training data files containing
chemical structure and target association information
were serialized using Python’s pickle module. Uncom-
pressed and compressed features were visualized in
2D space using the UMAP algorithm [27]. To gauge the
similarity of two binary FPs F and G we used the Tanimoto
similarity—the ratio of intersection and union of set bits:

Tanimoto(F, G) = setBits(F) ∩ setBits(F)

setBits(F) ∪ setBits(G)
(1)

Pearson correlation was used to evaluate the similarity
of compressed features. A k-means clustering with
k ∈ [2..7] was applied to the uncompressed features.
The assigned clusters were translated to color codes
in the visualizations of uncompressed and compressed
features.

The deep learning tasks were implemented using the
Python library of the TensorFlow framework [2,version
2.6.0] and the Scikit-learn framework [29,version
1.0.2].

We used Weights & Biases [5] for experiment tracking
and hyperparameter tuning (sweep). Sweeped param-
eters included activation function for the hidden lay-
ers, optimizer, learning rate, learning rate decay, batch
size and dropout. The supplement provides all details
about the hyperparameter tuning procedure and the

Table 1. Number and sizes of hidden layers for each trained
neural network. NN—neural network; AE—autoencoder;
FNN—feed-forward NN

NN Input Input size Hidden layers

AE FP LFP = 2048 1024, 512, 256, 512, 1024
FNN FP LFP = 2048 1024, 512, 256, 128
FNN compressed FP Lz = 256 128, 64, 32

final selected training parameter values in section Hyper-
parameter tuning.

We applied a stratified train-test splitting to keep the
same distribution of class labels in both, the training and
the test data. For training the FNN models, we applied
a stratified k-fold (default: k = 5) cross-validation. We
enabled early stopping and fallback mechanisms and
monitored validation loss (val_loss). The training stopped
early if val_loss did not improve by min� = 0.0001 for a cer-
tain number of epochs (patience : AE = 5, patience : FNN =
20). The model’s weights were restored to the respec-
tive checkpoint model. deepFPlearn saves the model
weights for each fold and the model that performed best
across all k folds for subsequent prediction and further
application. Training histories in terms of the values for
loss, binary accuracy, area under the reciever-operator
curve (AUC-ROC), precision, recall and F1 score were
logged in.CSV format for each training epoch’s train-
ing and validation data. To find the optimal classifica-
tion threshold we used Matthews Correlation Coefficient
(MCC) as one of the unbiased evaluation metrics for
imbalanced classification. MCC was calculated with an
increasing threshold from 0 to 1 on the predicted values
of the validation data (and their true values). Then, the
threshold with maximum MCC was selected as the tuned
classification threshold for each model individually. See
Figure 3 C for an example.

The deep regularized autoencoder has a symmetric
shape with one-dimensional input and output layers
of the size of the input fingerprint LFP. The number of
hidden layers NH and their sizes Si, i ∈ [1..NH] depend on
LFP and the desired size of the latent space Lz —see Table 1
for the applied sizes of the hidden layers.

NH = �log2(LFP/Lz)� (2)

Si = LFP/2i i ∈ [1..NH] (3)

The SELU activation function and lecun_normal weight
initialization were used in hidden layers, and the Sigmoid
activation function for the output layer. The model was
compiled with binary cross-entropy as loss function and
Adam optimizer.
A deep neural network was constructed as a sequential
FNN for the classification task. The dimensions of
the stacked layers depend on the mode of action of
deepFPlearn. If feature compression via the AE is
enabled, the FNN is used subsequently. Then, the size
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of the input layer of the FNN matches the length of the
latent space Lz vectors. Otherwise, the size of the input
layer matches the length of the molecular fingerprint LFP.
The hidden layers were of decreasing sizes, followed by
an output layer of size 1. The number of hidden layers

N̂H and their sizes Ŝj, j ∈
[
1..N̂H

]
depend on the provided

input size Linput (which is either LFP or Lz). The last four
layers with only a few neurons (e.g. less than 32 in the
example case of LFP = 2048) were not included. See
Table 1 for the applied sizes of the hidden layers.

N̂H = �log2(Linput)/2� − 4 (4)

Ŝj = Linput/2j j ∈ [1..N̂H] (5)

Dense layers were used with the SELU activation func-
tion, lecun_normal weight initialization and AlphaDropout.
The Sigmoid activation function was used for the output
layer. All hidden layers were followed by a dropout layer.
To reflect a potential imbalance in the training data, we
introduced an initial bias of log(P/N) (with P equal to the
number of 1-values and N to the number of 0-values in
the target vector) to the output layer. The FNN model
was compiled using the Adam optimizer and binary cross
entropy as loss function

Different datasets were collected from the literature
and public databases. A manually curated dataset S was
downloaded from the supplemental material of [36]. It
contained chemical-target associations for 7248 chemi-
cals and six gene targets that are involved in endocrine
disruption (ED) in humans (androgen receptor (AR), estrogen
receptor (ER), glucochorticoid receptor (GR), thyroid receptor
(TR), PPARg and Aromatase). See supplemental Fig. S1
for an overview of these data’s size and class distri-
butions. Initially, these data had been retrieved from
bioassay data of the Tox21 program [37], and carefully
transformed to binary associations by [36]: Associations
were considered as not available (NA) if no bioassay
data were available, and as 1 or 0, if an association
between chemical and gene target had been confirmed
in a bioassay or not, respectively. See [36] for details. The
dataset S was extended by the artificial target ED that
combines all existing target associations with a logical
OR operation. Chemicals in the S dataset were identified
by their SMILES string.

Further, a dataset D was generated from the 719 996
chemicals listed in the CompTox Chemistry Dashboard
[40,accessed on 2020/07/13]. Chemicals in the D dataset
were identified by their InChI identifiers.

For benchmarking, we downloaded two datasets
from MoleculeNet [41], a database of benchmarking
datasets for classification problems in molecular ML.
First, we selected the Tox21 Challenge dataset—Tox21,
which associates chemicals and gene targets. Second,
we used the Side Effect Resource (SIDER) database that
associates drugs with grouped adverse drug reactions.

Table 2. Overview of the usage of the different datasets for
training or prediction

case train AE use AE train FNN predict

1 S - - -
2 D - - -
3 - - S -
4 - S S -
5 - D S -
6 - D SIDER -
7 - D Tox21 -
8 - D - D

These datasets contained 7831 and 1427 compounds,
and 12 and 27 targets, respectively, and comprised
binarized associations between those compounds and
the targets. We followed the recommended metric and
splitting patterns [41] to generate training data from
these datasets and selected targets with a 1-0-ratio of
at least 0.2 and a minimal number of 200 samples in the
positive class for training.

See Table 2 for an overview which of those datasets
were used in which training or prediction case.

Implementation. deepFPlearn was implemented
as a Python (version 3.9.12) package with three dif-
ferent usage-modes. First, convert imports the dataset
(for training or prediction) and calculates molecular
fingerprints for all structures from their respective
SMILES or InChi representation. A data frame combines
the original representation, the calculated fingerprint
and all targets. It is then serialized to disc as a Pickle file
to accelerate the data import for subsequent sessions.
Importantly, deepFPlearn assumes that SMILES have
been canonicalized and cleaned. We recommend to
either use ChemAxon’s chemical structure representa-
tion toolkit (https://chemaxon.com/products/chemical-
structure-representation-toolkit) or a chemical structure
curation pipeline relying on RDKit [4]. The second mode
is training. The neural networks can easily be (re-)trained
with any dataset that associates chemical structures
with an effect. All necessary information is logged during
the training to validate and evaluate the trained models.
The third mode is to predict the association of a provided
list of chemicals with an effect using the trained models.

The user can adjust all neural network settings and the
mode of action in a JSON configuration file.

Dependencies to external libraries and software are
managed using a platform-independent conda (https://
www.anaconda.com) environment, which we provide
in the code repository. A singularity container(https://
sylabs.io/) was set up that encapsulates the whole project
at the state of publication for usage and reproducibility.
It includes the required resources, source code, compiled
package and test data.

Results
We developed the stand-alone, ready-to-use DL approach
deepFPlearn to associate chemicals with gene/pathway

https://chemaxon.com/products/chemical-structure-representation-toolkit
https://chemaxon.com/products/chemical-structure-representation-toolkit
https://www.anaconda.com
https://www.anaconda.com
https://sylabs.io/
https://sylabs.io/
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Figure 1. The deepFPlearn workflow. (A) The molecular fingerprints serve as input for the neural networks. (B) An AE is used to compress the
fingerprints. (C) An FNN) is used for direct classification of the input. (D) An FNN is used for classification of the compressed input. Sizes of layers,
activation and loss functions are different for each network and depend on the input size, see methods section.

level targets. We further evaluated the potential of fea-
ture compression to increase the applicability to sub-
stances beyond the limited amount of available training
data.

Our workflow combined a pre-training strategy via
a deep autoencoder to reduce the feature space and
to generate a universal encoding of binary fingerpints,
followed by a classification step using a deep FNN, see
Figure 1.

For the FNNs, we employed 5-fold cross-validation to
show that the selection of the train-test-split has no sig-
nificant impact on the model performance. In particular,
the standard deviation of the ROC-AUC values (calcu-
lated on the validation data) was ∼1%, see supplement
Fig. S2. Therefore, we used a single stratified train-test-
split to finetune and train our models.

Feature compression comprehensively reduced
trainable parameters while keeping comparable
classification performance. We applied different training
setups: First, feature compression was disabled (no AE,
Figure 1 from A to C), and FNN training used the full-
length molecular fingerprints. The ratio between positive
(1) and negative (0) associations differed substantially
between the individual targets, see supplement Fig. S1.
We introduced an initial bias to the output layer of the
FNN to reflect that imbalance and selected AR, ER and
the artificial target ED as subsets with an acceptable
imbalance to train individual FNN models. Due to the
fingerprint size of 2048, the respective hidden layer sizes
of the FNN were 1024, 512, 256, 128 resulting in about
2.8e6 trainable parameters. The training stopped early
before ∼100 epochs. Binary accuracy values of 0.85,
0.83, 0 .78 and ROC-AUC values of 0.81, 0.83, 0.81 were
reached for AR, ER and ED, respectively. See Figure 3 A
(top panels) for the training histories, and Figure 3 B

(lightgray bars) for the values of precision, recall, F1
scores and further metrics that describe the performance
of our FNN models. See Figure 4 A for ROC and precision-
recall curves of the AR target for the classification
without AE, and supplement Fig. S 3–5 for confusion
matrices, ROC and precision-recall curves of all three
targets.

Second, we applied feature reduction before the clas-
sification by training an AE with a latent space size of
Lz = 256. This reduced the respective hidden layer sizes
of the FNN to 128, 64, 32, resulting in only 43.3e3 trainable
parameters, which is 1.55% of the uncompressed case
above. We trained both a specific AE using the (small) S
dataset and a generic AE using the (large) D dataset. See
Figure 1 from A over B to C. The training of the specific
autoencoder stopped early at 28 epochs which is due
to the small number of training samples. The validation
loss reached a value of 0.026. The generic autoencoder
trained for around 320 epochs and stopped at a validation
loss of 0.159. See Figure 2 for the training histories and
a UMAP visualization of the high-dimensional uncom-
pressed feature space and the low-dimensional latent
space of dataset S. Coloring compounds from the uncom-
pressed and compressed space with labels calculated on
the uncompressed feature space yielded similar cluster
associations in the UMAP. Therefore, the AE preserves
relevant (structural) information during feature com-
pression.

Subsequently, we trained the FNNs and used the latent
space representation as input. The training stopped early
before ∼400 epochs. Binary accuracy values of 0.85, 0.80
and 0 .77 and ROC-AUC values of 0.81, 0.81 and 0.78 were
reached for AR, ER and ED, respectively, when the specific
AE was used to encode the fingerprints. We observed
no significant discrepancy in these values when using
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Figure 2. (A) ROC-AUC and loss values during training (calculated on the training and validation data after each epoch) of the specific (S – Sun et al. 2019)
and the generic (D – CompTox) autoencoder. The training stopped early at 28 epochs for the specific AE—due to the small number of available training
samples and reached a validation loss of 0.026. The training of the generic AE stopped at ∼320 epochs reaching a validation loss of 0.159. (B) UMAP
visualizations of uncompressed and compressed representations of all compounds from S dataset; the color indicates cluster assignment of a k-means
clustering with k = 4 on the uncompressed features.

the generic AE. In particular, we reached values of 0.85,
0.80 and 0.74 for binary accuracy, and 0.80, 0.79 and 0.76
for ROC-AUC values. Therefore, when the input features
are compressed with the generic AE, the FNNs may be
applied to a much more comprehensive range of molec-
ular structures without compromising on the predictive
power. See Figure 3 A (middle and lower panels) for the
training histories, and Figure 3 B (medium and dark gray
bars) for the values of precision, recall, F1 score and
further metrics that describe the performance of our
FNN models that were trained with compressed fin-
gerprints. See Figure 4 B for ROC and precision-recall
curves of the AR target for the classification with the
generic AE, and supplementary Fig. 3–5 for confusion
matrices, ROC and precision-recall curves for all three
targets.

Benchmarking confirmed our strategy.
We compared the results of our strategy against the

results of Sun et al. [36], the publication from which
we extracted our FNN training data, the introduced
approaches eToxPred [32] and DeepTox [26], and the
results reported by MoleculeNet [41]. Sun et al. [36]
reported balanced accuracy values in their results and
we reached the same range between 74 and 81% on the
same data. Pu et al. [32], Mayr et al. [26] and Wu et al. [41]
reported ROC-AUC values of 72, 82 and 83%, respectively,
on the Tox21 data of MoleculeNet, while our models
achieved ROC-AUC values of 88%. For the SIDER dataset
Wu et al. [41] reported 67% ROC-AUC values, while we
reached 84%. For the MoleculeNet datasets, we also
observed only a slight drop in performance when using
the generic AE. In summary, our models perform either
in the same range as existing approaches or better, which
is satisfying compared with the increased applicability
of our strategy.

deepFPlearn is ready to be applied to huge datasets.
We used deepFPlearn with generic feature compression
and selected the trained models for AR, ER and ED to pre-
dict associations of the ∼ 700k chemicals from dataset D.
For most of those compounds, the probability of acting
as endocrine disruptors was not known. deepFPlearn
predicted ∼60k with high prediction probability P >

0.85.
From the ED predictions of dataset D, we investigated

the top 200 and bottom 200 (ranked by prediction
probability) and empirically investigated their bio-
logical feasibility. We found compounds among the
top 200 like Estriol, 17alpha-Ethinylestradiol, 17beta-
Ethinylestradiol, Mestranol, Prednisolone Dexametha-
sone, Betamethasone and respective derivates. These
chemicals are well known to interact with the human
estrogen receptors and pathways or with the gluco-
corticoid pathway. Interestingly, Escher et al. [11] also
identified some of those to interact selectively with AR in
the cell assay screenings. Also, the top 200 list contains
the chemicals Ezlopitant dihydrate dihydrochloride, 5-
Bromo-2, 2-diethyl-5-nitro-1,3-dioxane or Schinifoline, a
metabolite of the Japanese Pepper plant Zanthoxylum
schinifolium. To our knowledge, those substances have
not been tested in bioassays so far. In the bottom 200
predictions (P < 0.01) we found derivates of carbamic,
acetic and amino acids. Those chemicals have never been
discussed in the context of steroid hormone related ED
as far as we know.

Recently, Escher et al. [11] categorized a selection of 355
out of 7968 investigated chemicals and their activity with
the ED receptors AR and ER as selective (41), specific and
unspecific (314, summarized as other) binders.

We predicted the associations for the subset of 339
chemicals that have not been part of our training
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Figure 3. (A) Training histories of the feed forward neural networks stratified by the selected targets/models for androgen (AR) and estrogen (ER)
receptors, and endocrine disruption (ED), and the degree of feature compression (uncompressed, specific AE, and generic AE); the shown metrics are
ROC-AUC (red), loss (orange) calculated on the training (dotted) and validation data (solid) during training. (B) Comparison of the values of balanced
accuracy (Balanced ACC), area under the receiver-operator curve (AUC), precision (PREC), recall (REC), F1 score (F1), specificity (SPEC) and MCC of the
individual models using no (lightgray), the specific (medium gray) and the generic AE (dark gray). (C) MCC was calculated for increasing thresholds
from 0 to 1 on the predicted validation data. The threshold with maximum MCC was selected as the individual classification threshold for each model.
Example generated for model: AR, uncompressed input.

Figure 4. Receiver-operator (left of both panels) and precision-recall (right of both panels) curves of a single fold of the AR target without using feature
compression (A), and with generic feature compression (B). The color indicates the value of the respective classification threshold. Supplemental Figure
S2 depicts the standard deviations of the AUC for the five folds.

data with and without generic feature compresssion.
The models for ER and ED that were trained on the
compressed fingerprints captured substantially more
of the selective compounds with higher prediction
probability than the models that used the uncompressed
fingerprints. However, this was not true for the AR model.
See Figure 5 B and C for probability distributions and
counts of the ED model and supplement Fig. S6 for the
comparison of all three models.

Discussion

There is a great need for systematic prediction of
chemical-effect associations in toxicology. They are
required to prioritize chemicals for experimental

screening, a smart selection of chemicals for monitoring
and the design of novel chemicals. Several approaches
and implementations exist that partially address these
challenges. However, no tools for large-scale applica-
tion are available, and the option for retraining with
additional data sets is absent. While MoleculeNet [41]
and Deepchem [34] provide capable frameworks for
developing learning applications on chemicals, readily
applicable tools, e.g. for predicting ED, are missing.

With deepFPlearnwe present an application to inves-
tigate sets of chemicals for their potential associations to
gene targets involved in ED. It is a DL approach with the
possibility of training custom models to predict different
associations of interest.
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Figure 5. (A) Values for all metrics calculated on the validation data for the benchmarking data sets SIDER and Tox21 summarized across all targets:
balanced accuracy (Balanced ACC), area under the receiver operator curve (AUC), precision (PREC), recall (REC), F1 score (F1), specificity (SPEC) and MCC of
the individual models using no (light gray), the specific (medium gray) and the generic AE (dark gray). (B)deepFPlearn prediction probabilities using the
ED model with generic AE on the compounds that have been experimentally measured for quantified target association and, respectively, differentiated
into selective and non-specifically acting compounds by Escher et al. [11]. Probability distributions are compared using the Kolmogorow–Smirnow test,
and the significance levels for rejecting the null hypotheses that both distributions are similar was ∗ for P-values below 0.05. (C) Comparison of the
counts of predicted 1 (active) and 0 (inactive) labels for the same compounds as described in Figure B shown for the ED model.

The small number of labeled training data is in con-
trast to the high number of features necessary to describe
a chemical’s molecular structure. Also, the natural inter-
action of chemicals and biomolecules is biased toward
‘no interaction’ (label of 0) such that the data suffer
from a substantial imbalance between 1 and 0 labels.
Assessing the association of chemicals and biomolecules
requires measuring a range of concentrations per sub-
stance and assay and thus poses a substantial effort even
with high-throughput technologies. Since the number of
substances with measured associations is small com-
pared with the universe of chemicals, there is a lack of
labeled training data. Due to the high speed at which new
chemicals are developed, this situation will not change
in the foreseeable future. To make things worse, many
positive associations (label of 1) are potentially wrong
due to mistakes during screening result interpretation.
Examples are unclear effect thresholds, high variability
in the experimental designs and limitations in the statis-
tics of modeling the observed effect. The imbalance of the
training data together with a large number of parameters
can easily lead to overfitting. This is reflected by a large
discrepancy between the training and validation loss,
which we still observe in the cases where we do not use

feature compression. However, our strategy to initialize
the output layer of the FNN with the correct bias to
reflect the imbalanced class distribution, which has been
recently proposed by [1], our extended hyperparame-
ter tuning and the application of fallback mechanisms,
reduced overfitting also for the uncompressed FNN. In
supplemental Figure S8 we show how the model can be
driven into overfitting when one of these strategies is
disabled.

We reduced the discrepancy between large descriptor
size and the limited training data by compressing
features with a deep autoencoder. Further, this reduced
the large number of trainable parameters to 1.55% of
the networks that do not use an AE. Using a large
repertoire of chemicals for training the AE further
improved the domain extrapolation without reducing
the predictive power of the subsequent classification. We
tested different training situations, (i) without feature
compression, (ii) feature compression with a subset of
chemicals (specific AE) and (iii) feature compression
with a large set of chemicals (generic AE). We reached
good training performances with ROC-AUC values above
80%, with satisfying sensitivity up to 75%, and specificity
up to 97%.
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Using the benchmark datasets from MoleculeNet,
and reported binary accuracies and ROC-AUC values
from other approaches that used the same data sets
we showed that deepFPlearn performed comparably or
better. However, those methods also demand significant
adjustments to the training data to cope with imbalance.
We found that our predictions with the generic AE
captured more of the compounds that have been
experimentally analyzed and classified by [11] than the
models trained on the uncompressed fingerprints, which
verifies our assumption on predicting unseen data.
deepFPlearn allows for selecting different usage

modes depending on the classification problem: If the
compounds to be classified are expected to reside within
the domain of the training data the FNN without AE
provides superior classification performance. However,
given the overall comparable accuracy of deepFPlearn
when pre-training on a large data set, we consider
this the more robust, computationally efficient and
generally more applicable approach in particular for
large, heterogeneous and imbalanced data.

The quality of our predictions is also high on the
large CompTox dataset. Among the top 1–associated pre-
dictions were chemicals that are well known to inter-
act with human estrogen or the glucocorticoid recep-
tor or related pathways. Likewise, among the respective
top 0–associated predictions were chemicals that have
never been discussed to be involved in ED, which further
enhances the confidence in our models.

Our high values for specificity also suggest an applica-
tion of deepFPlearn to predict secondary effects in drug
design.

The deepFPlearn results on the chemicals exper-
imentally classified as selective and unspecific also
confirmed our prediction quality. Although a relatively
broad distribution of prediction probabilities for selective
binders suggests that there is still room for methodolog-
ical improvement, many of the chemicals predicted with
a very high probability are indeed selective binders.

We suggest a more detailed investigation of the
predicted associations and experimental validation
in upcoming studies to confirm or decline effects in
endocrine disruption.

Conclusion
With deepFPlearn we model the associations between
chemical structures and effects on the gene/pathway
level with a deep learning approach.

In contrast to existing approaches and implementa-
tions, deepFPlearn is a ready-to-use tool. It comes as a
stand-alone Python software package and (additionally)
wrapped in a Singularity Container to overcome the
dependency on the operating system and required
software. deepFPlearn can capture a much more com-
prehensive range of substances than those contained in
the training data of the classification network. It can be
applied to classify hundreds of thousands of chemicals in

seconds. Moreover, with its different application modes,
we provide the flexibility to train custom models with
any meaningful dataset that associates chemicals with
an effect. deepFPlearn substantially contributes to the
systematic in silico investigation of chemicals, even for
data-driven hypothesis generation on novel substance-
effect associations. With deepFPlearn we can cope
with the large, constantly and rapidly growing chemical
universe and support prioritization of chemicals for
experimental testing, assist in the smart selection
of chemicals for monitoring and contribute to the
sustainable design of the future chemicals.

Key Points

• All living species are exposed to a vast amount (and
mixtures) of chemicals; many pose risks; this risk is not
known for the majority.

• To support the lab-based risk assessment and subse-
quent regulation of use, prioritize chemicals for exper-
imental design and hypothesis generation, efficient and
systematic tools that can evaluate the chemical-effect
association on a large scale are required, but are not
available so far.

• We present the ready-to-use deep learning application
deepFPlearn that predicts the association between the
chemical’s molecular structure and the observed effect
on the gene/pathway level.

• We solved the discrepancy between large feature space
describing the molecular structure and the low amount
of labeled training data with a pre-training strategy for
feature compression on the chemical inventory.

• We confirmed the good performance and high prediction
quality of deepFPlearn with benchmarking and experi-
mentally validated datasets.

Supplementary data
Supplementary data are available at Briefings in Bioinfor-
matics online.

Availability of source code and data
The source code is available in a git repository at github:
https://github.com/yigbt/deepFPlearn under the terms of
the UFZ license, which is based on GNU General Pub-
lic License as published by the Free Software Founda-
tion version 3 or later. We refer to this repository for
installation and usage instructions. For ease of use we
also provide Docker and Singularity containers, which
is accessible via this repository. These containers also
contain the data used for training the models.
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