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Abstract

The skin, which serves as the first barrier of the human body, is particularly susceptible to exogenous injuries. Skin
wounds, including acute burns and chronic non-healing ulcers, are commonly observed in clinics. Healing of skin
wounds is a complex process, consisting of infiltration of inflammatory cells, cellular proliferation, and tissue
remodeling phases, which restore the integrity and functions of the skin. Epithelialization is involved in wound
healing through re-establishing an intact keratinocyte layer. Epidermal stem cells are indispensable for
epithelialization, and they are regulated by multiple proinflammatory cytokines or growth factors. In this review, we
summarize recent advances in the effect of these cytokines on migration, proliferation, and differentiation processes
of epidermal stem cells. We also introduce promising therapeutic strategies targeting epidermal stem cells or
related proinflammatory cytokines for patients with skin wounds.
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Introduction

The skin, being the outermost layer of the whole body, is
susceptible to injuries and undergoes wound healing fre-
quently. Acute wounds, especially serious burn wounds, as
well as chronic wounds in elderly patients with diabetes,
obesity, or vascular diseases who have impaired capacity for
skin regeneration, require more effective therapies. Wound
healing is a complex process consisting of the following
three overlapping stages: inflammation, cell proliferation,
and tissue remodeling [1]. Inflammation occurs immedi-
ately and it begins with hemostasis. During the inflamma-
tory phase, the wound is sealed by fibrin which acts as a
temporary matrix. Circulating immune cells, including neu-
trophils, macrophages, monocytes, mast cells, and regula-
tory T cells, invade the new matrix, remove the dead tissue,
and control infection [2]. Cell proliferation replenishes the
wound subsequently. Fibroblasts are recruited, and they
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secrete collagen to form granulation tissue, where angio-
genesis occurs and makes it possible to transport fluid,
oxygen, nutrients, and immune-competent cells [3]. Epithe-
lialization occurs from robust activation, migration, and
proliferation of epidermal stem cells to re-establish an in-
tact keratinocyte layer [4]. Finally, restructuring of the
extracellular matrix occurs during the remodeling phase,
and it may lead to scar formation [5]. Stem cells (SCs) are
characterized by their potential for self-renewal and differ-
entiation into other cell types [6]. Cutaneous SCs play an
essential role in wound healing, mostly based on their abil-
ity to repair cellular substrates and to enhance the migra-
tion of fibroblasts and keratinocytes, angiogenesis, and
collagen and elastin production [7].

Proinflammatory cytokines are among the first factors
to be produced in response to skin wounds, and they
regulate the functions of immune cells in epithelializa-
tion. Proinflammatory cytokines, mainly including tumor
necrosis factor (TNF), interleukin (IL)-1, IL-6, and IL-
17, participate in the inflammation phase of wound
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healing through activating downstream cascades [8].
They also contribute to the epithelialization phase by
mobilizing resident stem/progenitor cells and promoting
cell proliferation and differentiation [9]. However, im-
mune responses in wound healing are a double-edged
sword. Moderate immune responses promote wound
healing as normal levels of proinflammatory cytokines
prevent infection and accelerate normal wound healing.
Excessive production of proinflammatory cytokines is
detrimental, and it possibly results in deregulated activa-
tion and differentiation of epidermal SCs, which can be
observed in systemic autoimmune and metabolic disor-
ders [10]. For example, phenotype transition from proin-
flammatory M1 macrophages to reparative M2
macrophages plays an important role in the switching of
the inflammatory phase to the proliferation phase. M1
macrophages secrete proinflammatory cytokines, such as
IL-1, IL-6, and TNF-q, as well as chemokines to recruit
additional leukocytes. In contrast, anti-inflammatory cy-
tokines, such as IL-4 and IL-13, lead to M2 macrophage
subset formation, which regulate inflammation by ex-
pressing mediators as IL-1 receptor antagonist, decoy
IL-1 receptor type II, and IL-10, as well as several
growth factors to promote fibroblast proliferation, extra-
cellular matrix synthesis, and angiogenesis [11-13]. The
transition from M1 to M2 subset can be amplified by
IL-4, and the increased number of M2 macrophages can
then lead to elevation of IL-10, transforming growth
factor-p (TGF-B), and IL-12 [12]. Severe inflammation
has also been associated with excessive scarring. How-
ever, the exact mechanisms underlying the regulation of
SCs in wound healing remain unclear. Here, we review
the effect of proinflammatory cytokines on epidermal
SCs in wound epithelialization and suggest novel thera-
peutic strategies.

Epithelialization in skin wound involves complex
inflammatory responses

Epithelialization in the proliferation phase is an essential
process of wound healing, and it serves as a defining par-
ameter of wound closure. Healing of skin wounds cannot
be considered in the absence of epithelialization. Initi-
ation, maintenance, and completion of epithelialization in-
volve numerous factors. For example, insufficient blood
supply (ischemia), infection, residual necrotic material, in-
adequate inflammatory or immune responses, or radiation
injury may hamper the processes of epithelialization [3].
Intrinsic signals are activated in the epidermis and adja-
cent tissues, and they are modulated by multiple factors,
including cytokines or growth factors, cellular receptors,
matrix metalloproteinases (MMPs), and extracellular
matrix components [14]. Complex interactions and cross-
talk between keratinocytes, fibroblasts, inflammatory cells,
and epidermal SCs are critical for wound closure [15].
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Epithelialization commences as keratinocytes and epi-
dermal SCs proliferate over a fibrin/fibronectin-rich
provisional extracellular matrix. Both basal and supra-
basal keratinocytes migrate to cover the wound area fol-
lowing a spatial pattern. Basal keratinocytes, including
interfollicular epidermal SCs (iSCs), transient amplifying
cells, and non-stem daughter cells of asymmetric prolif-
eration, differentiate rapidly into epidermal keratino-
cytes. De-differentiation of terminally differentiated
epidermal cells is also important in epithelialization [16].
Besides, epidermal SCs from appendages exhibit plasti-
city and potential for multilineage differentiation. These
cells migrate from the bulges and serve as a transient
bandage that allows iSCs from the interfollicular epider-
mis and other SCs from the upper isthmus/infundibu-
lum to reside longer during wound healing [17]. These
populations of SCs participate in epithelialization in dif-
ferential ways.

TNEF-a is an essential factor regulating wound healing
since patients treated with TNF-a inhibitors systematic-
ally manifest delayed skin regeneration and chronic
TNF-a overexpression negatively affects skin regener-
ation [18]. During the inflammatory phase of wound
healing, TNF-a induces the synthesis of cell surface ad-
hesion molecules on neutrophils and endothelial cells,
which are important for neutrophil migration and adhe-
sion to the endothelium. During the proliferative phase,
TNEF-a promotes the proliferation of keratinocytes and
their expression of intracellular adhesion molecule-1
[19]. TNF-like weak inducer of apoptosis (TWEAK), a
member of TNF super family, binds to its receptor fibro-
blast growth factor-inducible 14 (Fnl4). TWEAK/Fnl4
signaling modulates cutaneous inflammatory responses
via regulating the cell cycle and cytokine secretion of
keratinocytes as well as recruiting inflammatory cells to
wound regions [20]. Topical application of recombinant
TWEAK strengthens inflammatory cell infiltration and
growth factor production, and it increases extracellular
matrix components in wound areas [21].

Besides, other proinflammatory cytokines contribute
to wound healing through recruiting immune cells and
promoting the proliferation and migration of keratino-
cytes and fibroblasts. IL-1 produced by keratinocytes,
neutrophils, and macrophages is essential for preventing
wound infection. IL-1 further induces fibroblasts to se-
crete keratinocyte growth factor, fibroblast growth
factor-7 (FGF-7), IL-6, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and hepatocyte growth
factor [22]. These bidirectional interactions between ker-
atinocytes and fibroblasts create a paracrine loop in the
wound healing process. Inadequate IL-1 production may
delay the epithelialization transition of skin lesions [18].
IL-6 exhibits both mitogenic and proliferative effect on
keratinocytes during wound healing. Deficiency of IL-6
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reduces neutrophil and macrophage infiltration and inhibits
keratinocyte proliferation [18]. Alternatively, epidermal
growth factor (EGF) and TGF-a are produced by activated
macrophages and serve as the stimulus for epithelial prolif-
eration [15]. Increased levels of growth factors, such as
EGF, vascular endothelial growth factor (VEGF), and TGEF-
[, are prominent in the proliferative phase of wound heal-
ing [23]. Moreover, these factors regulate the expression of
MMPs, which activate or inhibit several cytokines, improve
leukocyte invasion, and create a chemotactic gradient to en-
hance inflammatory responses [24].

The origin, differentiation, and regulation of
epidermal stem cells

Skin SCs consists of epidermal SCs, dermal SCs, and mel-
anocytic SCs, which constitute the skin structure. Epider-
mal SCs are a critical factor in skin homeostasis and
wound healing. Distinct subtypes of epidermal SCs reside
in the following areas: in the interfollicular epidermis
(iSCs), in the hair follicles (hair follicle SCs, hSCs), and in
the sebaceous glands (sebaceous gland SCs, sSCs) or sweat
glands [6]. In postnatal skin, the interfollicular epidermal
cells continuously proliferate and differentiate; thus, re-
quiring continuous action of iSCs to maintain homeosta-
sis. Hair follicles undergo cycles of regeneration, including
the phases of growth (anagen), regression (catagen), and
rest (telogen). Each subtype of SCs renews the corre-
sponding tissue and also substitutes for other subtypes
during wound healing. Dermal SCs reside in hair papilla,
around pericytes, or elsewhere among other dermal cells,
and they can differentiate into pericytes, fibroblasts, myo-
blasts, or chondrocytes [25]. The dermis contains tissue-
derived SCs with an expression profile similar to adult
mesenchymal SCs, where the exact identification remains
unclear. Melanocytic SCs are undifferentiated melanocytic
cells located in hair follicles and are the origin of melano-
cytes during each hair follicle cycle [26].

Many factors affect the migration, proliferation, and dif-
ferentiation of epidermal SCs. Extrinsic factors mainly in-
clude regulators that form the niche of SCs, consisting of
adjacent cells, matrix architecture, signaling molecules,
physical forces, oxygen tension, and other environmental
factors [27]. Proinflammatory cytokines, including TNF-q,
IL-1, IL-6, and IL-17, are intrinsic factors, and they pro-
mote the migration, proliferation, and differentiation via
both autocrine and paracrine ways. Intrinsic signaling
pathways, such as mitogen-activated protein kinase, c-
Myc, Wnt/p-catenin, Sonic hedgehog, and Notch, provide
redundant backup signals for the actions of SCs [25].

iSCs contribute to the epithelialization in skin
wound

iSCs are clustered in the basal layer of the epidermis, and
they replenish the basal layer and continuously produce
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supra-basal cells. Recently, different markers were found
to identify iSCs, including B1 and o6 integrins, Leu-rich
repeats and immunoglobulin-like domains 1 (LRIG1), and
melanoma-associated chondroitin sulfate proteoglycan
(MCSP). Meanwhile, iSCs express low levels of transferrin
receptor (CD71) and desmoglein-3. iSCs can also be
traced in K14-CreER or Inv-CreER mouse strains [6, 28].
Additional lineage tracing with DIx1-CreER and Slcla3-
CreER reporters has identified two SC populations [29].
See Fig. 1.

After detachment from the basement membrane,
iSCs cease proliferation and move upwards to differ-
entiate during epithelialization. The subtypes of SCs
function depending on the thickness of the wound, or
in other words, the damage status of appendages [30].
It can be concluded that the epithelialization of hu-
man partial-thickness wounds occurs primarily and
rapidly by SCs in the pilosebaceous units and to a
lesser extent by iSCs. In full-thickness wounds, where
these adnexal structures are partly or fully destroyed,
epithelialization should originate from interfollicular
epidermal cells (including iSCs) at the wound
margins.

When a wound-induced vacant niche exists, iSCs acti-
vate, migrate, and proliferate to occupy spatial vacancy. A
switch from a6p4 to a3Pl integrin (expressed in keratino-
cytes) for laminin-5 (expressed on the basement mem-
brane) binding occurs during disassembling the junctions
that link keratinocytes and basal membrane [31]. Cytokines,
such as IL-1, IL-6, IL-17, and TNF-a, can increase keratino-
cyte motility and proliferation [1]. The release of prestored
IL-1 by keratinocytes is the initial signal of wound healing
[22]. This autocrine fashion from keratinocytes and para-
crine fashion from neutrophils, monocytes, and macro-
phages promote keratinocyte migration and proliferation.
IL-1 induces the expressions of K6 and K16, which mark
the active state of keratinocytes migrating in wounds. IL-1
also induces the gene expression of GM-CSF, TNF-a,
TGF-a, and amphiregulin [4]. IL-1 plays a key role in adap-
tation of skin SCs to inflammatory responses via the cas-
pase 8 signaling pathway [32]. Besides, caspase 1 and IL-1p
signaling, as the downstream effector of absent in melan-
oma 2 (AIM2), enhances the migration of iSCs and acceler-
ates epithelialization [33]. IL-6, mostly produced by
neutrophils, has both mitogenic and proliferative effects on
keratinocytes [34, 35]. IL-6 activates the signal transducer
and activator of transcription (STAT)-Janus kinase (JAK)
signaling pathway, allowing keratinocytes to respond to
mitogenic factors that stimulate migration. By binding to its
receptor IL-6Ra, IL-6 indirectly induces neutrophil and
macrophage infiltration, collagen deposition, angiogenesis,
and keratinocyte proliferation or migration [34, 36]. IL-17
is another potential proinflammatory cytokine that regu-
lates keratinocytes synergistically with TNF-q, IL-1, and IL-
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Fig. 1 Schematic diagram of the distribution and main markers of epidermal SCs. iSCs are clustered and interspersed in the basal layer of
epidermis. Most of the hair follicular SCs reside in the bulge. The isthmus SCs localize in the junction between the hair follicle and sebaceous
glands. The upper part of the isthmus contains infundibular SCs. Sebaceous gland duct SCs are located at the opening of the glands while
sebaceous gland SCs are located in the glands. Each population of epidermal SCs expresses distinct markers, which are shown in the
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6. IL-17A stimulates keratinocyte proliferation through the
Actl-TRAF4-MEKK3-ERKS5 signaling pathway [37].
TNEF-a mediates keratinocyte survival and proliferation
via the TNF receptor (TNFR)/nuclear factor-kB (NF-«B)
signaling pathway. TNF-a regulates the secretion of cy-
tokines in keratinocytes and cooperates with IL-1 for
modulating fibroblasts. Recently, it was found that TNE-
a induces AKT phosphorylation (p-AKT) in iSCs, and
AKT signals activate downstream p-catenin protein [38].
Actually, TNF-a induces an epithelial-to-mesenchymal
transition in cells, which initiates a fibrotic state [39].
TNF-a interacts with its receptor TNFR2 to recruit
adaptor proteins and trigger signaling cascades, activat-
ing the NF-kB and activator protein (AP)-1 transcription
factors, which regulate proinflammatory cytokines as
well as cell survival and proliferation. TNF-a stimulates
keratinocyte migration in an autocrine fashion, and it
also activates fibroblasts to secrete the FGF family in a
paracrine fashion [18]. In addition, the TNFRI1-
dependent or TNFR1-independent apoptosis affects the
production of inflammatory cytokines in keratinocytes,
subsequently blocking epidermal differentiation [40].
Despite their positive effect in wound healing, exces-
sive proinflammatory cytokines lead to failed transition

from the inflammation phase to the proliferation phase,
ultimately causing chronic non-healing wounds. Thus,
the inhibitors of proinflammatory cytokines may be ef-
fective in the treatment of chronic wounds. The effect of
proinflammatory cytokines on skin SCs is summarized
in Fig. 2. Besides proinflammatory cytokines, some
growth factors, such as heparin-binding EGF-like growth
factor, EGF, TGF-a, insulin-like growth factor-1, and
FGF-2, play a role in the proliferative process during epi-
thelialization [1, 31].

There are some other signaling pathways that contrib-
ute to epithelialization. For example, autocrine Wnt/p-
catenin signaling controls the differentiation and self-
renewal of iSCs [41]. The differentiation of iSCs also de-
pends on Notch signaling, and Notch1/2/3 receptors
and Jagged 1 are expressed in the mouse supra-basal epi-
dermis, whereas Jagged 2 is expressed in the basal layer
cells [42].

hSCs and sSCs exert plasticity in epithelialization

SCs from skin appendages, including hSCs and sSCs,
contribute to the self-regeneration of appendages and
epithelialization in wound healing. The hSCs are rela-
tively comprehensive according to their complexity and
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Fig. 2 Schematic diagram of proinflammatory cytokines regulating keratinocytes or stem cells. Keratinocytes, neutrophils, and macrophages
produce IL-1, which regulates stem cells through the caspase 8 signaling pathway. TNF-a binds to TNFR1 to induce AKT phosphorylation in iSCs
or to TNFR2 to activate the NF-kB signaling pathway. Neutrophils and macrophages produce TWEAK, which binds to Fn14, and they have a

potential effect on iSCs. IL-6 and IL-17 activate the STAT-JAK and Act1-TRAF4-MEKK3-ERKS signaling pathways, respectively

diversity. Distinct markers reflect different locations and
actions of hSCs. Mostly, hSCs reside in the permanent
non-cyclic follicle portion (bulges), and they express spe-
cific markers, such as CD34; keratinl5/19 (K15/19);
leucine-rich-repeat-containing G protein-coupled recep-
tor 5 (LGR5); SRY-box 9 (SOX9); LIM homeobox 2
(LHX2); nuclear factor of activated T cells, cytoplasmic
1 (NFATC1); T-box 1 (TBX1); and transcription factor 3
(TCEF3). Besides, hSCs reside in the infundibulum (upper
part of the isthmus), and they express LRIG1. The hSCs
also reside in the isthmus (the junctions between the

hair follicles and the sebaceous gland), and they express
LRIG1, LGR6, BLIMP1, and PLET1 (Fig. 1) [6, 28, 30].
Usually, sSCs express LRIG1, LGR6, and BLIMP1 [6, 30].
The duct SCs reside at the opening of the gland, and they
express GATA-binding protein6 (GATAG6) (Fig. 1). These
SCs contribute to interfollicular epithelialization in wound
healing [16].

During wound healing, hSCs migrate upwards to the
interfollicular epidermis. However, different populations
of hSCs may have opposite effects. For example, the SCs
expressing CD34, LRIG1, and K15 contribute to healing
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of the interfollicular epidermis in a rapid but temporary
manner. In contrast, the LGR5-, SOX9-, and GLI1-
expressing SCs remain in the interfollicular epidermis for
a longer time even in the post-wounding stage [30, 43].
Wound healing tends to be faster in skin with higher hair
density (e.g., the fully covered scalp). A chronic wound
heals quickly when treated with skin grafts containing hair
follicles [44]. In addition, the rate of wound healing corre-
lates with synchronized hair follicle cycling in mice be-
cause wound healing accelerates during the anagen phase
of hair follicle cycling, which has different epithelial, endo-
thelial, and inflammatory cell types [45].

Proinflammatory cytokines, including IL-1, IL-17, and
TNEF, promote hair follicle neogenesis and epithelializa-
tion in wound healing. IL-1 and IL-7 can expand the
population of active y8T cells, which subsequently en-
hance the proliferation and mobilization of hSCs [32].
Recently, it was reported that Treg cells participate in
the migration and differentiation of Lgr5-positive hSCs
in epithelialization by activating the CXCL5-IL-17
inflammatory axis [46]. TNF-a is crucial in the
macrophage-induced hair follicle telogen-anagen transi-
tion, and it participates in hair follicle neogenesis in
wounds. TNF-a treatment increases 3-catenin levels in a
PI3K/AKT-dependent manner in Lgr5-positive hSCs,
which are important for hair follicle neogenesis [38].

The Wnt signaling pathway mediates the proliferation
of hSCs and the epithelialization process in tissue regen-
eration [47]. The epithelial-mesenchymal interaction is
instrumental in hair follicle morphogenesis, and it in-
volves the activation of Wnt, bone morphogenetic pro-
tein, Shh, Notch, TGF-B, and platelet-derived growth
factor signaling [48].

Therapeutic strategies targeting epidermal SCs
and relevant regulators

Epidermal SCs are promising in the treatment of skin
wounds. SCs have long been explored in therapeutic epi-
dermal autografts [49], which can be derived from un-
purified epidermal cell cultures containing both iSCs
and hSCs. Direct spray harboring SCs have replaced pas-
saged epidermal keratinocytes as this preferred method
of burn therapy accelerates wound healing with less
scarring [6]. However, only small and superficial wounds
are suitable for spray therapy. Topical application and
injection of hSCs have been conducted in both rat
models and ulcer patients, and it showed better wound
closure by reducing inflammation and improving epithe-
lialization and angiogenesis [50—52]. The administration
of SCs not only accelerates wound healing, but also en-
hances the physiological function of skin. Besides epider-
mal SCs, other SCs applicable in wound healing include
mesenchymal SCs, adipose-derived SCs, endothelial pro-
genitor cells, and umbilical cord perivascular cells [53].
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Wounds treated with mesenchymal SCs show signifi-
cantly less inflammatory cells and proinflammatory
cytokines. Umbilical cord-matrix SCs increase M2 mac-
rophages in diabetic wounds, which further upregulate
the secretion of IL-10 and VEFG but downregulate the
production of IL-6 and TNF-a [54]. Mesenchymal SCs
also reduce scar formation by secreting a variety of anti-
fibrotic cytokines, including hepatocyte growth factor,
IL-10, and adrenomedullin [53, 55]. Adipose-derived
SCs and induced pluripotent SCs reduce scar formation
in mouse experiments [56, 57].

Proinflammatory cytokines initially play a beneficial role
in acute wound healing by promoting the proliferation and
antimicrobial peptide production of keratinocytes. How-
ever, overproduction of proinflammatory cytokines may
lead to prolonged inflammation and wound healing. There-
fore, blocking excessive proinflammatory cytokines exerts a
therapeutic effect in chronic wound healing. Patients with
chronic wounds have higher systemic and local levels of
TNEF-a. Topical application of anti-TNF-a neutralizing
antibodies blunts leukocyte recruitment and NF-kB activa-
tion, alters the balance between M1 and M2 macrophages,
enhances matrix synthesis, and finally accelerates wound
healing in the secretory leukocyte protease inhibitor (SLPI)
null mouse model, which has age-related delayed human
wound healing [58]. Topical application of infliximab and
adalimumab, monoclonal antibodies of anti-TNF, is effect-
ive for patients with chronic ulcers [59, 60].

Blocking IL-1( activity using a neutralizing antibody
suppresses the proinflammatory factors (IL-1p, MMP-9,
TNF-q, and IL-6), but it enhances the healing-associated
markers (CD206, insulin-like growth factor-1, TGE-f,
and IL-10) in macrophages from diabetic patients or a
murine model [61]. Also, neutralizing anti-IL-1p anti-
body or IL-1R antagonist upregulates the pro-wound
healing phenotype of macrophages and improves healing
in diabetic mice [61, 62].

Anti-IL-17A antibodies strengthen re-epithelialization
of wounds in obese diabetic mice by altering the propor-
tion of M1/M2 macrophage populations without any ef-
fect on scarring or fibrosis [63]. Local application of
recombinant IL-17A leads to delayed wound healing and
accelerated neutrophil accumulation in mice [64]. Sub-
cutaneous injection of recombinant mouse IL-17 en-
hances macrophage infiltration in mice treated with full-
thickness excision, accompanied by aggravated fibrogen-
esis, delayed wound healing, and amplified inflammation
[65]. Recent therapies involving SCs and proinflamma-
tory cytokines are summarized in Table 1.

Clinical application of stem cell- or growth factor-
related therapies

With the progress of SC application in skin wound heal-
ing, regeneration of hair follicles begins to attract more
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Table 1 Therapies involving SCs and proinflammatory cytokines
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Targeted cells Molecule or cell Route of Subject Therapeutic effect Ref

or factors tested application

Stem cells Hair follicle Direct Patients Less ulcer area, more granulation tissue formation and vascularization, [50, 51]
stem cells application-hair and better innervation of the wound bed

skin graft

Hair follicle Intradermal Rats Less inflammation, more granulation tissue formation, and faster [52]
stem cells injection vascularization and epithelialization
Hair follicle Local injection  Patients Increased hair density and hair follicle number [66, 67]
stem cells
Mesenchymal Injection/spray ~ Mice/patients  Less inflammatory cells, proinflammatory cytokines, and scar formation [55]
stem cells as well as faster wound closure

TNF-a Anti-TNF-a Topical Mice/patients  Less leukocyte recruitment, rebalance of M1/M2 macrophages, more [58-60]
neutralizing application matrix synthesis, and faster wound healing
antibody

IL-1 Anti-IL-18 Topical Cultured Lower proinflammatory macrophage phenotype and proinflammatory [61]
neutralizing application macrophages/ cytokines expression. Faster re-epithelialization and granulation tissue for-
antibody mice mation and more collagen deposition
IL-1 receptor Topical Mice Less leukocyte and macrophage recruitment and faster wound healing  [62]
antagonist application

IL-17 Anti-IL-17A Local injection  Mice More pro-healing macrophages and better wound closure [63]
antibody

interest in functional skin construction or hair loss dis-
eases. Adipose tissue-derived hSCs display an improve-
ment in hair density visually and an expansion in the
number of hair follicles in patients with androgenic alope-
cia [66]. Along with SCs, platelet-rich plasma, being a
main resource of growth factors, improves cell prolifera-
tion, differentiation, and angiogenesis and results in
wound healing and hair follicle regeneration [67]. Platelet-
rich plasma contains at least six major growth factors, in-
cluding platelet-derived growth factor, EGF, FGF, TGF-f,
VEGEF, and insulin-like growth factor-1, which are import-
ant in tissue regeneration. Besides, platelet-rich plasma
contains proinflammatory cytokines including the IL fam-
ily and TNF-a family, which contributes to tissue regener-
ation [68, 69]. In addition, platelet-rich plasma combined
with hyaluronic acid or fat grafting improves the epitheli-
alization in patients of chronic ulcers and regeneration of
soft tissue defects [68, 70].

Different populations of SCs and growth factors have
been applied in multiple tissue regeneration to meet
both therapeutic and esthetic needs. Adipose-derived
SCs, containing stromal vascular fraction, can improve
dermal elasticity by increasing collagen and elastin syn-
thesis and remodeling facial scars [71]. Stromal vascular
fraction cells can also be used in breast reconstruction
and oncoplastic surgery, for it improves vascularization
and the fibrogenic activity of fibroblasts and further ben-
efits adipose tissue survival and 3D organization [72].
Therefore, the effective application of SCs combined
with growth factors or novel biomaterials diminishes un-
necessary injuries, leading to a new level in the regener-
ation medicine.

Conclusions and prospective views

Since skin wound healing remains an intractable prob-
lem in clinics, an increasing number of researches have
been conducted to explain the mechanisms involved in
the healing process where SCs play an important role.
Abundant factors, especially proinflammatory cytokines,
regulate and participate in SC migration, proliferation,
and differentiation in wound healing and hair follicle
neogenesis as well as show a therapeutic effect via dis-
tinct signaling pathways. Rebalance of these cytokines
probably benefits the transition from the inflammation
phase to the proliferation phase in skin wounds and im-
proves the healing process. The therapeutic strategies as-
sociated with SCs or proinflammatory cytokines have
achieved success to some extent. However, few strategies
can efficiently reverse the deficiencies that contribute to
chronic wounds and restore the tissue to its pre-injured
state. Some side effects, such as scar formation, abnor-
mal pigmentation, and tumorigenesis, still hamper the
development of ideal treatments. Despite unrealistic
commercial and clinical expectations, tissue-engineered
skin based on SCs has delivered considerable benefits to
patients with burns and chronic wounds. Combination
of inflammatory cytokines or growth factors with SCs in
an appropriate dosage and timeline seems promising in
wound healing therapies. Further investigation of inter-
actions between immune cells and SCs is necessary to
elucidate the mechanisms of wound healing and will
help make progress in clinical applications. It is likely
that with the increasing knowledge of SCs and tissue en-
gineering, better therapies with less side effects and fi-
nancial costs will be developed in the near future.
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