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Abstract

Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with 

poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous 

cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor-

cMet-Akt-mTor proliferation/survival signaling and PAR-2-Gαi-NFκB inflammatory signaling. 

Matriptase was congenitally and constitutively deregulated in our prior studies, and therefore it 

was unclear if aberrant matriptase signaling supports only initiation of tumor formation or if it is 

also critical for the progression of established tumors. To determine this, we here have generated 

triple-transgenic mice with constitutive deregulation of matriptase and simultaneous inducible 

expression of the cognate matriptase inhibitor, hepatocyte growth factor inhibitor (HAI)-2. As 

expected, constitutive expression of HAI-2 suppressed the formation of matriptase-dependent 

tumors in 7,12-Dimethylbenz(a)anthracene (DMBA)-treated mouse skin. Interestingly, however, 

the induction of HAI-2 expression in already established tumors markedly impaired malignant 

progression and caused regression of individual tumors. Tumor regression correlated with reduced 

accumulation of tumor-associated inflammatory cells, likely caused by diminished expression of 

pro-tumorigenic inflammatory cytokines. The data suggest that matriptase-dependent signaling 

may be a therapeutic target for both squamous cell carcinoma chemoprevention and for the 

treatment of established tumors.
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Introduction

The membrane-anchored serine protease, matriptase, has gathered considerable attention in 

the context of human carcinogenesis, because it is deregulated with unusually high 

frequency in the epithelial compartment of human carcinomas of diverse origin, because its 

expression is negatively correlated with clinical outcome in several human carcinomas and 

certain hematopoietic malignancies, and because matriptase promotes tumorigenesis in 

several animal models (1–22). In regard to the latter, we have previously shown that low-

level, constitutive expression of matriptase in the basal keratinocyte compartment of 

transgenic mice suffices to induce spontaneous ras-independent multistage squamous cell 

carcinogenesis and to potentiate ras-dependent malignant transformation induced by 7,12-

Dimethylbenz(a)anthracene (DMBA) (22). Malignant transformation of squamous 

epithelium, including DMBA-induced transformation of mouse epidermis, is a sequential 

process that occurs through distinct stages that include hyperplasia, dysplasia, papilloma, 

carcinoma in situ, invasive carcinoma, and metastatic disease (23). The contribution of 

deregulated matriptase activity to early stage squamous cell carcinogenesis was established 

in our previous studies by the lack of any pre-malignant progression in bi-transgenic mice 

that constitutively overexpress matriptase along with the cognate matriptase inhibitor, 

hepatocyte growth factor activator inhibitor (HAI)-1 (22). However, whether the membrane-

anchored serine protease also supports late-stage progression of squamous cell 

carcinogenesis has not been determined. In this study, we therefore generated triple-

transgenic mice with constitutive deregulation of matriptase and simultaneous inducible 

expression of the potent cognate matriptase inhibitor, hepatocyte growth factor activator 

inhibitor (HAI)-2 (19, 24, 25), specifically in matriptase overexpressing cells. This inducible 

expression of HAI-2 enabled the acute blunting of matriptase activity after epidermal tumors 

were established. Using this novel experimental setup, we now show that matriptase is a 

critical promoter of late stages of squamous cell carcinoma progression and induces pro-

tumorigenic chemokine and cytokine release, and inflammatory cell accumulation into 

established tumors. Taken together, these data indicate that matriptase may be a suitable 

therapeutic target for both squamous cell carcinoma chemoprevention and for the treatment 

of established tumors.

Results and Discussion

To determine the stage-specific contribution of matriptase in squamous cell carcinogenesis, 

we generated two novel transgenic mouse strains. The first strain constitutively expressed an 

HA epitope-tagged murine Spint2 cDNA (encoding HAI-2) under control of the bovine 

keratin-5 promoter, hereafter referred to as K5-Spint2+/0 mice (figure 1a and b, data are 

shown for one established transgenic line used for all further experiments). Reverse 

transcriptase (RT)-PCR analysis of mRNA from skin extracts showed that K5-Spint2 mice 
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displayed an increase in total Spint2 mRNA (figure 1b, compare lanes 1 with 2–4 and 5–7). 

This resulted in a marked increase in total epidermal HAI-2, as determined by Western blot 

using mouse HAI-2 antibodies (figure 1d, top panel, compare lanes 1 and 3). We next 

crossed K5-Spint2+/0 mice to previously generated K5-St14+/0 mice expressing a murine 

matriptase (St14) cDNA under control of the bovine keratin-5 promoter (22) to generate bi-

transgenic K5-St14+/0; K5-Spint2+/0 mice and their single-transgenic and wildtype 

littermates (figure 1c). Western blot analysis showed that HAI-2 was well expressed in the 

bi-transgenic K5-St14+/0; K5-Spint2+/0 mice (figure 1d, top panel, compare lanes 3 and 4). 

Likewise, Western blot analysis using a matriptase antibody that recognizes the C-terminal 

serine protease domain showed that the level of total and activated epidermal matriptase was 

unaffected by the level of expression of HAI-2 (figure 1e, top panel, compare lanes 1 with 3 

and 2 with 4). Finally, double immunofluorescence analysis using antibodies against the HA 

epitope tag of the transgenic HAI-2 fusion protein and antibodies against matriptase showed 

widespread co-localization of HAI-2 with matriptase in the basal keratinocyte compartment 

(compare figure 1f with i, g with j, examples with arrows in k).

To determine if constitutive HAI-2 expression impairs matriptase-dependent squamous cell 

carcinoma initiation, we next subjected the skin of cohorts of K5-St14+/0; K5-Spint2+/0 bi-

transgenic mice and their associated K5-St14+/0, K5-Spint2+/0, and wildtype littermates to 

topical treatment with DMBA and followed tumor formation by outward inspection for 30 

weeks (figure 1l). As previously reported (22, 26, 27), DMBA treatment did not result in 

tumor formation in wildtype mice (figure 1l, red lines). In sharp contrast, all mice 

overexpressing matriptase in basal keratinocytes developed tumors within seven weeks of 

treatment (figure 1l, blue lines) in agreement with previous studies (22). As described 

previously for HAI-1 (22), the rapid tumor formation caused by matriptase overexpression 

in basal keratinocytes was significantly blunted by the simultaneous overexpression of 

HAI-2 (figure 1l, green lines). No histological differences were apparent between tumors 

arising in K5-St14+/0 single transgenic mice and K5-St14+/0; K5-Spint2+/0 bi-transgenic 

mice (figure 1m and n, data not shown). Importantly, transgenic HAI-2 remained well 

expressed in the DMBA-induced tumors and co-localized with tumor cell-expressed 

matriptase, as determined by immunofluorescence with antibodies against matriptase and the 

HA epitope (figure 1o–t, examples with arrows in t) showing that transgenic HAI-2 is co-

localized with matriptase in DMBA-induced tumors when expressed under the control of a 

keratin-5 promoter.

To investigate the role of matriptase in the later stages of squamous cell carcinoma 

progression, we next generated a second transgenic mouse line in which matriptase is 

constitutively expressed under the control of the Keratin-5 promoter and in which HAI-2 

was also expressed in a Keratin-5 promoter-dependent, but in an inducible manner. For this 

purpose, we first generated a transgenic mouse strain in which the HA-tagged Spint2 cDNA 

was expressed under the control of a tetracycline-inducible promoter (Figure 2a, herafter 

pBig-Spint2+/0 mice). Studies in HEK293 cells confirmed that HAI-2 expression from this 

promoter was efficiently induced by the tetracycline-analogue, doxycycline, specifically in 

cells expressing a tetracycline transactivator (rtTA) protein consisting of the E. coli TetR 

(tetracycline repressor) fused to the Herpes Simplex Virus VP16 transactivation domain (28) 
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(figure 2b). Southern blot using genomic DNA from wildtype and transgenic mice showed a 

successfully inserted fragment compatible in size with the Spint2 cDNA (figure 1c, lane 2). 

Consistent with this, when the pBig-Spint2+/0 mice were crossed to previously generated 

K5-TetOn+/0 mice expressing the rtTA protein under the control of the bovine keratin-5 

promoter (29), HAI-2 expression could be specifically induced in the basal keratinocyte 

compartment by administration of doxycycline-containing chow to the ensuing pBig-

Spint2+/0; K5TetOn+/0 bi-transgenic mice (figure 2d, examples with arrowheads in right 

panel).

The pBig-Spint2+/0; K5TetOn+/0 bi-transgenic mice next were crossed to K5-St14+/0 mice to 

generate triple-transgenic pBig-Spint2+/0; K5TetOn+/0; K5-St14+/0 mice. The mice were 

then subjected to DMBA treatment as described above to induce skin tumor formation 

(figure 3a). Once tumors emerged, the mice were randomly assigned to two groups. The first 

group continued to be fed normal chow, whereas the second group was fed doxycycline-

containing chow to induce HAI-2 expression. Both treatment groups then were followed for 

an additional 14 weeks, and the change in tumor multiplicity and total tumor burden was 

then enumerated (figure 3b–e). As expected, a prolific progression of tumors was observed 

in mice fed normal chow. The median increase in tumor multiplicity was 6.5 and the median 

increase in total tumor burden was 0.4 g (figure 3d and e, golden squares). As also expected, 

all tumors visible at study initiation increased in size (examples with arrows in figure 3b and 

b′). Interestingly, however, tumor progression in mice fed doxycycline-containing chow was 

markedly blunted, with an increase in median tumor multiplicity of just 1 and an increase in 

median total tumor burden of just 0.05 g (figure 3d and e, red squares). Furthermore, tumors 

visible at study initiation often displayed obvious regression, indicative of a specific 

requirement of matriptase activity for continued tumor growth (examples with arrowheads in 

figure 3c and c′). Immunofluorescence analysis of tumors from doxycycline-fed and control 

mice using antibodies against the HA epitope tag of the HAI-2 fusion protein and antibodies 

against matriptase showed induction of HAI-2 expression by doxycycline and frequent co-

localization of HAI-2 with matriptase in tumor cells (figure 1f–k, compare f with i and g 

with j). HAI-2 expression, however, was generally patchy, with some areas of the tumors 

showing intense staining (figure 3i, arrowheads) and other areas being devoid of staining. 

This non-homogeneous induction of HAI-2 provides a likely explanation for the relatively 

unimpeded growth of some tumor nodules and the occasional emergence of new tumors 

during doxycycline administration.

To mechanistically dissect how matriptase promotes the progression of established tumors, 

we performed a comparative histological analysis of tumor lesions and adjacent hyperplastic 

tissue of mice fed normal or doxycycline-containing chow (figure 4a–p). No significant 

effect of HAI-2 induction was observed on tumor cell proliferation (figure 4m). 

Interestingly, however, macrophage (examples in a–d, quantification in figure 4n), 

neutrophil (examples in figure 4e–h, quantification in figure 4o), and T lymphocyte 

infiltration (examples in figure 4i–l, quantification in 4p) into the tumors, as determined by, 

respectively, Mac1 [Cd11b], myeloperoxidase (MPO), and CD3 antibodies, were all 

significantly diminished, suggesting that HAI-2 induction impairs matriptase-dependent pro-

inflammatory signaling. To investigate this, we analyzed the levels of the key keratinocyte 
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pro-inflammatory chemokine and cytokine genes, chemokine (C-X-C motif) ligand 1 

(Cxcl1), thymic stromal lymphopoietin (Tslp), and colony stimulating factor 2 (granulocyte-

macrophage) (Csf2) in newborn K5-St14+/0; K5-Spint2+/0 bi-transgenic mice and their K5-

St14+/0, K5-Spint2+/0, and wildtype littermates (figure 4q–s). We chose to analyze the three 

chemokine/cytokine genes because they were previously shown to be induced by matriptase 

in skin tumors (26), and we chose newborn mice because the skin is histologically normal at 

birth (22) and differences in cytokine expression, therefore, are more likely to be a direct 

consequence of matriptase-mediated inflammatory signaling. All three cytokine or 

chemokine genes displayed markedly increased expression in K5-St14+/0 mice as compared 

to wildtype littermates, although significance only was obtained for Cxcl1 (figure 4q–s, blue 

squares, compare with brown squares). Interestingly, however, this matriptase-mediated 

increase in inflammatory cytokine expression was abrogated by simultaneous HAI-2 

expression (figure 4q–s, compare purple squares to brown and blue squares). Taken 

together, these data suggest that matriptase promotes the progression of established 

epidermal tumors at least in part through induction of pro-tumorigenic inflammatory 

cytokines.

Trypsin-like serine proteases with their extracellular location and well-known mechanism of 

catalysis and zymogen activation are long-established as excellent drug targets (30). The 

capacity of genetic downregulation of matriptase activity to induce stasis or regression of 

established tumors that we demonstrated in this study uncovers a critical contribution of the 

protease also to late stages of squamous cell carcinoma progression, and illustrates the 

potential utility of its pharmacological targeting for both squamous cell carcinoma 

chemoprevention and treatment of established tumors. Thus, even epidermal tumors in 

which ras is activated by topical DMBA application (22, 31–34) remained dependent on 

matriptase proteolytic activity for further expansion and often regressed in its absence. The 

exact cellular mechanism by which this tumor regression occurred remains to be established. 

We did not observe obvious differences in tumor cell proliferation, apoptosis (data not 

shown) or necrosis (data not shown), although it is conceivable that the histological 

procedures used to assess these parameters may not be sufficiently sensitive to detect subtle 

changes. Alternatively, tumor regression may be a rapid process that is not captured in the 

collected tumor samples. We previously identified two matriptase-dependent signaling 

pathways that each is essential for initiating malignant transformation of squamous 

epithelium: a) A cMet-Akt-mTor proliferation/survival signaling pathway, initiated by 

matriptase cleavage of keratinocyte cell surface-bound pro-hepatocyte growth factor, and, b) 

a Gαi-NFκB inflammatory signaling pathway, initiated by matriptase cleavage of 

keratinocyte protease-activated receptor-2 (26, 27). The marked reduction in the abundance 

of tumor-associated inflammatory cells observed after matriptase inhibition in established 

tumors would suggest that protease-activated receptor-2-dependent pro-inflammatory 

signaling represents at least one molecular component of matriptase-promotion of late stage 

carcinogenesis. However, matriptase also has been proposed to promote progression of other 

cancers through the activation of pro-macrophage-stimulating protein 1/pro-hepatocyte-like 

growth factor (35), receptor bound pro-urokinase plasminogen activator (36–38), src-

associated transmembrane protein SIMA135/CDCP1/TRASK (39), and platelet-derived 

growth factor-D (40).
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A considerable number of small molecule and macromolecular inhibitors of matriptase have 

been developed (41–48). The data presented in this paper should further stimulate ongoing 

efforts towards the development and use of inhibitors of matriptase for human cancer 

treatment.
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Figure 1. Constitutive HAI-2 expression in basal keratinocytes inhibits matriptase-dependent 
squamous cell carcinogenesis initiation
(a–k) Generation of constitutive keratin-5-Spint2 transgenic mice. (a) Schematic structure of 

the K5-Spint2 transgene with the insertion of the full-length murine Spint2 cDNA 

(NP_001076017.1) containing a synthetic DNA sequence encoding a C-terminal human 

influenza hemagglutin in (HA)-Tag (YPYDVPDYA) just prior to the stop codon inserted 

into a unique NotI site of the vector pBK5 (49). Bovine keratin-5 promoter (K5 promoter, 

yellow), rabbit β-globin exons (E, light blue), rabbit β-globin intron (red), mouse Spint2-HA 

cDNA (purple) and rabbit β-globin polyadenylation signal (PA, grey). Positions of primers 

used for mouse genotyping and RT-PCR analysis are indicated (arrows). The linearized 

transgene vector was microinjected into the male pronucleus of FVB/NJ zygotes, which then 

were implanted into pseudopregnant mice. Spint2 transgenic founders were identified by 

Southern blot hybridization of NotI-digested genomic DNA using a 32P-labeled 600 bp 

probe spanning the entire Spint2 cDNA. The Spint2 transgenic lines were maintained in the 

hemizygous state (K5-Spint2+/0) in an FVB/NJ background and were genotyped by PCR 

using genomic DNA from tail biopsies with the following primer pairs: 5′-

ATATATGCGGCCGCGCCACCATGGCGCAGCTTTGTGAGCTG-3′ and 5′-

ATATATGCGGCCGCTTAGGCATAGTCAGGCACGTCATAAGGATACAAGAC-3′. (b) 
Expression of Spint2 mRNA in epidermis of wildtype mice (lanes 2–4) and K5-Spint2+/0 

(lanes 5–7) littermates using RT-PCR analysis for Spint2 and ribosomal protein S15. No RT 
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was added to lane 1. Spint2 mRNA is increased in the epidermis of K5-Spint2+/0 transgenic 

mice. Whole skin was snap-frozen in liquid nitrogen and ground to a fine powder with 

mortar and pestle. Total RNA was prepared by extraction in Trizol reagent (Life 

Technologies, Grand Island, NY) as recommended by the manufacturer. Reverse 

transcription and PCR amplification were performed using the High-Capacity cDNA 

Reverse Transcription Kit (Life Technologies), as recommended by the manufacturer. (c) 
Mice were interbred in order to generate bi-transgenic K5-St14+/0; K5-Spint2+/0 mice and 

the associated single-transgenic and wildtype littermate controls. (d) Expression of HAI-2 in 

epidermis of wildtype (lane 1), K5-St14+/0 (lane 2), K5-Spint2+/0 (lane 3) and K5-St14+/0; 

K5-Spint2+/0 (lane 4) mice as determined by Western blot using HAI-2 antibodies (AF1107, 

R&D Systems). HAI-2 has a predicted molecular weight of 28 kDa, however, a larger 32 

kDa and a smaller 20 kDa band (arrows) is also present likely due to variable post-

translational processing of the protein. Western blot of α-tubulin is shown in the bottom 

panel as loading control. (e) Expression of matriptase zymogen (70 kDa) and activated 

matriptase (30 kDa) in epidermis of wildtype (lane 1), K5-St14+/0 (lane 2), K5-Spint2+/0 

(lane 3), and K5-St14+/0; K5-Spint2+/0 (lane 4) mice, as determined by reducing Western 

blot using anti-matriptase antibodies. Positions of matriptase zymogen and activated 

matriptase are shown. N.S. indicates non-specific band. Western blot of α-tubulin is shown 

in the bottom panel as loading control. Epidermal protein extracts were prepared by 

homogenizing the tissue in ice-cold lysis buffer (1% Triton X-100, 0.5% Sodium-

deoxycholate in phosphate buffered saline (PBS) plus Proteinase Inhibitor Cocktail (Sigma, 

St. Louis, MO) and incubated on ice for 10 min. The lysates were spun and the supernatant 

was mixed with 4× SDS sample buffer (NuPAGE, Invitrogen) containing 7% β-

mercaptoethanol and boiled for 10 min. The proteins were separated on a 4–12% BisTris 

NuPage gel and transferred to a 0.2-μm pore size PVDF membrane (Invitrogen). The 

membrane was blocked with 5% nonfat dry milk in tris-buffered saline (TBS) containing 

0.05% Tween 20 (TBS-T) for 1 h at room temperature. The membrane was probed with 

anti-matriptase antibody (AF3946, R&D Systems) diluted in 1% nonfat dry milk in TBS-T 

overnight at 4 °C. The next day, the membrane was washed three times for 5 min each in 

TBS-T and incubated for 1 h with alkaline phosphatase-conjugated secondary antibodies 

(Thermo Scientific, Waltham, MA). After three 5-min washes with TBS-T, the signal was 

developed using nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate solution 

(Pierce). (f–k) Co-expression of transgenic HAI-2 and matriptase in basal keratinocytes of 

K5-St14+/0; K5-Spint2+/0 bi-transgenic mice. Wildtype (f–h) and K5-St14+/0; K5-Spint2+/0 

(i–k) skin samples were analyzed by immunofluorescence using antibodies against 

matriptase (f and i) and HA-tag for HAI-2 (g and j). Matriptase and HAI-2 expression co-

localize in cells of the basal layer of the epidermis (merge, h and k, arrows in k). Skin 

samples from mice were fixed in 4% paraformaldehyde in PBS for 24 h, embedded into 

paraffin, and sectioned. Tissue sections were cleared with xylene-substitute, rehydrated in a 

graded series of alcohols, and boiled in Reduced pH Retrieval Buffer (Bethyl, Montgomery, 

TX) for 20 min for antigen retrieval. The sections were blocked for 1 h in PBS containing 

10% horse serum and incubated at 4°C overnight with sheep-anti matriptase (AF3946, R&D 

Systems) and rabbit-anti-HA (H6908, Sigma) for detection of transgenic HAI-2. The slides 

were washed 3 times for 5 min with 3% BSA in PBS and 0.1% Triton X-100 and incubated 

at room temperature for 1 h with Alexa fluor 594-labeled donkey anti-sheep and FITC-

Sales et al. Page 10

Oncogene. Author manuscript; available in PMC 2016 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



labeled goat-anti-rabbit antibodies (Zymed). Tissue sections then were washed 3 times for 5 

min with PBS and mounted with VectaShield Hard set Mounting Medium (Vector 

Laboratories Inc., Burlingame, CA). The samples were subjected to laser scanning confocal 

microscopy using the Leica TCS SP2 system and Zeiss LS700 system. (l) Kaplan-Meier 

analysis of tumor-free survival of littermate K5-St14+/0; K5-Spint2+/0 (n=12, green), K5-

St14+/0 (n=11, blue), K5-Spint2+/0 (n=9, purple), and wildtype (n=8, red) mice. The mice 

received 5 treatments of 250 μg/ml DMBA in acetone every 3 weeks. The mice were 

monitored for up to 30 weeks for tumor formation. P < 0.0001, K5-St14+/0 versus other 

genotypes (log-rank test, two-tailed). The experiments were performed in an Association for 

Assessment and Accreditation of Laboratory Animal Care International-accredited vivarium 

following Institutional Guidelines and standard operating procedures. (m and n) 
Representative hematoxylin and eosin stained sections of squamous cell carcinoma at low 

and high (insets) magnification in K5-St14+/0 (m) and K5-St14+/0; K5-Spint2+/0 (n) 

transgenic mice 6 weeks after initiation of DMBA treatment. The histological appearance of 

tumors is similar irrespective of genotype. Size bars = 100 μm. Skin and tumor tissues were 

fixed for 24 h in 4% paraformaldehyde in phosphate buffered saline, processed into paraffin, 

sectioned into sagittal 3-μm sections and stained with hematoxylin and eosin prior to 

histopathological assessment. (o–t) K5-St14+/0 (o–q) and K5-St14+/0; K5-Spint2+/0 (r–t) 

squamous cell carcinoma samples were analyzed by immunofluorescence using antibodies 

against matriptase (o and r) and the HA-tag for HAI-2 (p and s). Matriptase and HAI-2 

expression co-localize in tumor cells throughout the malignant tumor (merge, q and t, 

examples with arrows in q). Size bars = 50 μm. Immunofluorescence was performed as 

described above.
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Figure 2. Generation of inducible Spint2 transgenic mice
(a) Doxycycline-inducible K5-Spint2 mice (pBig-Spint2+/0). Tet-O7-Spint2-HA transgene 

consisting of full-length murine Spint2 cDNA, with a synthetic DNA sequence encoding a 

C-terminal HA-Tag, as described in figure 1, was inserted just prior to the stop codon into a 

unique NotI site of the pBig transgene expression vector placing the Spint2 cDNA (purple) 

is under the control of seven tet responsive elements (Tet-O7, green). Establishment and 

maintenance of transgenic mouse lines was performed as described in figure 1. (b) Western 

blot analysis of HAI-2 expression in HEK293 cells transfected either with doxycycline-

inducible rtTa2S-M2 tet-transactivator and pBig-Spint2-HA (lanes 1 and 2), with pBig-

Spint2-HA alone (lanes 3 and 4), with rtTa2S-M2 alone (lanes 5 and 6) or left untransfected 

(lanes 7 and 8), and then treated with doxycycline for 48 hr (lanes 2, 4, 6, and 8) or left 

untreated (lanes 1, 3, 5 and 7). HAI-2 is efficiently induced only in cells containing rtTa2S-

M2 (constitutively expressing the tetracycline transactivator) and pBig-Spint2-HA plasmids. 

HEK293 cells were grown in Dulbecco’s modified Eagles medium (DMEM) supplemented 

with 2 mML-glutamine, 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml 

streptomycin (Gibco, Life Technologies, Grand Island, NY) at 37 °C in an atmosphere of 

5% CO2. HEK293 cells were transfected using Turbofect (Thermo Scientific) according to 

the manufacturer’s instructions, and then were treated with doxycycline for 48 hr or left 

untreated. Western blot analysis was performed as described in figure 1. (c) Southern-blot 

analysis of NotI-digested genomic DNA from wildtype (lane 1) and pBig-Spint2+/0 (lane 2) 

mice using a 32P-labeled 600 bp probe spanning the entire Spint2 cDNA confirmed the 

presence of the transgene in pBig-Spint2+/0 transgenic mice (marked as “Spint2” on the 
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right). Position of molecular weight marker (kb) is indicated on the left. (d) Inducible 

expression of HAI-2 in basal keratinocytes. Skin biopsies from a 5-week-old bi-transgenic 

mouse expressing a HA-tagged Spint2 cDNA under control of a doxycycline-inducible 

promoter, and a rtTA transgene under control of a K5 promoter (K5-TetOn+/0; pBig-

Spint2+/0 mice) before (left panel) and after being fed doxycycline-containing chow (right 

panel) for 15 days. Note the patchy expression of transgenic HAI-2 (examples with 

arrowheads in right panel) in basal keratinocytes only after doxycycline-administration. Size 

bars = 20 μm. Epidermal sections were analyzed by immunofluorescence using HA 

antibodies, as described in figure 1.
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Figure 3. Matriptase promotes malignant progression subsequent to initial tumor formation
(a) K5-St14+/0; K5TetOn+/0 and pBig-HAI-2+/0 mice were interbred in order to generate 

triple transgenic mice. Dorsal skin of K5-St14+/0; K5TetOn+/0; pBig-HAI-2+/0 triple-

transgenic mice were topically treated with 250 μg/ml DMBA every three weeks. Once 

tumors were outwardly visible, the mice were randomized into two groups that were fed 

either doxycycline-containing chow (n=6) to induce HAI-2 expression in K5-expressing 

cells or were fed control chow (n=6) and observed for an additional 14 weeks (b–c′) 

Representative examples of individual DMBA-treated K5-St14+/0; K5TetOn+/0; pBig-

HAI-2+/0 triple-transgenic mice before (b and c) and 3 weeks after (b′ and c′) being fed 

either normal chow (b and b′) or fed doxycycline-containing chow (c and c′). Examples of 

progressing tumors in mouse fed normal chow is shown with arrows in b and b′. Examples 

of regressing tumors in mouse fed doxycycline-containing chow are shown with arrowheads 

in c and c′. (d and e) Change in number of tumors (d) and total tumor burden (e) in mice fed 

normal chow (golden squares) and in mice fed doxycycline-containing chow (red squares). 

Horizontal bars indicate median values ** P < 0.002 in d and P < 0.005 in e, Student’s t-test, 

two-tailed. Doxycycline was administered with standard mouse chow at a concentration of 6 

g/kg (Quality Lab Products, Baltimore, MD. (f–k) Immunofluorescent detection of 

transgenic HAI-2 using HA antibodies (f and i), matriptase immunofluorescence (g and j), 

and merged images (h and k) of tumors from DMBA-treated K5-St14+/0; K5TetOn+/0; pBig-

HAI-2+/0 triple-transgenic mice after being fed either normal chow (f–h) or doxycycline-

containing chow (i–k) for 3 weeks. Examples of cells expressing transgenic HAI-2 are 

shown with arrowheads in i. Size bars = 50 μm. Immunofluorescence was performed as 

described in the legend to figure 1.
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Figure 4. Inhibition of matriptase decreases inflammatory cell infiltration into established 
epidermal tumors
(a–p) Immunohistochemical analysis of DMBA-treated K5-St14+/0; K5TetOn+/0; pBig-

HAI-2+/0 triple-transgenic mice treated with 5 doses of 250 μg/ml DMBA and fed either 

control chow or fed doxycycline-containing chow for 14 weeks to induce HAI-2 expression 

in K5-expressing cells. (a–l) Representative immunohistochemistry sections of hyperplastic 

epithelia and SCC lesions showing macrophages (Mac1, a–d, black arrows), neutrophils 

(MPO, e–h, blue arrows) and T lymphocytes (CD3, i–l, arrowheads). Increased recruitment 

of inflammatory cells is present in SCC lesions from mice fed normal chow as compared to 

mice fed doxycycline-containing chow. Bar sizes: 100 μm. (m–p) Immunohistochemical 
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analysis of DMBA-treated K5-St14+/0; K5TetOn+/0; pBig-HAI-2+/0 triple-transgenic mice 

fed either control chow (n=3, orange and purple bars) or fed doxycycline-containing chow 

for 14 weeks (n=3, grey and red bars). Samples from hyperplastic skin adjacent to SCC 

lesions (Pre, orange and grey bars), and Squamous Cell Carcinoma (SCC, purple and red 

bars) were analyzed. (m) Enumeration of Ki-67-positive cells was used as a marker for cell 

proliferation. No statistical difference in tumor cell proliferation was observed amongst 

groups. P=N.S., SCC fed control chow versus all the other groups (Student’s t-test, two-

tailed). (n–p) Quantification of inflammatory cell infiltrates in hyperplastic skin and SCC, as 

described above, by enumeration of macrophages (n, Mac1 [Cd11b] antibodies), neutrophils 

(o, MPO antibodies) and T lymphocytes (p, CD3 antibodies). Densities of macrophages, 

neutrophils and T lymphocytes were significantly increased in tumors from mice that were 

fed normal chow when compared to mice fed doxycycline-containing chow to induce HAI-2 

expression. *P<0.0198 and **P<0.0097 in n, **P<0.0016 and ***P<0.0001 in o, *P<0.0163 

and **P<0.0048 in p, SCC fed control chow versus other groups (unpaired Student’s t-test, 

two-tailed). Skin and tumor tissues were fixed for 24 h in 4% paraformaldehyde in 

phosphate buffered saline, processed into paraffin, cut into sagittal 3-μm sections. 

Immunohistochemistry was performed using the following primary antibodies, anti-Ki-67 

(Dako, Carpinteria, CA), anti-Mac1 [Cd11b] (Abcam, Cambridge, MA), anti-

Myeloperoxidase (Abcam) and anti-CD3 (Abcam). After incubation with secondary 

antibodies, slides were developed using the diaminobenzidine substrate (Sigma-Aldrich), 

mounted and scanned using Scan Scope. (q–s) RNA was isolated from epidermis of 1-day-

old wild type (brown squares, n=7), K5-St14+/0 (blue squares, n=9), K5-Spint2+/0 (green 

squares, n=7) and K5-St14+/0; K5-Spint2+/0 (purple squares, n=5) mice. Quantification of 

Cxcl-1 (q), Tslp (r), and Csf2 (s) mRNA levels were performed by real-time PCR using 

TaqMan probes. Cxcl-1, Tslp and Csf2 mRNA were all increased in the K5-St14+/0 mice 

when compared to K5-St14+/0; K5-Spint2+/0; K5-Spint2+/0 and wildtype littermates. 

**P<0.0025 in Q, P=N.S. in R, *P=0.0274 and P=N.S. in S, K5-St14+/0 versus the other 

genotypes (Mann-Whitney U test, two-tailed). Reverse transcription was performed using 

the High-Capacity cDNA Reverse Transcription Kit (Life Technologies), as recommended 

by the manufacturer. Cxcl1, Tslp and Csf2q PCRs were done using TaqMan probes 

following the manufacturer’s instructions (Life Technologies).
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