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Abstract: The mouth is an important niche for bacterial colonization. Previous research used mouth
microbiota to predict diseases like colon cancer and inflammatory bowel disease (IBD). It is still unclear
how the sampling methodology influences microbial characterization. Our aim was to determine if
the sampling methods, e.g., cotton swab or tissue biopsy, and the age influence the oral microbial
composition of mice. Microbial DNA was extracted using a commercial kit and characterized
targeting the 16s rRNA gene from mouth swabs and tissue biopsies from 2 and 15 months old C57BL/6
male mice kept in the same SPF facility. Our results show statistical different microbial community
of the different ages, type of sampling, and the two fixed factors age x type of sample (p-value <

0.05). At the genus level, we identified that the genera Actinobacillus, Neisseria, Staphylococcus, and
Streptococcus either increase or decrease in abundance depending on sampling and age. Additionally,
the abundance of Streptococcus danieliae, Moraxella osloensis, and some unclassified Streptococcus was
affected by the sampling method. While swab and tissue biopsies both identified the common
colonizers of oral microbiota, cotton swabbing is a low-cost and practical method, validating the use
of the swab as the preferred oral sampling approach.

Keywords: oral microbiota; oral swab; oral tissue biopsy; microbial ecology; aging; sampling
methodologies

1. Introduction

Gastrointestinal microbiota has a strong relation with metabolism and the modulation of individual
health [1]. For the last decades, microbiota research has especially focused on stool and colon, the latter
being considered the niche with the highest bacterial density with estimates of 3.9 × 1013 bacterial
cells [2]. The human oral cavity is colonized by more than 700 bacterial species, making it the second
most diverse site after the colon [3]. The combination of the mucosal shredding surfaces from the
tongue, internal cheeks, and the hard tooth surfaces creates different environments for the adherence of
bacteria in the mouth [4]. Subsequently, the biofilms in the oral cavity vary in bacterial composition and
abundance, making the mouth a polymicrobial niche [5]. Several aspects can influence the composition
of the oral microbiota, as the mouth is in direct contact with the exterior. Additionally, internal
physiological factors, such as aging, could also play a role in the microecological structure [6]. During
aging, the salivary flow and composition changes, the cellular exchange modifies, and the loss of
dental pieces is frequent [7,8], being those aspects that could also influence the adherence and growth
of different bacterial species.
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For human samples, the Human Microbiome Project has specifications on how to collect oral
samples in the different environments of the human mouth [9,10]. However, mouth samples from
mouse models are broadly used to understand the behavior of the microbiota and to associate with
diseases and the effect of dietary treatments in the gut [11,12]. In mouse models, the protocols for
sampling the oral microbiota are not standardized and the reduced space in the oral cavity is difficult
for the sampling. Several forms of sample collection have been used in mouse models including cotton
swabbing, extraction of dental pieces, and tissue biopsy [13,14]. Cotton swabbing is an inexpensive
and practical method for the collection of oral microbiota without the need to cut tissues, use sedatives,
or sacrifice the animal; however, it is not clear if it is the adequate method to characterize the oral
microbiota. The aim of this study was to determine whether there is a difference in the oral microbiota
based on the sampling approaches and if the age of mice influences the bacterial composition in the
oral cavity.

2. Materials and Methods

Male C57BL/6 mice were bred in the Central Experimental Animal Husbandry (ZET) at the
University Hospital Jena, Jena, Germany. The animals were housed in groups of 8 mice in standard
820 cm2 cages (Type III 1290D Tecniplast, Varese, Italy), according to EU guidelines (100 cm2/mouse)
with access to food and water ad libitum. Mice were checked daily and the cage was changed weekly,
in the case of necessity, the cage was changed more often according to dirtiness to avoid cyclical
bias [15]. The mice were fed a standard diet with pellets from ssniff (V1534-300, 10 mm pellets,
9 kj% fat, 24 kj% protein, 67 kj% carbohydrates, for a detailed composition see: http://www.ssniff.
de/documents/01-1%20%20DE%20RM%20&%20low%20phyt.pdf, ssniff Spezialdiäten GmbH, Soest,
Germany). Resin-free granules of cottonwood were used as bedding (LASbedding PG3, B.LBPG3.10A,
granules 3–6 mm, LASvendi GmbH, Soest, Germany). The mice were subjected to strict hygienic
controls according to official standards and veterinary regulations. The hygiene status according
Federation of European Laboratory Animal Science Associations (FELASA) was recorded by regular
deductions and documented by means of health certificates by the specialized staff of ZET. This study
was carried out in strict accordance with the recommendations of the European Commission on the
protection of animals used for scientific purposes, and all procedures were performed according to the
ARRIVE guidelines [16].

Samples from three to seven healthy C57BL/6 male mice aged between 2 and 15 months, respectively,
were collected by swabbing the oral cavity and removal of tissue from the mouth immediately after
sacrifice by cervical dislocation [number of approval: twz25-2017, date of approval: 06 April 2017,
administration: animal protection at University Hospital Jena, Indication of the killing of vertebrates
for scientific purposes according to §4 (3) Animal Welfare Germany (from 18 July 2016)]. Samples
were immediately snap frozen in liquid nitrogen and stored at −80 ◦C. The total DNA was extracted
following the Trizol protocol (Trizol, Sigma Aldrich, Darmstadt, Germany) with a preliminary step of
bead beating (30 s, 5.5 m/s) in a FastPrep instrument (MP Biomedicals). DNA extracts were stored at
−20 ◦C.

Library preparation was performed by targeting the V1-V2 region of the 16S rRNA gene according
to the Illumina protocol described by Kaewtapee et al. (2017) [17] with a pre-PCR that amplified the
region of interest. The master mix was prepared using PrimeSTAR® HS DNA Polymerase kit (TaKaRa,
Beijing, China), 2 µl of DNA template, 0.2 µM of primer, and 0.5 U Taq primer star HS DNA (TaKaRa,
China) in a 25 µl volume for the pre and second PCR and 50 µl for the third.

PCR reactions were held at an initial denaturation temperature of 95 ◦C for 3 min, followed by
10 cycles for the pre and second PCR and 20 cycles for the third PCR following the protocol: 98 ◦C
denaturation for 10 s, annealing of 55 ◦C for 10 s, and an extension of 72 ◦C for 45 s with a final extension
of 72 ◦C for 2 min. Libraries were standardized and purified using SequalPrep Normalization Kit
(Invitrogen Inc., Carlsbad, CA, USA) and sequenced using 250 bp paired-end sequencing chemistry on
an Illumina MiSeq platform.

http://www.ssniff.de/documents/01-1%20%20DE%20RM%20&%20low%20phyt.pdf
http://www.ssniff.de/documents/01-1%20%20DE%20RM%20&%20low%20phyt.pdf
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Sequencing reads were processed using MOTHUR as indicated on the MiSeq SOP [18]. Quality
filtering was performed and chimeras were identified and removed by UCHIME. Sequences were
aligned against the database Silva version 132. Sequences from chloroplasts, mitochondria, archaea,
and eukaryotes were deleted before the OTU clustering at 97% identity. The cut-off for bacterial
taxonomy was followed, as described by Yarza et al. (2014) [19]. Data were submitted to the European
Nucleotide Archive under the accession number PRJEB32736. Sample reads were standardized by
total and a comparison between samples was made by creating a sample-similarity matrix using the
Bray-Curtis similarity coefficient (Primer 7) [20]. The differences between the microbial community
structure associated with the sampling method and age were identified using Permutational Analysis
of Variance (PERMANOVA). For the visual hierarchical clustering and ordination of the community
structures, a two-dimensional Principal Coordinate Analysis (PCoA) was created. To assess bacterial
diversity, Shannon’s Diversity was calculated. The similarity percentage analysis (SIMPER) was used
to identify the OTUs contributing to the observed differences in the oral microbiota sampling. The
differences in the abundance of specific OTUs between the treatments were determined with the
unpaired Welch’s t-test with a cut-off p-value < 0.05. Figures were produced using the web-based tool
MicrobiomeAnalyst [21]. Further statistical analyses were calculated using R and SPSS.

3. Results

3.1. General Microbial Composition Analysis from the Oral Bacterial Community at Different Ages Using
Cotton Swab and Tissue Biopsies

A total of 26,366 ± 13,296 sequencing reads were obtained per sample after quality filtering. Reads
were clustered into 821 Operational Taxonomic Units (OTU) that were assigned to 210 genera with 20
genera detected on average abundances higher than 0.5%. The core microbiota comprised of 153 OTUs,
which were shared between all samples regardless of the type of sampling or age of the animals
(Figure 1). Swab samples obtained from 2 months old mice had more unique OTUs than tissue biopsies
(141 vs. 97) corresponding to a sum of 28% of the total OTUs. These numbers were lower in 15 months
old animals kept in the same facility, as 25 unshared OTUs were detected in swab-samples and 41 in
tissue biopsies, which together correspond to a sum of 8% of the total OTUs.
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The two-dimensional PCoA revealed a clustering in the community similarity structure among
the different methods of sampling and age groups (Figure 2). Statistical differences were tested using
Permutational Analysis of Variance (PERMANOVA) and differences in the microbiota composition
were observed between the two age groups (p-value 0.001), sampling methods (oral swab and tissue
biopsy) (p-value 0.001), and the interaction of both factors (p-value 0.01).
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Swab sampling showed the highest average similarity between samples when compared to tissue
biopsies. In young mice swab samples were 66% similar, while similarity among 15 months old mice was
65%. Tissue average similarities were 39% in 2 months old mice and 46% in 15 months old mice, respectively.

Shannon’s diversity index [22] neither showed statistical significance regarding sampling methods
nor for the interaction between both factors. In contrast, statistical significant differences were observed
between both young and old mice (p-value 0.00), independently of the sampling type with the diversity
of microorganisms being higher in 15 months old mice than in young animals (Figure S1).

3.2. Taxonomical Bacterial Variation Related to Sampling Approaches and Aging

Firmicutes was the principal phylum detected in the 2 months old mice, while in 15 months mice,
Proteobacteria was predominant. Swab samples of 2 month old mice showed a higher abundance of
Firmicutes compared to the tissue biopsies obtained from the same mouse (49% and 33%, respectively)
(p-value 0.02). At 15 months of age, none of the bacterial phyla showed statistical differences between
both types of sampling. Phyla pattern was similar between swabs and tissues (Figure 3a).

Actinobacteria, the third most abundant phylum present in the samples, was detected in higher
abundance in tissue biopsies obtained from 2 months old mice (28%) when compared to the swab
samples obtained from the same animals (10%) (p-value 0.03) (Figure 3a).

At the family level, statistical differences were detected among the swab and tissue biopsy
samples obtained from 2 months old mice for the families Porphyromonadaceae, Propionibacteriaceae,
Ruminococcaceae, and Streptococcaceae (p-value ≤ 0.05). In samples obtained from 15 months old
animals, the abundance of the families Corynebacteriaceae and Flavobacteriaceae was significantly
different (p-value ≤ 0.05) (Figure 3b).
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months (ex. 2_tissue: Tissue biopsies of 2 months old mice). (a) The average relative abundance of
each phyla (a) and family (b) detected in each sample of cotton swab and tissue biopsies from each age
group are shown alongside each other. The average (Av.) of each set of samples is shown in the last
column of each group.

When comparing swab samples of young and old mice differences in the family Actinomycetaceae
(p-value≤ 0.05) were found, while the abundance of Neisseriaceae, Pasteurellaceae, and Streptococcaceae
(p-value ≤ 0.05) differed in biopsies obtained from young and old mice (Figure 3b).
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At genus level, Streptococcus was one of the most abundant groups of microorganisms in the oral
samples of young mice, however, in samples of 15 months old mice, Neisseria was detected in higher
abundance than Streptococcus (Figure 4). When comparing biopsies and swab samples obtained from 2
months old mice, we observed variances in the relative abundance of Propionibacterium, Streptococcus,
Clostridium XlVa, and an unclassified member of Ruminococcaceae (p-value ≤ 0.05). In contrast, in
samples derived from 15 month old animals, Corynebacterium (p-value ≤ 0.05) was the only genus that
showed statistical differences being more abundant in the swabs than in the biopsies (Figure 4a).Microorganisms 2019, 7, 283 7 of 11 
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The average (Av.) of each set of samples is shown in the last column of each group. (b) Box plots
representing the average abundance of the genera Neisseria and Streptococcus, each dot represents one
sample. For the means, standard deviation of the mean (SEM), variance, and 95% confidence intervals
of each genus go to Table S1 (Supplementary Materials).

The comparison of the cotton swab microbial community from the two different mouse age
groups showed a statistical difference in the common mouth colonizers Actinobacillus, Actinomyces,
Aggregatibacter, Neisseria, Staphylococcus, Streptococcus, and an unclassified member of Clostridiales
(p-value ≤ 0.05) (Figure 4). The microbial community determined in tissue biopsies samples revealed
more stability across different ages; however, Propionibacterium, Streptococcus, and an unclassified
member of Ruminococcaceae revealed statistical significance between the sampling groups at 2 months
of age (p-value ≤ 0.05) (Table 1). At 15 months of age, Neisseria and an unclassified member of the
Porphyromonadaceae family showed statistically different abundances.

Table 1. Genera showing differences between sampling types.

Phyla Genera
Cotton Swab Tissue Biopsy

2 Months 15 Months 2 Months 15 Months p-Value
Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Actinobacteria Propionibacterium 5.1 * −0.3–34.2 7.8 1.9–13.7 19.8 * 5.2–34.3 4.4 1.9–13.7 0.05
Firmicutes Streptococcus 45.9 * 38.3–53.5 14.8 5.6–23.9 17.1 * 4–30 10.9 5.6–23.9 0.00
Firmicutes unc_Ruminococcaceae 0.3 * 0.4–1.4 0.2 0.1–0.3 0.9 * 0–0–6 0.2 0.1–0.4 0.02
Proteobacteria Neisseria 2.1 −0.3–4–6 43.3 * 29.1–57.5 2.7 −3.3–8.7 20.2 * 29.1–57.5 0.03
Bacteroidetes unc_Porphyromonadaceae 0.6 0.03–1.3 0.3 * −0.03–0.7 2.6 0.1–5.2 2.9 * −0.03–0.7 0.05

* Compared samples with statistical difference.

At the species level, several bacteria showing statistical difference between cotton swab and tissue
biopsies could not yet be assigned to a specific species and therefore remained named as unclassified
bacteria. In 2 month old mice, Cutibacterium acnes was detected in higher abundance in the tissue
biopsies (19.7%) in comparison to swab samples (5%), while Streptococcus danieliae was more abundant
in swab (34%) than in the tissue samples (8.8%) (p-value ≤ 0.05) (Figure 5.) Both of these species
contributed to the dissimilarity observed between the two age groups. In 2 month old mice, several
low abundant unclassified bacteria belonging to Streptococcus had statistical differences compared
to the older 15 month old mice. Likewise, other low abundant species followed the same pattern:
Erysipelotrichaceae bacterium, Moraxella osloensis, and Streptococcus henryi (p-value ≤ 0.05).
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4. Discussion

This study demonstrated that different oral sampling approaches influence the resultant
composition of the microbiota present in the oral cavity. In the present study, we showed that
oral swabs and tissue biopsies differed regarding their microbial ecology. Our findings point out that
aging impacts the oral microbiota by modifying the composition and diversity of the oral niche. This
research is subjected to the sample size limitations, however we could identify statistical differences
in the microbial communities for different sampling methodologies that were possibly related to the
aggregated microbial community of the diverse mice oral microenvironments. Whereas the oral swab
could collect bacteria present in higher abundances in the saliva, tongue, and shedding tissue surfaces,
biopsies could be a better screening of the bacteria attached to the oral mucosal areas and thus in closer
contact with the host. The overall diversity of the oral cavity samples from 15 months old mice was
higher than the diversity of younger animals. Generally, higher microbial diversity is related to a
good health status [23]. In line with our findings in the younger mice, in humans, the gut bacterial
diversity of newborns remains low and increases with age exponentially during the first three years
and continues to increase until adulthood at a lower rate, yet in old age individuals the microbial
diversity tends to decrease [24,25]. In this study, we also hypothesized that several intraoral conditions
such as salivary flow, lip, or cheek movement and chewing forces could have an impact in the microbial
ecology composition [26]. Such factors are influenced by the changes occurring during aging, thus
inducing shifts in the bacterial community as at 15 months of age. C57BL/6 mice can be considered
between middle and old age at 15 months of life as at this age, this strain has already develop some
senescent changes [27]. However, in other mice strains at 15 months, they are considered old because
of the behavioral and physical changes that can be detected [28,29].

The higher abundance of Streptococcus found in the swab samples obtained from 2 month old
mice could result from adhesins present in the Streptococci bacteria, which interact with salivary
agglutinins that bind bacteria to saliva-coated surfaces and influence the formation of biofilms [30].
The establishment of polymicrobial biofilms starts in the oral cavity from the first days of life [31]
when different bacteria colonize mucosal tissue, teeth, tongue, and anaerobic pockets. In human
samples, these biofilms have shown to be niche dependent, heterogeneous, and diverge across the
ages [32]. The biofilm formation depends on several factors such as co-adhesion, pH, oxygen, and
nutrients. Most of the significant bacterial differences between the biopsy and the swab samples were
common oral colonizers, implying that the biofilm composition diverges in the oral cavity niches of
this mouse model. We consider that the differences observed between the oral sampling approaches of
the microbiota could be associated with the attached bacteria in the tissue biopsies.

Similar to findings in humans, we revealed high inter-individual differences in several usual mouth
colonizers, such as Streptococcus and Neisseria [33], the last one identified as part of the core microbiota
of the dental plaque and saliva [32]. Those differences were not only inter-individual, but also
between the sampling types. One of the advantages of mice models is that lifestyle, diet, and personal
environment are factors without weight in the results when compared to human studies. Therefore,
we can conclude that age and sampling procedures are elements that influence the identification
and quantification of the oral bacterial communities in mice models and those are factors that could
also impact the human oral microbial niches. As we found clear differences related to the sampling
approaches and the age effect on oral microbiota, further research is required to understand how the
bacterial ecology in the mouth fluctuates through the aging process and to establish a protocol that can
be comparable between research groups.

5. Conclusions

This study suggests that the sampling method is a factor to consider when determining bacterial
abundances and diversity in the oral cavity. Indeed, we showed that in oral swab samples, bacterial
abundances and diversity differ from those found in biopsies of the oral tissue. As the oral cavity
in mice and human is colonized with biofilms, oral swabs could depict the overall composition of
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the oral niches, while the tissue biopsies could be representative of the soft tissue. Nevertheless, as
a similar bacterial composition was found in the cotton swab and the biopsies, we consider it as
adequate to use an oral cotton swab for sampling in order to assess the microbiota of the oral cavity
as it is a cost-effective and practical approach to collect bacteria from the different oral microbial
microenvironments in mice models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/7/9/283/s1,
Figure S1: Alpha diversity calculated by Shannon’s. Table S1. Descriptive statistics from the bacterial genera
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