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Abstract: Skeletal muscle disorders are dramatically increasing with human aging with enormous
sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset
and progression of muscle frailty include nutrition and physical training. Melatonin, the indole
produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging,
anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin,
which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here,
we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle
disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact
of melatonin on physical activity. Finally, we consider the newest evidence of the gut–muscle axis
and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review
reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and
prolongs physical performance.
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1. Skeletal Muscle Structure and Function in Aging and Diseases

Skeletal muscular tissue is the most represented tissue in the human body and is essential for
voluntary movements and postural maintenance [1,2]. However, it has additional important roles such
as thermal regulation, nutritional balance, glucose uptake, and endocrine activity [3,4].

Before understanding the progressive changes of skeletal muscle induced by aging and related
diseases, it is necessary to focus on its structure and ultrastructure.

In adult mammals, skeletal muscle is composed by different cell types—multinucleated myofibers,
or myotubes, and satellite cells—beneath the sarcolemma, able to regenerate surrounded by the
epimysium [5,6]. Myofibers are then collected in bundles surrounded by the perimysium layer. Finally,
many bundles in different spatial orientation constitute the gross muscle mass fixed with a tendon to
the skeleton [7]. Moreover, fibroblasts, adipocytes, vessels, and neuromuscular junctions complete the
complex muscle anatomy [8–11].

Remarkably, a single myofiber is a post-mitotic highly differentiated cell containing multiple
peripheral nuclei, a set of contractile myofilaments, the sarcoplasmic reticulum for calcium flux, and
mitochondria for providing energy for movement [12]. Ultramicroscopic studies have characterized, in
human and rodent muscle, different mitochondria subtypes called sub-sarcolemmal (SSM), perinuclear,
and inter-myofibrillar (IMF) mitochondria [13–15]. These definitions indicate the peculiar localization
within the skeletal myotubes, even if different mitochondria may also have biochemical and proteomic
specializations. Indeed, SSM mitochondria are involved in gene transcription and resistance to
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reactive oxygen species (ROS), while IMF mitochondria are devoted to oxidative phosphorylation,
ATP production, and directly drive calcium (Ca2+) ions flux in calcium release units (CRUs) or
triads [16]. Remarkably, a recent tridimensional reconstruction of mitochondria in skeletal muscles
identified novel subtypes of mitochondria associated with vessels, called para-vascular mitochondria,
all interconnected in the sarcomere [17]. Therefore, human skeletal muscle mitochondria, assessed
by the mitochondrial complexity index (MCI), are dynamic within each myofiber, even if they are
mainly present at the Z-line [18]. It is important to state that mitochondrial connectivity and branching
in muscle depend on the mitochondrial DNA (mtDNA) and might change according to the aerobic
oxidative metabolism [19,20].

Indeed, skeletal muscle fibers exist into two different types according to isoforms of structural
proteins called myosin heavy chain (MYH) and tropomyosin [21]. The most common are type I or
slow-twitch myofibers, and type II, or fast-twitch myofibers. This last type is further divided into type
II A and type II X [22,23]. However, considering the energy consumption and the ATP production, slow
types II A and I fibers rely upon an aerobic oxidative metabolism and constitute the red muscles. On the
contrary, fast type II B fibers adopt glycolysis and make up the white muscles [24,25]. Intriguingly, in
anaerobic glycolytic fibers, mitochondria are associated with the sarcomere I-band, while in oxidative
fibers, mitochondria are numerous in I-band and A-band [26]. Remarkably, in fast-twitch myofibers
in red muscles, all triads are associated with mitochondria, and their tether causes Ca2+ ions release
from sarcoplasmic reticulum and ATP production [27,28]. Therefore, size, activity, and adaptability of
mammalian skeletal muscles to movement largely depend on the size and the type of individual fibers
and their mutual transition and plasticity [29–31]. However, metabolic requirements deeply affect
mitochondria shape and dynamic in skeletal muscles [32]. A balance between short and elongated
fused mitochondria is necessary and is linked to “fusion” and “fission” processes and relative shaping
proteins [33,34]. All these morphological changes are critical for the respiratory activity and for driving
proper mitophagy, i.e., the process of dysfunctional mitochondria cleaning in muscles [35].

Aging inevitably affects skeletal muscle structure and function in mammalians [36–39]. Both
quality and strength of muscle fibers progressively change in the elderly, affecting mobility and
independence. Altered excitation–contraction coupling together with abnormal calcium flux and
sarcoplasmic reticulum organization in myofibers induce weakness and loss of intrinsic force in old
muscles [40–42].

The most common indicator of skeletal muscle aging is sarcopenia. Sarcopenia, i.e., the qualitative
and the quantitative reduction of muscle mass and strength, is due to irreversible reduction in type II A
oxidative red fibers. Recently, the European Working Group on Sarcopenia in Older People (EWGSOP)
published a revised definition of sarcopenia associated with proper diagnosis and management [43].
However, these adverse events affect individuals starting in the fourth decade of their life and get
worse by sedentary lifestyle [44,45]. Therefore, sarcopenia is a progressive multifactorial process linked
to structural, biochemical, and metabolic dysfunctions [46].

From a morphological point of view, aged skeletal muscles dramatically lack satellite cells, regular
capillary blood flow, well-organized triads, and calcium entry [47–49]. Intriguingly, aged muscles
present central nuclei and fill with cells such as adipocytes, inflammatory cells, and fibroblasts intensely
producing collagen [50–52]. A recent study in sarcopenic-aged patients compared with non-sarcopenic
controls reported a peculiar inflammatory profile, called “cytokinome”, mainly characterized by
higher C-reactive protein in men versus women [53]. Remarkably, in aged muscle, mitochondria
greatly change structure and function as reported by recent authoritative reviews [32,54]. Currently,
the recovery of abnormal mitophagy is a new and promising target for treating sarcopenia [55].
Another extreme consequence of muscle frailty in aging is disuse atrophy, which dramatically affects
mitochondrial homeostasis.

The main evidence of muscle atrophy is the loss of strength due to enhanced muscle protein
degradation and the progressive loss of type I and II A oxidative fibers [56,57]. In atrophying muscle,
mitochondria biogenesis is affected, and molecular pathways involved in mitochondria maintenance are
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disrupted already after few weeks of immobilization [58]. Furthermore, mitophagy and fusion-fission
events are completely dysregulated [59]. Indeed, mitochondria are short, fragmented, and particularly
prone to excessive mitophagy that progressively causes a deficit of their number and energy supply in
atrophying muscle [60]. Consequently, loss of ATP production in muscle induces ROS contributing to
inflammation, mtDNA deletion, and apoptosis [61]. The coexistence of dysfunctional mitochondria
and ROS in muscle activates the “inflammasome”, an assembly of proteins that activated cytokines or
inflammatory signals driven by nuclear factor k-B signaling [62,63].

Emerging evidence has related mitochondria biogenesis and activity to peroxisome proliferative
activated receptor gamma coactivator 1 alpha (PGC-1α) and to the transcription of downstream genes
such as nuclear respiratory factor 2 (Nrf2) and mitochondrial transcription factor (TFAM) [64]. A
recent study demonstrated that, in old mice overexpressing PGC-1α, there was less mitophagy due
to more effective healthy mitochondria and improved oxidative metabolism in the tibialis anterior
muscle [65]. Remarkably, Nrf2 deficiency in knockout aged rat induced muscle mass reduction,
abnormal mitochondrial dynamics, and biogenesis [66].

Other age-related skeletal muscle diseases are crush injury, a common consequence of fall, chronic
fibromyalgia, and altered microvascular perfusion.

In traumatic injury, the age of patients is important because it dramatically influences the
regeneration and the repair of skeletal muscle fibers [67]. To restore proper muscle organization after a
crush, multiple local and systemic mechanisms such as inflammation, polarization of macrophages,
remodeling of fibroblasts, and restoration of neuromuscular junction activity are involved [3].

Chronic neuromuscular pain and fatigue, defined as a poor response to sustained muscle
tension, are common indicators of fibromyalgia [68]. The complex and still obscure pathogenesis of
fibromyalgia includes inflammation, oxidative stress, ROS production, and mitochondrial damage [69].
In particular, the disruption of mitochondrial permeability transition, excessive mitochondrial fusion,
and inflammation are markers of the disease [70].

Ischemic diseases are largely associated with traumatic muscle crush or thromboembolic events
and, if untreated, may lead to irreversible necrosis [71]. Early reperfusion, i.e., the restoration of
circulatory flow, is the primary goal to treat muscle ischemia. Unfortunately, reperfusion may induce
severe injury in glycolytic muscles due to the local production of ROS in the post-ischemic phase [72].
Dramatic progressive muscle weakness due to the loss of cytoskeletal dystrophin is an adverse genetic
condition called Duchenne muscle dystrophy (DMD) reproduced in mdx mice [73]. Even if DMD
onset occurs generally at a young age, it resembles the muscular frailty of the elderly. ROS and
abnormal calcium homeostasis, largely affecting sarcolemma, concur with muscle degeneration and
strong oxidative damage. Despite promising genetic and pharmacological interventions able to
attenuate DMD induced changes such as inflammation and vasoconstriction, an effective therapy is
still lacking [74]. Main features in adulthood and aging-induced muscle disorders are collected in
Table 1.
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Table 1. Main features of healthy and age-related skeletal muscle disorders in mammals.

Healthy
Middle-Aged

Age-Related
Muscle Diseases References

Myotubes size Regular Reduced [48,50,57]

Satellite cells Present Reduced/Absent [6,42,47]

Mitophagy Normal Aberrant [55,59,60,65]

Neuromuscular junction Regular Absent [9,10,12,41]

Triads/Calcium flux Regular/Present Disrupted/Absent [26,27,49,74]

Mitochondria size/number Regular
Fission/Fusion

Megamitochondria
Abnormal Fission/Fusion [32,54,56,66]

Inflammation Absent Present [3,52,62,70]

ROS formation Absent/Minimal High [53,69,73]

ATP production High Limited [61]

Microcirculation Effective Disrupted [71,72,74]

*ROS, reactive oxygen species.

2. Melatonin Alleviates Skeletal Muscle Disorders In Vitro and In Vivo

Melatonin (N-acetyl-5-methoxytryptamine) is an evolutionary-conserved molecule originally
isolated from the pineal gland and considered a regulator of circadian rhythms and seasonal
breeding [75,76]. Actually, melatonin has multiple extraordinary functions such as anti-tumor,
antioxidant, and anti-inflammatory indolamine [77–79]. In mammals, melatonin has been identified
in all body fluids and in several extra-pineal sites such as skin, gastrointestinal tract, liver, kidney,
immune system, testis, and skeletal muscles [80]. Remarkably, during the last decade, the indole has
been detected in several edible plants, eggs, and fish, assuming an interesting and promising role as
a nutraceutical [81,82]. The compelling evidence of decreased endogenous melatonin in senescence
triggered intense research on its potential role as a dietary supplement to prevent and treat aging and
age-related diseases [83,84].

Intriguingly, in postmenopausal women, the drop of urinary melatonin correlated with sarcopenia
and, in castrated male rats, melatonin supply slowed muscle atrophy, acting as testosterone [85,86].
Chronic melatonin intake prevented age-related mitochondrial damage in the heart and the diaphragm
muscle of accelerated aged SAMP 8-mice [87]. Muscle strength depends on constant regular glucose
and insulin levels in the blood, but in sarcopenia, insulin-resistance occurred [88]. Furthermore,
inflammation and lower glycolytic potential, assessed as lactate amount, strongly influenced skeletal
muscle metabolism in sarcopenia [89]. In the gastrocnemius muscle of aged mice altered autophagy,
nuclear fragmentation and abnormal lactate production were detected, but all these adverse changes
decreased by oral melatonin intake [90]. Remarkably, melatonin supplementation in NLRP3 KO mice
was particularly beneficial to retard the onset of sarcopenia in gastrocnemius muscle in aged animals [91].
Interestingly, exogenous melatonin regulated insulin resistance, ameliorated mitochondrial function in
rat muscles, and prevented chemically induced apoptosis and endoplasmic reticulum stress in different
skeletal muscle cells in vitro [92–97].

Coto-Montes and co-workers reviewed the promising utility of safe melatonin dietary intake in
sarcopenia, even if its therapeutic potential in patients is still controversial [98,99]. Recent evidence in
different sarcopenic mice models obtained by single or double KO (DKO) of mitochondrial shaping
proteins (DRP1-KO and Opa1-Drp1 DKO) definitively indicated how, in skeletal muscles mitohormesis,
the mitochondrial size balance was essential [100,101].

Considering the post-mitotic nature of skeletal myofibers, skeletal muscle healing and recovery
after prolonged ischemia are other relevant clinical issues [102]. Several studies demonstrated that
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melatonin attenuated ischemic damage and restored microvascular structure and perfusion in rat
cremaster and gracilis muscles during ischemia/reperfusion [103,104].

Moreover, muscular traumas, often during sports performance, are very common evidence
associated with high medical expenses and disabilities. In addition to promising clinical trials with
progenitor cells in humans [105], there are convincing data on the beneficial role of melatonin in
crushed injured muscles in rodents. Chronic melatonin intake reduced apoptosis, increased twitch
force, and accelerated regeneration enhancing satellite cells in muscle injury in mice and in rat [106,107].
Recently, in an experimental compression model of quadriceps muscle in rats, melatonin administered
two hours after the beginning of the compression and during the following six days improved redox
balance and reduced inflammatory markers and tissue damage [108].

Chronic muscular pain, cognitive dysfunctions, and sleep disorders are all hallmarks of
fibromyalgia linked to reduced urinary secretion of melatonin in women [109]. Considering that an
effective therapy to alleviate pain and muscle damage in this syndrome is still lacking, our group
studied the effects of melatonin in fibromyalgia in rats. Fibromyalgia was induced by reserpine
injection and melatonin administered in tap water, concurrent with reserpine, for one or two months.
In rat gastrocnemius muscle, melatonin reduced oxidative changes and ameliorated mitochondria shape
and cristae, improving voluntary motor activity [110]. More recently, we adopted the same model
focusing on mitochondrial markers in rat gastrocnemius muscle. Interestingly, PGC1-alpha pathway
and mitofusin 2 (MF2), essential indicators of mitochondrial activity and fusion, were affected in
reserpine injected rat but preserved after oral melatonin intake [111]. These data strongly indicated
that, in the muscle, melatonin directly accumulated in the mitochondria where it was able to sustain
proper size and function.

Altered oxidative balance and abnormal mitochondria characterize DMD, a severe genetic disorder
associated with muscle weaning and atrophy [112]. Melatonin, which was successfully administered
as a nutraceutical compound in preclinical mice models and in DMD patients, ameliorated muscle
metabolism and strength [113,114]. Indeed, the indole sustained the antioxidant muscular potential,
increasing total glutathione content and promoting an effective contraction.

A summary of beneficial or promising actions of melatonin in aged induced skeletal muscle
diseases can be found in Figure 1.

Figure 1. Scheme illustrating improvement (+/ in green) and block (−/ in red) of mitochondrial or
muscular events induced by dietary melatonin in aged or damaged skeletal muscle.

3. Exercise—an Anti-Aging Strategy that Preserves Mitochondria in Skeletal Muscle

Physical activity and proper nutrition represent the best lifestyle measures to prevent and to
retard age-related sarcopenia and progressive muscular weakness [115,116]. Remarkably, regular and
controlled exercise with advancing age prolongs lifespan and improves skeletal muscle mass and
performance [117,118].
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However, there are different types of physical training with different impact on skeletal muscle
composition and metabolism: acute, chronic, or glycolytic and aerobic exercise [44,119]. Different types
of exercise can be combined in a mixed training. Exercise greatly remodels skeletal muscle mitochondria
size and number and accelerates mitophagy, the peculiar dismantling of damaged mitochondria [120].
Indeed, the proper balance between new synthesis of mitochondria and mitochondrial degradation is
dramatically altered in aged skeletal muscles [121].

Several studies reported that different muscles aged differently depending on their fiber
composition and metabolism. Generally, mitochondrial respiratory activity is well preserved in
slow oxidative muscles rich in type I, IIA, and 2X fibers, but damaged in aged fast-twitch glycolytic
muscles rich in type IIB fibers [122–124]. Recently, Crupi et al. measured the respiratory activity in
isolated mitochondria from fast glycolytic tibialis anterior muscle versus slow oxidative soleus muscle
in aged mice and demonstrated that oxidative fibers are preserved while the glycolytic ones are
damaged [125]. Thus, a fundamental strategy of physical training in the elderly is to strengthen the
oxidative muscles.

At a cellular level, to alleviate sarcopenia is necessary to improve mitochondria number and
turnover of contractile proteins and anti-oxidant enzymes [126]. A proper mitochondrial turnover is
crucial in muscle adaptation to exercise given that abnormal proteostasis leads to loss of contractile
proteins in aged muscles [127,128]. However, despite controlled physical activity, complete muscle
restoration is impossible due to unavoidable oxidative deterioration of fast glycolytic fibers and
enhanced expression of age-related genes insensitive to exercise benefit [129,130].

Remarkably, there is a strict connection between genotype and phenotype in gene polymorphism
for structural proteins and angiotensin-converting enzyme (ACE) [131]. This connection is particularly
evident in differences between endurance or power muscles in athletes influencing sports performance,
degree of vascularization, and mitochondria1 function [132]. A great deal of evidence indicates that
mitophagy in muscle is activated by exercise but is abnormal in aging if mitophagy flux is excessive and
mitochondrial quality reduced [133,134]. Multiple receptors and signals are involved to drive proper
mitochondria turnover in skeletal muscle and to regulate lysosomal homeostasis. One of the most
studied transcription factors activated during exercise and able to regulate mitophagy is transcription
factor EB (TFEB) [135]. This molecule is active when dephosphorylated by calcium ions released from
the sarcoplasmic reticulum during acute exercise and, after translocation into the nucleus, controls the
expression of several genes driving the autophagy–mitophagy steps [136]. Another master regulator
of mitophagy in muscle is PGC1α, normally activated during acute exercise [137,138]. Recent study in
mice indicated that chronic exercise and stimulated contractile activity ameliorated mitochondria, thus
mitophagy was not necessary [139]. However, the use of colchicine as a microtubule polymerization
inhibitor allowed measuring the enhanced mitophagy flux in muscles of voluntary wheel trained
mice [132].

Remarkably, not only mitochondria but also lysosomes are crucial for an efficient mitophagy
and the maintenance of mitohormesis. Recently, Triolo and Hood reviewed the beneficial effect of
acute and chronic exercise in lysosomal biogenesis and reported that exercise might be a peculiar
non-pharmacological “therapy” to clear disrupted cellular components [140]. In particular, the authors
stressed that, after physical training in rodent models of lysosomal diseases such as Pompe disease and
Danon syndrome, muscle mass and strength increased, while mitophagy and lysosomes production
ameliorated. Moreover, the therapeutic potentiality of aerobic and resistance exercise to promote
skeletal muscle performance was reported in patients affected by Pompe disease [141,142].

Emerging evidence indicates that a progressive resistance program better than acute oxidative
exercise is crucial to preserve mobility in aged patients, thus retarding the onset of frailty and related
metabolic and cardiovascular diseases [143]. Another beneficial role of exercise is the secretion of
muscular cytokines, called myokines, which regulate multiple biological functions [144].

Indeed, throughout the blood circulation, myokines influence muscles but also external sites
such as the adipose organ [145]. Among over three thousand myokine, it is necessary here to outline
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fibroblast growth factor 21 (FGF21), a hormone-like molecule mainly secreted by the glycolytic fibers,
irisin secreted by the oxidative ones during contraction, and brain-derived neurotrophic factor (BDNF)
activated by aerobic exercise [146–148]. Remarkably, resistance training is able to recover the secretory
activity of aged muscles [149,150].

A recent field of research is the analysis of circulating exosomes, a sort of nanovescicles that
deliver myokines during exercise from muscles to adipose organs or other sites [151]. Interestingly,
new soluble factors delivered by exosomes might represent therapeutic or diagnostic targets of muscle
wasting or walking speed decline in aging [152,153].

4. Impact of Melatonin on Skeletal Muscle Activity and Exercise

Day/night cycles and seasonal rhythms are evolutionary-conserved activities that deeply influence
skeletal muscle mass, performance, and mitochondrial function [154,155]. The circadian clock
conditions whole body homeostasis and mainly the sleep–wake cycles that are essential for mental and
physical fitness [156].

In humans, the master regulator of biological rhythms is the suprachiasmatic nucleus (SCN)
located in the anterior hypothalamus in the brain [157]. This central area is functionally linked to
peripheral sites by factors called Zeitgebers in German, or “synchronizers” in English, such as daylight
exposure, physical activity, sleep, and eating time habit [158,159]. Remarkably, the SCN pathway
linked to retinal ganglion cells produces melatonin, an endogenous Zeitgeber able to control vital
rhythms during the nighttime, to reduce mitochondrial dysfunctions and chronodisruption [160,161].
In particular, melatonin added in vitro to brain slices stimulated SCN phase via melatonin type-2
receptors and protein kinase C activation [162].

Molecular mechanisms regulating circadian rhythms, clock genes, and transcriptional regulators
were firstly characterized in Drosophila and then extended to higher organisms [163]. Compelling
evidence indicates that there is another peripheral clock in skeletal muscle crucial for the maintenance
of mitochondrial balance, muscle metabolism, and energy in sarcopenia [164–167].

A recent study demonstrated that old mice fed an obesogenic diet supplemented with nobiletin, a
polyphenol agonist of muscle circadian regulator retinoid acid receptor-related orphan receptor (ROR),
presented an enhancement of mitochondria activity, energy expenditure, and endurance exercise in
the calf muscles, gastrocnemius and soleus [168]. Moreover, actually single fiber proteomic allows an
unbiased determination of full muscle and mitochondrial proteins that are characteristic of a specific
myofiber to best correlate its status in health, aging, or metabolic diseases [169].

Exercise is another essential nonphotic Zeitgeber that synchronizes the circadian pathway and
sleep depth and controls muscle physiology during all lifespans but greatly in aging [170,171]. Notably,
the direct influence of exercise on the endogenous melatonin secretion is still controversial, probably
due to different melatonin estimation in saliva or serum. Indeed, salivary melatonin evaluated in men
in the late evening was inversely related to the time of physical activity because it was higher in the
morning session versus a late afternoon session of steady-state running, thus the morning fitness may
predispose one to regular sleep [172]. Accumulating evidence in rodents indicates that endogenous
melatonin and circadian systems are modulated by repeated vigorous exercise able to maintain the
synchronous phase. Conversely, Escames et al. reported that, in humans, due to a lack of control on
competing Zeitgebers and the difficulty to directly estimate the SCN input, the effects of exercise on
endogenous melatonin are controversial [173]. Moreover, enhanced urinary melatonin was associated
with more grip and quadriceps muscle strength in the elderly population [174]. However, in previously
sedentary men and women aged 40-75 years after one year of moderate exercise, the urinary melatonin
metabolite levels were unchanged [175]. Recently, as a result of a moderate exercise in a hypoxic status
(equivalent to at 4500 m altitude), serum melatonin increased, probably to protect against oxygen
deprivation [176].

In any case, exogenous melatonin is useful as an antioxidant and an anti-inflammatory nutrient
for prolonging muscle strength and adaptation during strenuous exercise in rodents and men in
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adulthood and aging [177–180]. Melatonin intake before and during exercise reduces glucose resistance
and ameliorates antioxidant status in various situations, such as during preparatory training, in
a soccer training camp, in resistance, or in high-trained athletes [181–184]. In particular, during
strenuous training and muscular trauma induced in rodents, melatonin supplementation via different
routes improved muscle recovery, inhibiting NF-kB activation and inflammatory cytokines and
downregulating atrophy pathways [185]. However, Beck et al. reported an ergogenic role of
intraperitoneal melatonin in gastrocnemius muscle in rat swimming that mimicked long-duration
aerobic exercise in human but increased inflammation, probably due to excessive physical performance
extension [186,187]. Remarkably, in humans, melatonin was devoid of any side effect despite
administration via several routes [188]. Melatonin induced drowsiness must be considered, and the
best time to assume the indole is during post-exercise recovery or convalescence [189].

On the contrary, the influence of exogenous melatonin on the physical performance is still debated
and controversial. In a recent systematic review, Lopez-Flores et al. indicated that the intake of
melatonin might be effective or ineffective depending on the type of physical activity [190]. Indeed,
melatonin secretion is limited during aerobic exercise but is enhanced during high-intensity exercise,
thus the effects of exogenous melatonin supply are different.

Several studies agreed on the beneficial role of oral melatonin intake to readjust sleep cycles
and jet-lag adverse effects after transcontinental flights, making athletes more prone to optimal
performance [191]. A single “pharmacological“ dose of melatonin (3 mg) should be taken in daytime
to shift the circadian rhythm in the proper direction and to best adapt to the new time zone according
to westward or eastward travel. This suggestion might be very useful, for example, for athletes
participating to the next 2020 Olympic Games in Tokyo, Japan. Moreover, 10 mg melatonin taken after
strenuous exercise in late evening was effective to prolong sleep and to ameliorate short–term activity
in the following morning in teenager athletes [192].

Another interesting property of a single melatonin dose (2.5 mg) is to reduce rectal temperature
during intermittent exercise in a hot environment without any alertness [193]. Independently from
physical training, Liu et al. reported that melatonin (20 mg/kg) intravenously administered for four
weeks enhanced lipolysis in mice vastus lateralis muscle by activating the “browning” effect in the
adipose tissue and thermogenesis [194].

Remarkably, a recent comprehensive review set the point on the urgency to fill the existing gap
on the best therapeutic melatonin dosage in human diseases despite a a great deal of experience in
rodents [195]. Currently, melatonin is not still administered at the best “clinical” dosage, from 40 to
100 mg/day, that is necessary to obtain the best results in metabolic and neurodegenerative diseases.
This “therapeutic range” is defined by the human equivalent dose (HED) considering a 75 kg adult
men and normalization of body surface area [196]

Melatonin schedule treatment for skeletal muscle damage or activity is summarized in Table 2.
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Table 2. Melatonin regime in skeletal muscle and exercise in rodents and humans.

Subjects/Cells Dose Times of
Administration

Reference-Muscle Type
or Exercise

Wistar albino rats 6 mg/kg s.c. 5 weeks [86] Soleus

SAMP8 mice 10 mg/kg oral
(water) 10 months [87] Diaphragm

C57BL/6J mice 10 mg/kg oral
(chow) 2 months [90] Gastrocnemius

NLRP3 KO mice 10 mg/kg oral
(chow) 2 months [91] Gastrocnemius

Pinealectomized Wistar
rats

0.5 mg/kg oral
(water) 45 days [92]

L6 cells 10 nM 24 h [93]
C2C12 1–10 nM 20 min [94]

C2C12 cells 100 mM 12–24 h [95]
C2C12 cells 100 nM 16 h [96]

Primary muscle cells 1–100 µM 24 h [97]
Elderly patients 1 mg/day oral 4 weeks [99]

Sprague-Dawley rats 10 mg/kg i.p.
30 min prior and
immediately after

reperfusion
[103] Cremaster

Sprague-Dawley rats 10 mg/kg i.v. 10 min prior and 10 min
after reperfusion [104] Gracilis

Wistar rats 10 mg/kg i.p. 4–14 days [106] Soleus
Wistar rats 10 mg/kg i.p. 1–14 days [107] Soleus
Wistar rats 20 mg/kg i.p. 7 days [108]

Sprague-Dawley rats 2.5 mg/kg 5 mg/kg oral
(water) 1–2 months [110] Gastrocnemius

Sprague-Dawley rats 5 mg/kg oral
(water) 2 months [111] Gastrocnemius

Wistar rats 1 mg/kg oral
(water) 16 weeks [177]

Treadmill running

Adult men 15 mg oral Before starting exercise [178]
High intensity run

Wistar rats 20 mg/kg i.p. Immediately after or 2 h
after exercise

[179]
Treadmill running

Adult subjects 6 mg oral Before starting exercise [180]
30 min graded exercise

Football players 5 mg oral 30 days [181]
Preparatory training

Professionalsoccer
players 6 mg oral 6 days [182]

Intensive training

Adult athletes 100 mg oral 4 weeks [183]
Resistance training

Adult athletes 20 mg oral 2 weeks [184]
High Intensity training

Wistar rat 10 mg/kg i.p. 2 days after exercise [186]
Incremental swimming

Teenage athletes 10 mg oral After exercise [192]
Exhaustive exercise

Adult subjects 2.5 mg oral Before exercise [193]
Intermittent running

5. The Emerging Concept of the Gut–Muscle Axis—Role of Exercise and Melatonin in the Gut

Within the past few years, a novel and intriguing concept has been formulated: muscle composition
and metabolism greatly depend on the bacteria population in the gut, called the microbiome. Thus,
factors affecting the inter-individual microbiome such as aging, metabolic diseases, inflammation,
cancer, or malnutrition might condition muscle weakness and induce sarcopenia [197–199]. Indeed, in
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age related diseases and obesity, an abnormal intestinal flora, i.e., dysbiosis, was detected [200–202].
The analysis of the composition of the intestinal microbiota in the elderly demonstrated that there were
more pathogens such as Enterobacteriaceae and scarce butyrate-producing healthy bacteria, leading to
less tight junctions in the mucosa and altered permeability [203].

Bindels and Delzenne suggested that the gut bacteria might be a potential therapeutic target to
change muscle mass in cancer cachexia or undernutrition and hypothesized gut–muscle axis [204].
Firstly, Backhed et al. transplanted fecal bacteria from the adult pathogen-free mice to germ-free mice,
in the latter modifying the fat deposition in the liver and the metabolism [205]. This process is defined
as “conventionalization” and indicates the implantation and the colonization of bacteria from the distal
intestine of a lean donor in the gut of a recipient. In another study, the above authors reported that, in
the gastrocnemius muscle of germ free mice lacking the anabolic fasting-induced adipose factor (Fiaf)
and fed a Western diet, there was reduced fatty acid oxidation [206]. On the contrary, germ-free mice
were resistant to a Western diet if compared to control pathogen-free mice with intact gut bacteria. A
crucial study by Yan et al. demonstrated that germ-free mice receiving fecal microbiota from obese
Rongchang pigs presented a similar fatty phenotype with higher intramuscular triglycerides. In
particular, the gastrocnemius muscle of recipient mice presented altered myofibers composition with
more type I slow-contracting versus type II B fast fibers [207]. The study firstly indicated that there was
a direct influence of gut bacteria on skeletal muscle organization and metabolism in mice. Recently,
Lahiri et al. analyzed plasma and muscles in germ-free mice without any microbiota and fed either a
regular diet or a mix of single chain fatty acids (SCFAs) able to promote beneficial insulin sensitivity
and mitochondrial biogenesis [208]. In the first experimental set, mice presented muscle atrophy and
enhanced molecular signaling of atrophy. In the second experimental set, SCFAs produced by the gut
ameliorated muscle strength and composition. Finally, when germ-free mice were transplanted with a
fecal content of pathogen-free mice treated with antibiotics, they developed muscle atrophy and reduced
function due to a reduced healthy microbiota. These data agreed with Manickam et al.’s study, which
demonstrated dysbiosis in pathogen-free mice treated with the antibiotic metronidazole producing
scarce gastrocnemius muscle mass, abnormal activation of atrophy genes, and insulin resistence [209].
Conversely, fecal transplantation of old human subjects with high physical performance, called high
functioning, in germ-free mice induced a peculiar microflora rich in Prevotella and Barnesiella species
and developed more grip strength [210].

However, if several studies in animals indicate the possibility of a gut–muscle axis, it is important
to outline that the reverse signaling from the muscle to the gut might also occur. Indeed, microbes
develop a symbiontic reaction with their host and, consequently, reduced physical activity in sarcopenic
subjects may be associated with different microbiota composition and metabolism [211,212]. This
last point might be considered when the physical performance is measured in humans by gait speed
test, because gut bacteria synthesize neurotransmitters such as serotonin, norepinephrine, GABA, or
dopamine are able to influence the neurological control of movement [213].

Intriguingly, exercise strongly influences microbiota composition and produces beneficial
metabolites in rodents and men. Remarkably, evidence in germ-free mice documents reduced
inflammation and best swim time when colonized with Eubacterium or Clostridium species or highest
treadmill run time if colonized by Veilonella [214–216]. Scheiman et al. reported that, in marathon
runners after exercise, the high microbiota content with Veilonella transplanted in mice produced an
intense treadmill activity [217]. The main metabolite produced by Veilonella in the colon was lactate
then converted into propionate and used to produce short fatty chain acids (SCFAs), such as n-butyrate,
acetate, and propionate, a source of energy for physical performance.

The balance between human microbiota Bacteroidetes or Firmicutes phyla in aerobic exercise is
essential for health, and disrupted equilibrium of gut bacteria colonization may induce inflammation
and metabolic and neurological diseases [218]. On the contrary, aerobic exercise influences Firmicutes
growth, modulating via the microbiome–gut–brain axis the symptoms of irritable bowl syndrome,
axiety, and depression [219,220].
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However, if the exercise intensity is too strong, the gut microbiota composition is dysregulated,
and overtrained Kunming mice presented inflammation, inducing Helicobacter pylori and increased risk
of peptic ulcer [221]. Moreover, depletion of gut microbiota in mice treated with antibiotics for 21 days
induced low running endurance and less fatigue in the extensorum digitorum longus muscle. This last
result is related to reduced glycogen production by a scarce number of bacteria present in the gut that
directly synthesize glucose [222].

Unfortunately, dysbiosis and low butyrate production in the gut decreased melatonin secretion
and enhanced permeability and inflammation in several organs [223]. Paulose et al. detected in the
human gastrointestinal system that Enterobacter aerogenes is sensitive to melatonin and is synchronously
regulated in the daily swarming [224]. The authors hypothesized that melatonin might act as a local
Zeitgeber in the gut. Moreover, there is evidence that butyrate supplementation stimulated melatonin
secretion in the duodenal tissue and in human colon carcinoma Caco 2 cells [225].

Firstly, Xu et al. reported that melatonin (50 mg/kg) delivered by gavage was effective as a
probiotic compound ameliorating gut dysbiosis in high fat fed mice [226]. Moreover, in obese mice,
melatonin changed the proportion of Firmicutes to Bacterioides and enhanced Akkermasia species that
restored intestinal barriers in obese mice. Another study reported that melatonin supplementation in
drinking water increased the microbiota variability in obese mice [227]. However, microbiota from
obese mice plus melatonin transplanted in antibiotic-treated high fat fed mice failed to ameliorate lipid
metabolism [228].

Probiotic nutrient intake is beneficial for the gut–microbiome–muscle axis, and this is particularly
evident during exercise. Indeed, the analysis of gut microbiome in athletes gives the best information
on the general health status, and proper nutrition may influence its composition to obtain the best
physical performance [229]. Several studies on men after strenuous exercise and athletes demonstrated
that probiotics intake changed microbiota, limited “leaky gut”, reduced inflammatory cytokines, and
potentiated muscle strength [230].

Moreover, a diet rich in protein directly regulated muscle mass, but peculiar protein composition
is crucial to limit sarcopenia in aging [231]. Among the dietary proteins that best sustain muscle
mass, whey protein is effective combined with resistance training to modulate gut microbiota and to
prevent sarcopenia [232]. However, a strong inter-individual response to resistance training exists
that is regulated by myogenic molecular circadian pathways [233]. Remarkably, the gut microbiota
influenced anabolic resistance in the skeletal muscle in the elderly. A recent metabolomic study of
fecal content demonstrated a good correspondence between bacteria in the gut and the visceral fat and
obesity grade [234].

Finally, sleep deprived mice showed reduced gut microbiota and limited probiotic species such
as Bacteroides, Akkermasia, and Faecalibacterium [235]. Interestingly, in this animal model, melatonin
reversed abnormal microbiota composition, indicating that sleep deprivation might reduce local
melatonin secretion and melatonin type-1 receptor activity in the gut.

6. Conclusions and Perspectives

The reciprocal influence of aging, diet, exercise, and gut microbiome on skeletal muscle mass and
strength requires urgent innovative research and clinical trials considering the progressive increase in
the age of the population in the world.

Melatonin is a highly evolutionary-conserved ancient molecule that was only recently rediscovered
as a safe dietary supplement in muscle disorders and in exercise. This review attempts to shed light
on potential and promising therapeutic roles of melatonin to limit muscle deterioration, mainly
mitochondrial function, and sarcopenia. Main pathways activated by melatonin in skeletal muscle are
drawn in Figure 2.
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Figure 2. Scheme representation of proposal pathways regulated by melatonin in skeletal muscle.
Notably, melatonin mechanisms of action involved mitochondria signaling. CAT: catalase; IL-6:
interleukin-6; IGF1: insulin-like growth factor-1; LC3I/LC3II: microtubule-associated protein 1A/1B-light
chain 3 free in the cytosol or conjugated to phosphotidylethanolamine during autophagy; NMJ:
neuromuscular junction; NRF1 and NRF2: nuclear respiratory factor 1 and 2; PGC-1α: peroxisome
proliferative activated receptor gamma coactivator-1alpha; ROS: reactive oxygen species; SIRT1:
sirtuin1; SOD: superoxide dismutase; TFAM: mitochondrial transcription factor; TNFα: tumor necrosis
factor alpha.

However, the utility of melatonin in athletes to obtain the best physical performance is strictly
time-dependent, dose-dependent, and exercise-dependent. Finally, the benefit of melatonin on the
gut microbiota is still very limited, and its direct influence on the gut–muscle axis is actually only
speculative. Some limitations must be addressed in this manuscript. Firstly, we did not focus on the
role of melatonin in cancer-induced cachexia due to the high number of existing reviews on cancer.
Second, we did not consider differences in male compared to female or the role of sex hormones on
muscle strength and exercise. Third, most of the studies on the gut–muscle axis were conducted
on germ-free mice, not on humans. However, we are confident that new experimental studies and
comphrensive reviews will be produced on these crucial themes in the future.
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