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Previously,  we  demonstrated  the sensitivity  of  RPTEC/TERT1  cells,  an  immortalized  human
renal proximal  tubule  epithelial  cell  line,  to two  common  environmental  carcinogens,  cad-
mium (Cd)  and benzo[a]pyrene  (B[a]P).  Here,  we measured  BPDE-DNA  adducts  using  a
competitive  ELISA  method  after  cells  were  exposed  to 0.01,  0.1, and  1 �M B[a]P  to  deter-
mine  if  these  cells,  which  appear  metabolically  competent,  produce  BPDE  metabolites  that
react with  DNA.  BPDE-DNA  adducts  were  most  significantly  elevated  at 1  �M  B[a]P  after  18
and 24  h with  36.34  ±  9.14 (n = 3) and  59.75  ±  17.03  (n = 3) adducts/108 nucleotides  respec-
tively.  For  mixture  studies,  cells  were  exposed  to  a non-cytotoxic  concentration  of  Cd,  1  �M,
for 24  h  and  subsequently  exposed  to concentrations  of B[a]P  for 24  h. Under  these  condi-
tions,  adducts  detected  at 1  �M B[a]P  after  24  h were  significantly  reduced,  17.28  ±  1.30
(n  =  3)  adducts/108 nucleotides,  in  comparison  to  the  same  concentration  at previous  time
points without  Cd pre-treatment.  We  explored  the  NRF2  antioxidant  pathway  and  total
glutathione  levels  in  cells  as possible  mechanisms  reducing  adduct  formation  under  co-
exposure.  Results  showed  a significant  increase  in the  expression  of NRF2-responsive
genes,  GCLC,  HMOX1,  NQO1,  after  1 �M Cd  × 1 �M B[a]P  co-exposure.  Additionally,  total
glutathione  levels  were  significantly  increased  in  cells  exposed  to  1 �M Cd  alone  and  1  �M

Cd × 1 �M B[a]P.  Together,  these  results  suggest  that  Cd may  antagonize  the  formation
of  BPDE-DNA  adducts  in  the RPTEC/TERT1  cell line under  these  conditions.  We  hypothe-
size  that  this  occurs  through  priming  of  the antioxidant  response  pathway  resulting  in  an
increased  capacity  to detoxify  BPDE  prior  to BPDE-DNA  adduct  formation.
© 2014  The  Authors.  Published  by  Elsevier  Ireland  Ltd. This  is  an  open  access  article  under
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1. Introduction

Over 90% of kidney cancers originate in the renal

proximal tubule epithelial cells and are classified as renal
cell  carcinoma (RCC). However, only about 2% of kidney
cancer cases can be attributed to a genetic predisposition
[1,2]. The remaining cases occur in otherwise healthy
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individuals with no prior familial history [3]. Substantial
evidence of environmental risk factors contributing to
the  development of RCC suggests that further scrutiny
of  human mutagens and carcinogens on the cellular and
molecular level is warranted [4,5].

Exposure to polycyclic aromatic hydrocarbons (PAHs)
has  been associated with an elevated risk of many can-
cers  including skin, lung, bladder, liver, and stomach [6].
PAHs  are formed as byproducts of incomplete combustion
and are ubiquitous in the environment. Major routes of
exposure include inhalation and ingestion, which can result
from  cigarette smoking, consumption of grilled or contami-
nated  foods, and atmospheric pollution associated with the
burning  of fossil fuels [7]. Increased consumption of char-
grilled  meats has been shown to directly correlate with
elevated PAH exposure and risk of RCC [8,9]. Additional
factors associated with the development of RCC include
obesity, smoking, and hypertension [5,10,11].

The ability of cells to repair bulky PAH-DNA adducts
may  be altered by the presence of environmental con-
taminants such as cadmium (Cd). Cd has been shown to
substitute for zinc ion co-factors in many DNA repair pro-
teins  and enzymes specifically responsible for recognizing
and repairing DNA adducts [12]. Cd, a heavy metal and
known nephrotoxicant, is present in the environment in
food,  cigarettes, and contaminated water runoff. Human
exposure to Cd occurs primarily through inhalation of fine
particulates (i.e. tobacco smoke) and consumption of foods
such  as rice, cereal, and mollusks [13]. Cd accumulates in
the  liver, kidneys, and bone and is suspected to promote
cancers in these organs as well as in the lungs. Cd lacks
strong mutagenic properties but may  act as a co-carcinogen
in the body by inhibiting DNA damage repair processes and
increasing  oxidative stress in cells [14,15].

Because individuals are rarely exposed to single-
chemical agents or carcinogens in the environment, it is
important to study these compounds as humans might
encounter them on a daily basis. Exposure to chemical
mixtures can result in toxicological outcomes that substan-
tially  differ from the expected effects of each compound
alone. Toxicants in mixtures may  act through similar or
distinctly different mechanisms of action. Chemicals and
compounds can act antagonistically, additively, synergisti-
cally,  or one chemical may  potentiate the effects of another
[16].  Ultimately, these interactions may  substantially alter
toxicity  to different and possibly unexpected degrees. For
example,  in vitro studies have shown that exposure to
binary  combinations of PAHs including benzo[a]pyrene
(B[a]P) and benzo[b]fluoranthene (B[b]F) results in a sig-
nificant  increase in the formation of DNA adducts than
exposure to B[a]P alone. However, exposure to both B[a]P
and  benzo[k]fluoranthene (B[k]F), a similarly structured
PAH, results in a significant reduction in the formation of
DNA  adducts than exposure to B[a]P alone [17–19]. The
opposing results that occur even after exposure to com-
pounds of the same toxicant class emphasize the need for
studies  investigating effects elicited after exposure to mix-

tures  of toxicants from similar and different classes.

In  order to study the mechanisms of mixture expo-
sure, which may  promote RCC, we utilized an immortalized
human renal cell line, RPTEC/TERT1. The RPTEC/TERT1 cell
orts 1 (2014) 391–400

line  was derived from the renal proximal tubule epithe-
lial  cells (RPTEC) of a normal, healthy male donor. These
cells  were immortalized with the catalytic subunit of the
human  telomerase reverse transcriptase enzyme (TERT1)
[20].  Previously, we determined that RPTEC/TERT1 cells
exhibit  sensitivity and compound-specific responses to
B[a]P  and Cd treatment [21]. Our results were consistent
with canonical biological responses to both environmen-
tal toxicants and demonstrate metabolic competency of
the  RPTEC/TERT1 cell line. To test our hypothesis that
Cd  may  alter formation of adducts after B[a]P exposure,
we  have explored concentration-dependent formation of
BPDE-DNA  adducts through cellular bioactivation of B[a]P.
We  examined the persistence of those adducts under
conditions of pre-treatment with Cd. We  intended to deter-
mine  the effects of Cd on the persistence of BPDE-DNA
adducts as a function of time, co-exposure, and oxidative
stress.

We  hypothesize that exposure to a binary combination
of the environmental carcinogens, Cd, a heavy metal, and
B[a]P,  a representative PAH, acts to alter DNA adduct for-
mation  in comparison to levels found after B[a]P exposure
alone. As Cd is known to inhibit the recognition and/or
repair of PAH-DNA adducts, it is plausible to find persis-
tence of adducts under conditions of co-exposure [22].
Alternatively, co-exposure may  result in an antagonistic
response leading to the formation of fewer DNA adducts
through increased detoxification or inhibition of bioacti-
vation. However, our previous work in the RPTEC/TERT1
cell line suggests that the inhibition of bioactivation is
unlikely  [21]. The interaction of chronic, low level exposure
to  both Cd and PAHs over a lifetime may  provide support
for  environmental contributions to the development of RCC
in  healthy individuals.

2.  Materials and methods

2.1.  Reagents

2.1.1. Chemicals
All  chemicals were purchased from Sigma–Aldrich (St.

Louis,  MO)  unless noted otherwise. Cadmium chloride
(CdCl2, 202908) was  dissolved in fresh complete medium
and  delivered at 0.1% of the final culture volume to yield the
appropriate target concentrations. Benzo[a]pyrene (B[a]P,
B1760)  was  dissolved in dimethyl sulfoxide (DMSO, D8418)
and  delivered at 0.05% of the final culture volume to yield
the  appropriate target concentrations. B[a]P preparations
and exposures were carried out under low light conditions.

2.1.2. DNA isolation reagents
Enzymes  used for DNA isolation including RNaseT1,

mRNAse A, and proteinase K were purchased from
Sigma–Aldrich. Tris-buffered saturated phenol, phe-
nol:chloroform:isoamyl (25:24:1), and 5 PRIME Phase
Lock  Gel, light, 15 mL  tubes for DNA isolation were
purchased from Fisher Scientific (Pittsburg, PA).
2.1.3. BPDE-DNA adduct ELISA reagents
Greiner Bio-One microplates (high-binding, white)

were purchased from Fisher Scientific. I-Block casein-based
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Table 1
Primer-probe sets used for RPTEC/TERT1 gene expression, Applied
Biosystems® TaqMan® gene expression assays.

Gene ID Gene function Gene location Assay ID

GCLC Antioxidant 6p12 Hs00155249 m1
HMOX1 Antioxidant 22q13.1 Hs01110250 m1
B.R. Simon et al. / Toxico

locking solution and CPD-Star Substrate with Emerald-
I  Enhancer were purchased from Life TechnologiesTM

Grand Island, NY). Polyclonal BPDE-DNA antiserum was
indly  provided by Dr. Regina Santella. Biotin-labeled
oat anti-rabbit secondary antibody (Cat #111-065-045)
as purchased from Jackson ImmunoResearch (West
rove, PA). Streptavidin-alkaline phosphatase conjugate

Cat  #21324) was a product of Pierce and purchased
rom Fisher Scientific. Standard BPDE-DNA adducts were
repared from highly purified calf thymus DNA (Sigma,
t.  Louis, MO)  and benzo[a]pyrene-r-7,t-8-dihydrodiol-
-9,10-epoxide(),(anti) from MRIGLOBAL Chemical Car-
inogen  Repository (Kansas City, MO)  according to the
rocedures described by Jennette et al. [23].

.2. Cell culture

RPTEC/TERT1 cells and culture medium were purchased
rom Evercyte Laboratories (Vienna, Austria), and grown
ccording to Evercyte’s instructions. Cells were cultured
t  37 ◦C in a humidified atmosphere containing 5% CO2.
PTEC/TERT1 cells were passaged approximately once or
wice  per week and subcultured at a 1:2 or 1:3 ratio. Cell
ulture  vessels were purchased from Fisher Scientific and
ellTreat® Scientific Products (Shirley, MA)  and were tissue
ulture  treated to promote adherent cell growth.

.3. Cell exposure

Cd  was dissolved in fresh complete medium and deliv-
red  at 0.1% of final volume to give appropriate dose ranges.
[a]P  was dissolved in DMSO and delivered at 0.05% final
olume  to give appropriate concentration ranges. B[a]P
xposures were conducted under low light conditions.
egardless of exposure format, final volume percentage
f each chemical was maintained. For co-exposure exper-
ments,  1 �M Cd was used to pre-treat cells for 24 h
efore B[a]P exposure. The Cd pre-treatment concentra-
ion was determined based on previous characterization of
he  cell line’s responses to various Cd concentrations. One

icromolar Cd was the highest concentration tested that
howed  no significant cytotoxicity at 24-h, 48-h, or 1-week
ost-exposure while demonstrating significantly increased
ellular  responses at the level of the gene and protein [21].

For  DNA isolation, RPTEC/TERT1 cells were treated at
onfluence in T75 cm2 tissue culture treated flasks. After
xposure time points, cells were washed twice with cold
×  PBS, collected by centrifugation at 4 ◦C, and stored at
80 ◦C until DNA was isolated.

.4.  Gene expression

RPTEC/TERT1 cells were grown to confluence in 60 mm
ishes  and exposed to Cd or B[a]P as described above.
ells were exposed in triplicate for each concentration
nd time point examined. Total RNA was isolated from
ells  after appropriate time points using the QIAshred-

er (QIAGEN, 79656, Valencia, CA) and RNeasy extraction
it  (QIAGEN, 74136) following the manufacturer’s instruc-
ion.  RNA concentration and purity were assessed using

 Thermo Scientific Nanodrop 2000c spectrophotometer.
NQO1 Quinone reduction
antioxidant

16q22.1 Hs00168547 m1

ACTB Reference 7p22.1 Hs99999903 m1

RNA samples were diluted to 0.5 �g/�L in nuclease-free
water.

Two microliters of each RNA sample were used for cDNA
synthesis reactions to deliver 1 �g template in a 20 �L total
reaction volume. cDNA was synthesized using iScript cDNA
synthesis  (BioRad, 170-8891, Hercules, CA) protocol as fol-
lows:  5 min  at 25 ◦C, 30 min  at 42 ◦C, and 5 min  at 85 ◦C. RNA
templates and cDNA were stored at −20 ◦C until use. Gene
expression was determined using primer-probe sets from
Applied  Biosystems® TaqMan® Gene Expression Assays.
Actin, beta (ACTB) was  used as a reference gene. Primers
used are listed in Table 1. The thermal cycling protocol
followed the manufacturer’s instructions: 50 ◦C for 2 min
and  95 ◦C for 10 min  followed by 40 cycles of 95 ◦C for 15 s
and  60 ◦C for 1 min. Reactions were conducted in 20 �L vol-
umes  with each sample being run in duplicate. All reactions
were  carried out using a BioRad C1000TM thermal cycler
equipped with a CFX96TM Real-Time PCR Detection System.

2.5.  DNA isolation

Genomic DNA was isolated with a standard phenol chlo-
roform  extraction. Briefly, cell pellets were thawed and
incubated with 1× TE buffer, RNaseT1, mRNAse A, and SDS
for  45 min  at 37 ◦C. Pellets were incubated with proteinase
K  for 60 min  at 60 ◦C and then overnight at 37 ◦C. Depro-
teinized DNA was  extracted using 5 PRIME Phase Lock
Gel  light, 15 mL,  tubes to increase yield from the aqueous
phase. Precipitated DNA was  spooled onto a glass pipette,
transferred to 70% ethanol, and collected by centrifugation
(18,000 rcf for 10 min). Ethanol was decanted and DNA was
allowed  to dry completely before reconstituting in ster-
ile,  DNA grade water. DNA concentration and purity were
assessed using a Thermo Scientific Nanodrop 2000c spec-
trophotometer.

2.6.  BPDE-DNA adduct ELISA

BPDE-DNA adducts were measured by a competitive
ELISA method [24–26]. Briefly, 96-well white microplates
were coated by adding 50 pg BPDE-substituted DNA in PBS
to  each microwell. The DNA was  sonicated and denatured
in  a boiling water bath for 5 min  before coating. Plates were
allowed  to dry overnight and washed twelve times the
next  day with washing buffer (1× PBS/0.05%Tween 20). All
subsequent wash steps were also performed twelve times.
Plates  were treated with I-Block (200 �L/well) for 90 min

at  37 ◦C to prevent non-specific binding. Standard curves
and  samples were prepared by mixing and incubating with
the  previously characterized polyclonal BPDE-DNA antis-
era  at 1:3,000,000 in I-Block buffer [25]. A 5-point standard
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Table 2
BPDE-DNA adducts formed after B[a]P and Cd exposure in RPTEC/TERT1
cells detected by ELISA.

Exposure duration Treatment Average adducts/108

nucleotides ± SEM, n = 3

18 h B[a]P

DMSO 0.0 ± 0.15
0.01  �M B[a]P 0.58 ± 0.37
0.1  �M B[a]P 9.92 ± 2.66
1  �M B[a]P 36.34 ± 9.14

24  h B[a]P

DMSO 0.0 ± 0.21
0.01  �M B[a]P 0.0 ± 0.82
0.1  �M B[a]P 5.72 ± 1.43
1  �M B[a]P 59.75 ± 17.03

DMSO  0.0 ± 0.16
394 B.R. Simon et al. / Toxico

curve was used, in triplicate, to give a range of 0.312–10 fM
adducts/well. Unknown samples were assessed at 10 �g
DNA  per well in triplicate after sonication and denatur-
ation. The plate was washed after incubation with primary
antibody, and a biotin-labeled goat anti-rabbit secondary
antibody (1:2500 in I-Block) was incubated with in each
well  for 1 h. After an additional wash, the plate was
incubated for 1 h with streptavidin-alkaline phosphatase
conjugate (1:40,000 in I-Block). After one more wash step,
the  CPD-Star Substrate with Emerald-II Enhancer was used
to  produce and amplify signal. Luminescence was read with
a  Tecan Infinite® 200 PRO multimode reader (Tecan, San
Jose,  CA).

Adducts were calculated for unknown samples based
on  percent inhibition of the standard curve and expressed
as  average number of adducts per 108 nucleotides. Non-
specific background signal detected in vehicle control
groups was subtracted.

2.7.  Total glutathione assay

After determined exposure time points, cells were
trypsinized, collected, and washed twice in 1× cold PBS.
Total  glutathione levels in cells were determined using
OxiSelectTM Total Glutathione (GSSG/GSH) Assay Kit (Cell
Biolabs, Inc., San Diego, CA) according to the manufacturer’s
instructions. Cell isolates were diluted at 1:100 for use
within the linear range of the assay.

2.8. Statistical analysis

One-  and two-way ANOVAs were performed using the
GraphPad Prism analytical software, version 6.0 (San Diego,
CA).  Data total glutathione assays were analyzed using a
one-way  ANOVA and Dunnett’s multiple comparison tests.
Data  for gene expression were analyzed using a two-way
ANOVA and Tukey’s post hoc test. An  ̨ of 0.05 was  used as
the  criteria for determining significance.

General linear models were used to test for differences
among treatments, treatment groups, and time points
for  the BPDE-DNA adduct ELISA. Where the initial GLM
analysis of variance (GLM-ANOVA) indicated a significant
difference, post hoc mean comparisons were conducted
using a Tukey correction. Statistical testing was conducted
using IBM SPSS Statistics version 19 software (Armonk, NY).
An   ̨ of 0.05 was used as the criteria for determining sig-
nificance.

3.  Results

3.1. BPDE-DNA adducts are formed and detected after
exposure to B[a]P but altered after co-exposure to B[a]P
and  Cd

After 18 h of exposure to B[a]P alone, BPDE-DNA
adducts were detected in RPTEC/TERT1 DNA samples.
Although there appeared to be a dose-dependent increase

in  adduct formation after 18 h, exposure to 1 �M B[a]P
was significantly increased over DMSO vehicle control or
lower  concentrations, 0.01 and 0.1 �M B[a]P. After 24 h
of  exposure to B[a]P alone, adduct formation was most
24  h 1 �M
Cd × 24 h B[a]P

0.01  �M B[a]P 1.18 ± 0.14
0.1  �M B[a]P 7.88 ± 1.33
1  �M B[a]P 17.28 ± 1.30

significantly increased at 1 �M B[a]P in comparison to
DMSO  vehicle control, 0.01 and 0.1 �M B[a]P at both 18
and  24 h post-exposure. Fewer adducts were detected
after 24 h of exposure to 0.1 �M B[a]P in comparison to
the  same concentration at 18 h although the difference
was  not statistically significant (Fig. 1, Table 2).

In order to assess the ability of Cd to alter adduct
formation and persistence, adducts were analyzed under
conditions of Cd and B[a]P co-exposure. Cells were exposed
to  Cd alone for 18 and 24 h to verify the absence of adducts.
There were no BPDE-DNA adducts found above background
at  either time point after Cd exposure (data not shown).
For  co-exposure, cells were exposed to a non-cytotoxic
concentration of Cd, 1 �M,  for 24 h. Cytotoxicity of each
compound was  based on previous work [21]. After 24 h,
cells  were exposed to DMSO vehicle control or appropri-
ate concentrations of B[a]P for 24 h. Adducts detected in
groups  exposed to lower concentrations of B[a]P remained
relatively unchanged between treatment groups. However,
cells  exposed to 1 �M Cd × 1 �M B[a]P demonstrated sig-
nificantly reduced levels of adducts in comparison to 1 �M
B[a]P  alone at either time point (Fig. 1, Table 2).

3.2. Exposure to Cd increases expression of NRF2
responsive genes

Gene  expression changes of the NRF2 responsive
genes, glutamate-cysteine ligase, catalytic subunit (GCLC),
heme  oxygenase 1 (HMOX1), and NAD(P)H dehydrogenase,
quinone 1 (NQO1), were examined after exposure to deter-
mine  if Cd alone or Cd and B[a]P together appeared to
induce an antioxidant response that may  increase BPDE
detoxification and reduce BPDE-DNA adduct formation
under co-exposure conditions at 1 �M Cd × 1 �M B[a]P.
While GCLC was detected, there was  no change among
treatment groups after a 24-h exposure to Cd (Fig. 2A). After
24  h of exposure to 0.1, 1, and 10 �M Cd, there was  nearly
a  3-fold increase in HMOX1 at 10 �M Cd in comparison to
untreated cells and all other concentrations (Fig. 2B). Addi-
tionally,  all concentrations of Cd showed approximately

a 2–3-fold increase in NQO1 over that of untreated cells
(Fig.  2C).

Twenty-four hours of B[a]P exposure did not increase
gene expression of GCLC, HMOX1, or NQO1 (Fig. 3A–C). All
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 �M Cd before a 24 h exposure to concentrations of B[a]P showed a sign
ars  represent average adducts/108 nucleotides (n = 3) ± SEM. *Significan
[a]P  at 24 h, p < 0.01.

enes were detected at basal levels by real time PCR. How-
ver,  co-exposure significantly increased gene expression
f  all three genes at the highest concentration of 1 �M
d  × 1 �M B[a]P over vehicle control and other co-exposure
roups. GCLC gene expression was increased by approx-
mately 2-fold, HMOX1 gene expression was increased
y approximately 3-fold, and NQO1 gene expression was

ncreased by approximately 4-fold (Fig. 4A–C). This sug-
ests  that co-exposure, under these conditions, triggers

 stronger transcriptional antioxidant response than Cd
lone.

.3.  Cd and Cd × B[a]P exposure increase total
lutathione levels in RPTEC/TERT1 cells

Total glutathione was measured after Cd exposure for
4  h and after co-exposure with B[a]P. Total glutathione

evels were approximately double in cells treated with 1
nd  10 �M Cd in comparison to untreated groups after 24 h.
ells  treated with 0.1 �M Cd exhibited a slight increase

n total glutathione, but this increase was not statisti-
ally significant. Total glutathione was also significantly
ncreased in cells pre-treated with 1 �M Cd for 24 h fol-
owed by exposure to 0.01, 0.1, and 1 �M B[a]P for 24 h
Fig.  5). This supports our hypothesis that Cd induces a
iochemical antioxidant response, and co-exposure to Cd
nd  B[a]P results in a substantial increase in reduced glu-
athione  (GSH) levels possibly greater than those induced
y  Cd alone.

.  Discussion
The multifaceted effects that have environmental
ixtures on the human body have been notoriously prob-

ematic  to resolve. For over a decade, scientists have faced
ecrease in adducts detected at 1 �M B[a]P in comparison to B[a]P alone.
nce from 1 �M B[a]P at 18 h, p < 0.01, +Significant difference from 1 �M

exceedingly difficult challenges in chemical toxicological
research when studying chemical mixtures designed to
address  gaps in our knowledge [27]. However, the impor-
tance  of pursuing chemical mixture experiments continues
to  increase with the rise in diseases that have no clear
genetic predisposition. Assessments by the American Can-
cer  Society credit heritable mutations in the development
of only 5% of all cancers [3]. Likewise, current evidence
suggests that an overwhelming 90% of human disease bur-
den,  especially degenerative conditions, can be attributed
to  environmental factors such as exposure, lifestyle, and
diet  [28–31]. Humans encounter mixtures of chemical
compounds daily and throughout their lives; however, rel-
atively  little research to date has aimed to address the
differential effects that mixtures have on molecular and
mechanistic endpoints in comparison to studies focused
on  individual chemicals and compounds. A recent review
on  PAH mixtures toxicology illustrates these complexities
but also provides strong rationale for approaching these
issues  [32]. Biological processes and molecular factors
that counteract the development of cancer (e.g. increased
antioxidant or detoxification capacity) must be studied in
the  context of exposure to these mixtures. Environmental
toxicants that interfere with efficient processing and accu-
rate  repair of DNA adducts may  increase the mutagenicity
of other toxicants by decreasing DNA repair capacity. In
this  context, such environmental toxicants function as co-
carcinogens.

In  an effort to characterize the effects of a simple
binary mixture on renal proximal tubule cells, we have
examined cellular responses of the RPTEC/TERT1 immor-

talized cell line to B[a]P and Cd, two  distinctly different
carcinogens. Our previous studies with this cell line have
demonstrated its sensitivity to both B[a]P and Cd as well
as  compound-specific responses [21]. Here, we confirm
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Fig. 2. RPTEC/TERT1 cells respond to 24 h Cd exposure by upregulating
HMOX1 and NQO1 but not GCLC. After 24 h of treatment with Cd at vari-
ous concentrations, RPTEC/TERT1 cells showed no change in (A) GCLC at
any  concentration. There was a significant increase in gene expression at
the  highest concentration, 10 �M Cd, of (B) HMOX1 and (C) NQO1. Bars
represent mean fold expression (n = 3) ± SEM. All genes of interest were
normalized to ACTB. 0 �M, where denoted, was  set as 1. *Significant dif-
ference from 0 �M Cd, p < 0.01, #Significant difference from 10 �M Cd,
p < 0.01, and +Significant difference from 0 �M Cd, p < 0.05.
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Fig. 3. Twenty-four hours of B[a]P exposure does not induce changes in
GCLC, HMOX1, or NQO1. None significantly differ. Bars represent mean fold
expression (n = 3) ± SEM. All genes of interest were normalized to ACTB.
DMSO, where denoted, was set as 1.



B.R. Simon et al. / Toxicology Reports 1 (2014) 391–400 397

D
M

S
O

0.
01

 µ
M

0.
1 

µM
1 

µM

0

2

4

6

1µM Cd x B[a]P Concentrations

N
o

rm
a

li
z
e

d
 F

o
ld

 E
x

p
re

s
s

io
n

GCLC 

*

# # #

D
M

S
O

0.
01

 µ
M

0.
1 

µM
1

µM

0

2

4

6

1µM Cd x B[a]P Concentrations

N
o

rm
a

liz
e

d
 F

o
ld

 E
x

p
re

s
s

io
n HMOX1 

*

# # #

D
M

S
O

0.
01

µM

0.
1 

µM
1 

µM

0

2

4

6 NQO 1 

N
o

rm
a

liz
e

d
 F

o
ld

 E
x

p
re

s
s

io
n

1µM Cd x B[a]P Concentrations

*

# #
#
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GCLC,  HMOX1, and NQO1 in RPTEC/TERT1 cells. Cells were exposed to 1 �M
Cd  for 24 h followed by a 24 h exposure to B[a]P at different concentra-
tions. One micromolar Cd was previously determined to be non-cytotoxic
to RPTEC/TERT1 cells after 24 h. RPTEC/TERT1 cells demonstrated signifi-
cant upregulation of (A) GCLC, (B) HMOX1, and (C) NQO1 after exposure to
1  �M Cd × 1 �M B[a]P. Bars represent mean fold expression (n = 3) ± SEM.
All genes of interest were normalized to ACTB. DMSO, where denoted,
was set as 1. *Significant difference from DMSO, p < 0.01 and #Significant
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the metabolism of B[a]P to metabolites which form DNA
adducts under these conditions. We  detected BPDE-DNA
adducts at 18 and 24 h post-exposure to B[a]P alone. At
24  h post-exposure, there were fewer adducts detected at
intermediate concentrations, 0.01 and 0.1 �M B[a]P, than
at  18 h post-exposure. While the numbers of adducts were
not  significantly reduced, the decrease at these concentra-
tions suggests that there may  be some removal or repair of
the  initial adducts. However, the limited sensitivity of the
ELISA  method at the lower concentrations of B[a]P tested
in  these experiments makes these suggestions specula-
tive. At the highest concentration of B[a]P (1 �M)  tested
alone, we found that significantly greater adduct levels
remained at both 18- and 24-h time points. At this con-
centration of B[a]P, detoxification and repair mechanisms
may  have been unable to process the amount of B[a]P
metabolites in the examined time period. There may a
threshold effect, possibly short-term but in excess of 24 h,
in  which bioactivation exceeds detoxification and repair,
which  generates BPDE-DNA adducts at a rate greater than
the  rate at which DNA repair processes can remove them.
This  conclusion is warranted especially if B[a]P treatments
alone in this experiment do not induce an antioxidant
response, increase detoxification capacity, or increase DNA
repair  capacity. In contrast, when cells were pre-treated
with 1 �M Cd, BPDE-DNA adducts formed after 1 �M B[a]P
exposure were significantly reduced. This effect was not
observed to this degree at other concentrations of B[a]P
after  Cd pre-treatment. It is possible that CYP-mediated

biotransformation at the lower concentrations of B[a]P was
occurring  without exceeding detoxification and/or DNA
repair  capabilities. This would allow cellular mitigation of
BPDE-DNA  adducts without an increase in induction as
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supported, in part, by our previous work [21]. However, as
mentioned  previously, the sensitivity of the ELISA method
at  lower concentrations of B[a]P used in these experiments
may  not be adequate to distinguish statistically signifi-
cant  differences in BPDE-DNA adduct levels among the
treatment and co-treatment groups with adequate preci-
sion.  We  suspect that B[a]P is metabolized at the lower
concentrations, but more sensitive analytical methods are
necessary  to discriminate significant differences in adduct
formation and persistence based on treatment regimen.
We  suggest that future experiments be designed to address
such  experimental possibilities and statistical power limi-
tations.

The  reduction in adducts under co-exposure at the high-
est  concentration of B[a]P may  be a function Cd × B[a]P
priming the detoxification system through the NRF2
antioxidant pathway. These effects appear to result in
increased levels of glutathione and increased inactiva-
tion or detoxification of BPDE prior to adduct formation.
Future measurements of BPDE-DNA conjugates in conjunc-
tion  with glutathione levels should be used to confirm
this supposition. B[a]P exposure alone, under these condi-
tions,  does not appear to induce any such response. While
it  appears that Cd alone induces a significant antioxidant
response resulting in increased levels of glutathione, Cd
and  B[a]P together at the highest concentrations tested
induce an even more robust response. This response to
both  Cd and B[a]P in our experiments seems to mitigate
DNA adduction formation through enhanced detoxification
capacity. Our previous work does not support one alter-
native  explanation that Cd inhibits the formation of BDPE
through CYP feedback inhibition [21].

The binding of B[a]P to the aryl hydrocarbon receptor
increases the expression of xenobiotic response element
(XRE) genes and their encoded enzymes, which are respon-
sible  for metabolizing B[a]P to reactive intermediates
[33,34]. These reactive intermediates, along with reac-
tive  oxygen species (ROS) from heavy metals, can increase
the  transcription of antioxidant response element (ARE)
genes  through NRF2 binding [35,36]. Activation of this gene
battery  may  be responsible for metabolite detoxification.
We suspect that this process, under our experimental co-
exposure  conditions, reduced level of adducts detected at
1  �M B[a]P following 1 �M Cd pre-treatment. We  found the
expression of NRF2-targeted genes, GCLC, NQO1, HMOX1, to
be  significantly increased under experimental conditions
coinciding with the most significant reduction in BPDE-
DNA  adducts under co-exposure. Our results are similar
to  in vivo studies which have discovered that priming the
NRF2  system decreases the levels of adducts formed after
B[a]P  exposure. Nrf2 knockout mice develop more tumors
than  wild-type mice when treated with B[a]P alone. When
mice  are given a Nrf2 activator with B[a]P, wild-type mice
develop  half as many tumors. However, tumor reduction is
not  seen in Nrf2 knockout mice given a Nrf2 activator with
B[a]P  exposure [35]. In other studies including transformed
kidney cell lines from humans and rats, Cd has been shown

to  induce the NRF2 pathway through an oxidative stress
mechanism [37–39]. Future studies in the RPTEC/TERT1 cell
line  should consider the application of a NRF2 inhibitor to
mimic  in vivo Nrf2 knockout conditions and further verify
orts 1 (2014) 391–400

the  responses seen after B[a]P exposure. Several NRF2 acti-
vating  agents, both natural and synthetic, have been exam-
ined  as chemoprotectives for chronic disease and overall
cell  health. Flavonoids, for example, are naturally occurring
antioxidants found in cruciferous vegetables, apples, and
onions.  They have been shown to increase NRF2 mediated
expression of NQO1 and GST. Additionally, naturally occur-
ring  phytochemicals such as chalcones and coumarins have
been  shown to act similarly by inducing NRF2 expres-
sion of NQO1 and GST to act as anti-inflammatories and
antioxidants [40]. Similarly, bardoxolone methyl, a syn-
thetic  NRF2 activator derived from natural antioxidants,
has been successful in increasing kidney function and halt-
ing  the progression of renal injury in Phase 2 clinical trials
in  patients with chronic kidney disease [41].

Our goals were to measure responses in RPTEC/TERT1
cells to defined, non-cytotoxic mixtures of two  distinctly
different toxicants. While our results suggest an antagonis-
tic,  or perhaps a hormetic effect, on the endpoint examined,
DNA  adduct formation and persistence, further studies are
necessary  to explore these results and determine effects
on  other downstream biomarkers. Of particular interest is
the  mutagenicity of BPDE-DNA adducts under such condi-
tions  of co-exposure especially at lower, environmentally
relevant concentrations. We hypothesize that increased
detoxification capacity is responsible for the reduced lev-
els  of BPDE-DNA adducts which may  protect cells from
these  premutagenic lesions. This could be interpreted as
a  hormetic effect [42]. It is also possible that, while detox-
ification capacity is increased, subsequent DNA repair is
inhibited  by the presence of Cd. Cd inhibition of DNA repair
may  promote repair mistakes or error-prone translesion
synthesis of the remaining adducts leading to a relative
increase in mutagenicity under these conditions (for a
review,  see [43]).

Apparent  NRF2 activation and the increased total glu-
tathione levels found in Cd and co-exposure groups are
evidence of cellular oxidative stress. Cd and Cd compounds
are  Group 1 carcinogens and are known to cause cancer in
humans  [13]. DNA damage caused indirectly by Cd, such as
oxidative  insult and repression of DNA damage repair, must
be  considered in mutational investigations. Quantifying the
levels  of PAH-DNA adducts in human studies can serve as
a  biomarker for exposure as well as provide information
on an individual’s DNA repair capacity and mutagenic risk
[24].  However, it would be ideal to also measure mutation
frequency to confirm mutagenic potential as a function of
adduct  formation under controlled conditions with in vitro
and  in vivo models to better represent and understand
mechanisms by which mixtures impact humans.

We have conducted these studies in the RPTEC/TERT1
human immortalized cell line because they were derived
from  a normal, healthy individual, have proven to be
metabolically competent, and exhibit canonical responses
similar to human kidney cells when exposed to the selected
environmental toxicants. However, we  acknowledge the
difficulties in carrying out robust, controlled experimenta-

tion on chemical mixtures. Due to the complicated nature
of  mixtures toxicology, it remains challenging to extrapo-
late  the results obtained in this or any in vitro or in vivo
model to actual human risk. Nevertheless, in vitro models
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