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Stochastic sampling effects favor manual over
digital contact tracing

Marco Mancastroppa® "2, Claudio Castellano® 3, Alessandro Vezzani® "* & Raffaella Burioni@® 2%

Isolation of symptomatic individuals, tracing and testing of their nonsymptomatic contacts
are fundamental strategies for mitigating the current COVID-19 pandemic. The breaking of
contagion chains relies on two complementary strategies: manual reconstruction of contacts
based on interviews and a digital (app-based) privacy-preserving contact tracing. We com-
pare their effectiveness using model parameters tailored to describe SARS-CoV-2 diffusion
within the activity-driven model, a general empirically validated framework for network
dynamics. We show that, even for equal probability of tracing a contact, manual tracing
robustly performs better than the digital protocol, also taking into account the intrinsic delay
and limited scalability of the manual procedure. This result is explained in terms of the
stochastic sampling occurring during the case-by-case manual reconstruction of contacts,
contrasted with the intrinsically prearranged nature of digital tracing, determined by the
decision to adopt the app or not by each individual. The better performance of manual tracing
is enhanced by heterogeneity in agent behavior: superspreaders not adopting the app are
completely invisible to digital contact tracing, while they can be easily traced manually, due to
their multiple contacts. We show that this intrinsic difference makes the manual procedure
dominant in realistic hybrid protocols.
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he current COVID-19 pandemic is impacting daily life

worldwide at an unprecedented scale. Among the features

that have contributed to transform the emerging diffusion
of SARS-CoV-2 coronavirus into such a global scale crisis, a
prominent role is played by the high rates of virus transmission
mediated by presymptomatic and asymptomatic individuals!~°.
Given the absence of effective pharmaceutical interventions, this
feature makes the mitigation of the pandemic a highly nontrivial
task, that has been tackled with various strategies, none of them
devoid of drawbacks.

Initially, governments resorted to very restrictive limitations of
non strictly necessary activities (lock-downs) to curb the diffusion
of the infection. Such measures turned out to be effective from an
epidemiological point of view, but exceedingly costly in other
respects, for their economic and social consequences”-. Recently,
such restrictive measures have been progressively lifted, and we
now rely on other tools to contain the pandemic: social distan-
cing, reinforced hygiene, and the use of individual protection
devices. Along with these provisions, aimed at preventing single
virus transmission events, another set of measures points at
breaking contagion chains: the isolation of infected individuals
(symptomatic or found via some testing), followed by the tracing
of their contacts (contact tracing, CT), the testing of the latter,
and the possible isolation of the infected?-12.

This CT procedure has proven effective in the past in various
contexts!3-16 but it comes, in its standard manual implementa-
tion, with important limitations!”. It requires the set up of a
physical infrastructure, needed to find infected individuals,
interview them and reconstruct their contacts in a temporal
window, call these contacts, convince them to get tested, and
eventually isolated. Apart from the evident problems of practical
feasibility and economic cost, the manual CT procedure intrin-
sically implies a delay between the moment an individual is found
infected (and isolated) and the time her contacts are tested and
possibly isolated. For an epidemic such as COVID-19, char-
acterized by a rather long presymptomatic infectious stage and a
high relevance of transmission by asymptomatics, the delay
implied by manual CT risks to undermine the effectiveness of the
whole procedure.

For this reason the additional strategy of a digital CT proce-
dure, based in particular on the installation of apps on smart-
phones (app-based), has been proposed alongside manual CT?2.
The rationale is that proximity sensors installed on these ubi-
quitous devices allow the detection of contacts of epidemiological
significance among individuals. When an individual is found
infected, the app permits to instantaneously trace all contacts in
the recent past, thus allowing for much quicker testing and iso-
lation. A quantitative comparison between manual and digital CT
applied to an epidemiological model describing COVID-19 dif-
fusion suggested that already a delay of the order of 3 days
completely spoils the ability of manual CT to prevent the initial
exponential growth of the epidemic?. The conclusion was that
only a digital CT avoiding this delay could be a viable strategy to
control the current epidemic. The proposal for digital CT rapidly
gained momentum, leading to the development of technical
solutions'8-20 and to the deployment of app-based CT infra-
structures in many countries?!.

Many works have scrutinized the actual validity of this solution
and investigated the possible shortcomings of app-based CT,
casting doubts over many of the assumptions underlying such
strategy?2-24: there are too few modern enough smartphones;
Bluetooth-based proximity measurements are unreliable; co-
location is not always a good proxy for epidemiological contact.
The potential risks for privacy breaches have also been exposed.

Other papers have tried to evaluate the impact of digital CT
on the current COVID-19 epidemic, attempting to precisely

determine, by means of detailed data-driven epidemiological
models, to what extent such a strategy is able to suppress virus
diffusion?>-2%. A critical role is played by the fraction f of indi-
viduals in a population that actually use the app. Fairly high
values of f (of the order of 60%) are required for the digital CT
protocol to lead to global protection®®23. These values are in
striking contrast with the low app adoption rates observed so far
in most countries®0-32,

In this paper we take a different approach. We compare the
effectiveness of the two CT protocols in exactly the same con-
ditions, i.e., in the very same realistic epidemiological scenario,
without making claims on their absolute performance, and we
estimate their relative contribution in realistic hybrid protocols,
where the two strategies are complementary. We consider a
sensible epidemiological model incorporating all main ingredients
of the current epidemic, with parameters tuned to values derived
from empirical observations about COVID-19 spreading. Within
this single framework we consider the impact of both manual and
digital CT strategies, working in similar manner but with their
own specific features: delayed isolation of contacts, limited scal-
ability, and imperfect recall for the manual procedure; depen-
dence on the predetermined app adoption decision for the
digital CT.

The comparison reveals that even when the number of
reconstructed contacts is the same, manual CT performs better
than digital CT in practically all realistic cases. The manual
protocol is more efficient in increasing the epidemic threshold
(i.e., the value of the effective infection rate above which the
infection spreads diffusely), in limiting the height of the epidemic
peaks and in reducing the number of isolated individuals. This
surprising result is due to the stochastic annealed nature of the
manual CT procedure, in which each symptomatic node ran-
domly recalls a fraction of her contacts, in contrast with the
digital CT where the traced nodes belong deterministically to
the prearranged quenched fraction of the population adopting the
app. In the latter case, the individuals not adopting the app can
never be reached by the CT protocol, while the entire population
is potentially detectable through the stochastic sampling of the
manual procedure. The better performance of manual CT is
already evident in homogeneous populations and it is strongly
enhanced in the presence of a heterogeneous distribution of
contacts. Super-spreaders not adopting the app are invisible to the
digital tracing while they are very likely to be detected by a
manual tracing originating from one of their many contacts. In a
realistic setup where both protocols are adopted simultaneously,
manual CT leads to a considerable reduction of the transmission
even considering delays and scalability, while the digital protocol
produces a relevant contribution only for large adoption rates, as
suggested by previous literature.

Results

Epidemic spreading on heterogeneous dynamical networks. We
consider an activity-driven network model with attractiveness,
taking into account both the temporal dynamics of social contacts
and the heterogeneity in the propensity to establish social
ties33-36, Each susceptible node S is assigned with an activity ag
and an attractiveness parameter bs, drawn from the joint dis-
tribution p(as, bs): the activation rate ag describes the Poissonian
activation dynamics of the node; the attractiveness bg sets the
probability p, o bg for a node to be contacted by an active agent.
At the beginning all nodes are disconnected and when a node
activates it creates m links with m randomly selected nodes
(hereafter we set m =1); then all links are destroyed and the
procedure is iterated. The functional form of p(as, bs) encodes the
correlations between activity and attractiveness in a population
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Fig. 1 Epidemic model without contact tracing. a Diagram of the
compartmental epidemic model without CT. b We plot, as a function of
e/, the ratio between the epidemic threshold r2™PT® when symptomatic
nodes are isolated and the epidemic threshold of the non-adaptive case ri*.
The horizontal dashed orange line indicates the value of rgfMPTO /A for
yp = o (instantaneous onset of symptoms). The vertical red dash-dotted
line indicates the value of yp/u we consider in the rest of the paper. We set
plas, bs) = ps(as)d(bs — as). The curve does not depend on the specific

form of ps(as).

with a given distribution of activity. It has been observed that
several social systems feature positive correlations between
activity and attractiveness and a broad power-law distribution of

activity33-3%

plag, bs) ~ ag "V o(bs — ag) (1)

with v typically ranging between 0.5 and 2.

On top of the activity-driven dynamics, we consider a
compartmental epidemic model which includes the main phases
of clinical progression of the SARS-CoV-2 infection®40-42, also
applicable to other infectious diseases with asymptomatic and
presymptomatic transmission. The model is composed by five
compartments: S susceptible, P presymptomatic, A infected
asymptomatic, I infected symptomatic, R recovered. A contagion
process (see Fig. la) occurs with probability A when a link is
established between an infected (either P, A, and I) and a susceptible
node S (contact-driven transition): a node has probability § to
become presymptomatic after infection and probability (1 —§) to

M1-8
become asymptomatic, thus S 2 pand § MA. A presympto-
matic node spontaneously develops symptoms with rate yp = 1/7p,

thus with a Poissonian process P21, both asymptomatic and
symptomatic nodes spontaneously recover respectively with rate
p=1/r and with rate p;=puyp/(yp —p), so that the average
infectious period for both symptomatic and asymptomatic is 7.
We neglect states of hospitalization and consider recovery without
death: this choice does not affect the infection dynamics.

Adaptive behavior of populations exposed to epidemics can be
modeled within the activity-driven network framework: infected
nodes experience a reduction in activity, due to isolation or the
appearance of symptoms; similarly, other individuals undertake
self-protective behavior to reduce the probability of contact with
an infected node, and this is modeled as a reduction in the
attractiveness of infected nodes*>~4>, We assume that sympto-
matic infected nodes I are immediately isolated (ay, by) = (0, 0),
therefore not being able to infect anymore. On the contrary, we
assume that recovered R, asymptomatic A, and presymptomatic
P individuals behave as when they were susceptible (a4, bs) =
(ap, bp) = (ag, br) = (as, bs). The adaptive behavior is implemen-
ted without affecting the activity of nodes which are not
isolated4.

The control parameter r=A/u is the effective infection rate,
whose critical value rc—the epidemic threshold—sets the
transition point between the absorbing and the active phase of
the epidemic. The increase in the value of r¢ is an indicator of the
effectiveness of mitigation strategies. Within the adaptive activity-
driven framework, the epidemic threshold can be calculated
analytically via a mean-field approach (see Methods).

The effect of isolating symptomatic nodes as the only
containment measure is shown in Fig. 1b. We compare the
epidemic threshold rc, obtained with the isolation of sympto-
matic nodes only, with the epidemic threshold rN* of the non-
adaptive (NA) case, in which no containment measures are taken
on infected individuals, as a function of yp/u (see Methods for the
explicit expression). In the case of instantaneous symptoms
development (yp/p — o), the threshold is increased by a factor of
1/(1 — 6), while for smaller yp/u the gain is reduced. For example,
for (1 — ) = 0.43, that is 43% of asymptomatic individuals, 7p =
1.5 days and 7=14 days as observed for SARS-CoV-2 (see
Methods for details on the parameters used in all figures), the
threshold is doubled by the isolation of symptomatic nodes. This
is the baseline reference for the evaluation of the performance of
CT strategies.

Manual and digital contact tracing protocols. The CT protocols
differ in their practical implementation as well in their explora-
tion properties.

Manual tracing is performed by personnel who, through
interviews, collects information, contacts individuals who may
have been infected and arranges for testing. In manual CT, as soon
as an individual develops symptoms (i.e., P — I), her contacts in
the previous Ty days are traced with recall probability e(as),
where ag is the activity of the symptomatic individual. A traced
contact is tested and, if found in state A (infected asymptomatic),
isolated (a = b =0): the average time between the isolation of the
symptomatic individual and the isolation of her asymptomatic
infected contacts is 7c. Such delay can be quite large, due to
the time required for the collection of the diary, the execution of
the diagnostic test and the subsequent isolation®!”. Moreover, the
manual protocol depends on €(as), which takes into account the
limited resources allocated for tracing and the limited memory/
knowledge of symptomatic individuals in reconstructing their
contacts. Low activity nodes make few contacts over time and a
fraction of their contacts will be traced; on the other hand high
activity nodes will only remember a finite number of their contacts
so that, also because of limitations of the tracing capacity, we
expect that at most a number k. of contacts can be traced46:47,
This translates into the limited scalability property:

€*,
e(as) = €*£ k

— ¢
ag 2Tcrag?

if ag<a*
(2)

: *
if ag>a

where a" = kJ/2Tcre”. Manual CT also suffers from a global
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scalability limitation. Indeed in the active phase with a large
number of infected individuals, the tracing system could be
ineffective due to the excessive number of contacts to be followed.
However, here we focus on the epidemic threshold and we
evaluate the features of the CT procedure that keep the epidemic
spreading under control before widespread diffusion occurs.

Digital CT is based on the download of an app which allows
the tracing of close contacts equipped with the same app. We
assume that each of the individuals has a probability f to
download the app before the epidemic starts. As soon as an
individual develops symptoms (i.e., P — I), if she downloaded the
app, her contacts are traced only if they downloaded the app as
well. A traced contact is tested and, if found in state A (infected
asymptomatic), is isolated (a = b =0). The time passing between
the isolation of a symptomatic individual and the isolation of her
asymptomatic infected contacts is taken to be 0, thus assuming an
idealized scenario of instantaneous notification and isolation. We
finally consider a more realistic scenario where the two
procedures are combined into a hybrid protocol in which digital
CT supports manual CT, potentially reaching individuals not
traced manually!?252%. See Methods for details on the imple-
mentation of the CT protocols.

Stochastic vs. prearranged sampling. We first compare the
manual and digital CT protocols in the case of a population with
homogeneous activity and attractiveness, p(ds, bs) = 8(as — a)d
(bs — b), without delay even in manual CT, ie., 7c=0. We set
€ =f2 so that the probability that a single contact is traced in the
two protocols is the same. However, it should be emphasized that
typical values of f2 range between 0.01 and 0.1 in many
countries®0-32, while ¢ is usually larger (=0.3—0.5), since typically
30—50% of contacts are close and occur at home, at work, or at
school and thus are easily traceable?®#%. An exact analytical
estimate of the epidemic threshold is obtained through a linear
stability analysis around the absorbing state (see Methods for
explicit expressions and Supplementary Method 1 for detailed
derivation): in Fig. 2a we compare the threshold for manual and
app-based CT, compared to the NA case, for realistic COVID-19
parameters. Both protocols feature the same epidemic threshold
when ¢ =f=0 and ¢ =f=1: indeed the former corresponds to
the isolation of symptomatic individuals only, without CT, while
the latter limit corresponds to the case in which all contacts are
traced. For intermediates values of ¢ =f2, manual tracing is
strongly and surprisingly more effective than digital tracing, as it
increases significantly the epidemic threshold, compared to the
app-based protocol. Since we are considering no heterogeneity or
delays, the difference is due only to sampling effects in the CT
dynamics. In practice, in app-based CT the population to be
tested is prearranged, based on whether or not the app was
downloaded before the outbreak started. On the contrary, manual
CT performs a stochastic sampling of the population: the random
exploration can potentially reach the entire population, since
anyone who has come in contact with a symptomatic node can be
traced. The simplest example of the difference in tracing multiple
infections processes in the two protocols is illustrated in Fig. 2b.

Effects of heterogeneous activity. We now consider a hetero-
geneous activity distribution, as observed in several human sys-
tems, and we consider a positive activity-attractiveness
correlation, as defined in Eq. (1)33-3%37-39, The power-law dis-
tribution for the activity implies the presence of hubs with high
activity and high attractiveness. We investigate the pure effect of
heterogeneities in CT!>?7 setting now e(as) =€,V as and not
considering delays in manual CT, 7c =0. We perform again a
mean-field approach, obtaining an analytical closed form for the
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Fig. 2 Stochastic vs. prearranged sampling in contact tracing. a Plot, as a
function of e = f2, of the ratio between the epidemic threshold rc in the
presence of CT protocols and the epidemic threshold of the non-adaptive
case rE‘A. In the inset we plot the ratio between the epidemic threshold of the
manual CT rANUAL and that of the app-based CT r2™, as a function of e = f2.
We consider homogeneous activity and attractiveness, setting p(as, bs) =&
(as — a)6(bs — b). b If an asymptomatic node A infects a single susceptible
node S (which subsequently becomes symptomatic, ), the infector is traced
with probability e in the manual CT and with probability {2 in the digital CT.
Thus the probability is the same if we impose f2 = e. However, if an
asymptomatic node infects two susceptible nodes (which subsequently
become symptomatic), the probability of tracing the infector with the manual
protocol is 1— (1—e)2 = 2f2 — f4 (still considering ¢ = f2). This value is
always larger than that of the digital protocol f(1— (1—f)2) = 22 — f3.

epidemic threshold (see Methods and Supplementary Method 1):
in Fig. 3 we compare the epidemic threshold with the two pro-
tocols as a function of the exponent v of the activity distribution,
for realistic parameters and setting an average activity ag = 6.7
days—14348_ Both protocols are more effective in heterogeneous
populations, that is at v ~ 1—1.5. Note that due to the cut-offs and
the constraint on the average, the fluctuations of the activity
distribution are maximum for v =1, and the epidemic thresholds
depend both on activity fluctuations and higher order moments
of ps(as) (see Methods and Supplementary Method 1 for details).
However heterogeneity greatly amplifies stochastic effects,
further increasing the advantage of the manual tracing over the
app-based prearranged protocol. Indeed, in heterogeneous
populations nodes with high activity and attractiveness (super-
spreaders) drive and sustain the spread of the epidemic. Manual
CT is far more effective in identifying and isolating them than
app-based CT: in digital CT, hubs which have not downloaded
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Fig. 3 Effects of heterogeneity. a Plot, as a function of the exponent v, of the ratio between the epidemic threshold r¢ in the presence of CT protocols and
the epidemic threshold of the non-adaptive case rgA. We set e =2 =0.1 (f~ 0.316). In the inset we plot the ratio between the epidemic threshold of the
manual CT rANUAL and that of the app-based CT r2", as a function of v. b Same plot as a with e =2 = 0.6 (f~ 0.775). ¢ The ratio rc /r}* is plotted as a
function of e = f2 for both CT protocols, with v =15. In the inset we plot the ratio rANUAL /r2PP a5 4 function of e = f2 for several v values. In all panels the

distribution p(as, bs) is given by Eq. (1).
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Fig. 4 Effects of limited scalability and isolation delay in manual contact tracing. a Plot, as a function of the exponent v, of the ratio between the epidemic
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set e =f* = 0.1 (f~ 0.316), 7c = 3 days. In the insets we plot the ratio between the epidemic threshold of the manual CT rd

MANUAL and that of the app-

based CT r&®?, as a function of v. b Same plot as a with & = f* = 0.6 (f~ 0.775), 7c = 5 days. ¢ Plot of the ratio rc /¥ as a function of € = 2 for both CT

protocols, setting v =15 and for several values of zc. In the inset we plot the ratio rg"

distribution p(as, bs) is given by Eq. (1.

the app will never be traced, despite the high number of their
contacts. On the contrary, manual CT is very effective in tracing
super-spreaders, because they are engaged in many contacts and
are traced very effectively by stochastic exploration.

Limited scalability and delay in manual CT. We now consider
some features of manual CT that can reduce its effectiveness: the
limited scalability of the tracing capacity*®47 and the delays in CT
and isolation>2>28, We set e(as) as in Eq. (2) and consider a
large delay 7c =3 days? in manual CT. In Fig. 4 we compare
the epidemic threshold for the two CT protocols, setting
equal probabilities of tracing a contact &= f*, where
€ = [ dage(ag)ps(ag). For small values of € (note that this how-

ever corresponds to a quite large adoption rate f = v/€ ~ 0.316)
manual CT is still more effective (see Fig. 4a): the delay in iso-
lation and the limited scalability are not able to significantly
reduce the advantage provided by the stochastic exploration of
contacts. Figure 4b shows that digital CT can become more
effective than manual CT, but this occurs only for very large
values of f2 and 7c. This indicates that for realistic settings, the
advantage of the manual protocol over the app-based protocol is
robust even including delays and limited scalability. Figure 4c

ANUAL /r2PP a5 a function of zc for several € values. In all panels the

further illustrates for which (unrealistically large) values of f2 and
7¢, digital CT outperforms manual CT. Note that realistic values
of f correspond to f2 at most of the order of 0.1. Hence, an
extremely high adoption of the app is necessary in order to obtain
an effective advantage of the digital CT.

Manual and app-based CT in the epidemic phase. We now
explore with numerical simulations (see Methods, Supplementary
Method 2) the effects of manual and digital CT protocols in the
active phase of the epidemic. We consider an optimistic value of
f=0.316, setting € = f> = 0.1 that is a very low value for the
recall probability, and we consider the system above the epidemic
threshold 7 > r, in the conditions of Fig. 4a. Figure 5 shows that
the infection peak with manual tracing is lower than the app-
based one. Moreover, in the manual CT the duration of the
epidemic is reduced: this strongly impacts on the final epidemic
size, which is about half of the one observed in the app-based CT.
We also plot the temporal evolution of the average activity of the
system (a(t)) and of the fraction of isolated nodes Iso(t) (see
inset). In general, the average activity (a(t)) features a minimum,
however its value remains very large (about 98% of the case
without any tracing measure). This implies that both protocols do
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Fig. 5 Effects of manual and digital contact tracing on the epidemic active
phase. We plot the temporal evolution of the fraction of infected nodes
Inf(t), i.e., infected asymptomatic and infected symptomatic, and of the
fraction of removed nodes R(t), for both manual and digital CT. In the inset
we plot the temporal evolution of the fraction of isolated nodes Iso(t) (right
y-axis) and of the average activity of the population (a(t)) (left y-axis),
normalized with as. All curves are averaged on several realizations of the
disorder and of the temporal evolution. We set € = f2 = 0.1, 7c = 3 days,
r/riA = 3.1 and N =5x103. The distribution p(as, bs) is given by Eq. (1),
with v =1.5. The curves for digital and manual CT are averaged respectively
over 554 and 681 realizations and the errors, evaluated through the
standard deviation, are smaller or comparable with the curves thickness.

not disrupt the functionality of the system. Interestingly, the
fraction of isolated nodes is coherent with the infection peak, and
in particular it is lower when the infection peak is lowered. This
means that the most effective procedure, ie., manual CT for
realistic values of the parameters, not only lowers the infection
peak but it is also able to isolate a smaller number of nodes, a key
feature of any effective CT strategy.

Robustness. In the Supplementary Notes we show that the
advantage of the manual CT is robust with respect to the
relaxation of several assumptions and to changes of parameters.
In particular, we consider the case where all nodes have equal
attractiveness p(as, bs) = ps(as)d(bs — b), we take into account
very long delays 7c and we change the maximum number of
traceable contacts k.. We also show that the advantage of manual
CT in the presence of heterogeneous activity is robust, if one takes
into account that contacts belonging to the close social circle of
the index case (same household) are always traced and isolated
manually, also in the digital protocol. This can be verified by
using a hybrid procedure with a fixed small number of contacts
always traced (see Supplementary Notes).

Hybrid CT protocols: manual plus digital CT. We now consider
the implementation of a realistic hybrid CT protocol with manual
and digital CT working at the same time. We assume that each
individual has downloaded the app with probability f before the
epidemic starts. As soon as an individual with activity ag develops
symptoms (i.e, P—1I), CT is activated with reference to the
previous Tcr days: if the infected individual and also her contact
downloaded the app, the contacted agent is immediately traced
and isolated with no delay. Otherwise, the contact can only be
traced manually, with probability e(as) (as in Eq. (2)) and, if
found in state A, the contact is isolated with a delay 7c. We set a
realistically large delay 7c =3 days.

The threshold in the hybrid case can be determined through
the solution of a complex set of equations, that we solve
numerically in Supplementary Method 1. In the presence of
heterogeneous activity (ie., super-spreaders), starting form a
purely digital protocol (Fig. 6b, c) the addition of manual CT
rapidly increases the threshold, leading to an improvement by a
large factor (about 80%), for realistic values € > 0.3. Instead,
starting from a realistic manual CT setup € 2 0.3, a significant
improvement (i.e., a 50% of threshold increase) is obtained by
implementing a digital CT only if f > 0.60—0.75 (Fig. 6a, c).
These values are consistent with other results in the
literature%-23; however, in most countries, the app adoption
rates do not reach these values30-32,

Discussion

Our results indicate that manual CT, despite its drawbacks, can
be an efficient protocol in heterogeneous populations, more
efficient than its digital counterpart, due to its specific sampling
properties. This conclusion is robust with respect to variations in
several model assumptions, including correlations between
activity and attractiveness or the limited scalability of the manual
CT protocol. However, epidemic propagation and strategies to
mitigate it are very complex processes and several of their features
have been left out from our modeling scheme. Some of these
features (the possibility that isolation is non complete, that some
individuals do not report symptoms, or the existence of testing
campaigns detecting infected nonsymptomatic individuals) act
similarly on both types of CT and hence do not modify the
relative performance. Other more realistic features (the presence
of delays even in digital CT and the existence of additional
sources of heterogeneity in viral shedding®?, recovery rates!, and
activity temporal patterns®?) would even reduce the relative
performance of digital CT.

Our results put forward several directions to increase the
effectiveness of tracing. An important aspect is the correlation
between app adoption rates and activity of nodes: our analysis in
the Supplementary Notes shows that, as expected, in hetero-
geneous populations a positive correlation strongly increases the
success of digital CT. This is a direction that could be pursued in
campaigns aimed at driving app adoption among potential super-
spreaders. However, this represents a challenge for policy makers.
Evidence is currently emerging that those who download the app
are individuals who adopt very cautious behavior, i.e., fand ag are
typically anticorrelated>>. Another road that could enhance the
efficacy of CT protocols is to follow chains of transmissions along
multiple steps, so that when a traced contact is found infected
also her contacts are reconstructed and tested. This additional
step improves the overall effectiveness of CT protocols, but also
increases the delay associated to the manual procedure with
respect to the digital one. Digital CT allows in principle to extend
the tracing procedure to an arbitrary number of steps, however,
strong concerns related to privacy issues>> make this path difficult
to follow.

In summary, even if additional features of CT can be con-
sidered, the weakness of digital CT, originated by the nature of
the sampling of contacts and worsened by heterogeneities, seems
to be an intrinsic unavoidable property of the procedure. The
manual CT protocol, with its higher intrinsic stochasticity, does
not suffer from this problem and samples contacts effectively,
especially in realistic heterogeneous populations: thus, digital CT
cannot be considered simply as a cheaper and more rapid way of
implementing standard CT and should only be considered in
combination with manual protocols. Manual CT must necessarily
play an important role in any strategy to mitigate the current
pandemic. Considerations about costs and practical feasibility of
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Fig. 6 Effects of hybrid contact tracing protocol. a Plot, as a function of f2, of the ratio between the epidemic threshold in the presence of a hybrid CT
protocol, rIMANVALHAPP "and the epidemic threshold of the non-adaptive case, ¥, for realistic values of € (see legend). In the inset we plot, as a function of

f2, the ratio between rg"ANUAH'APP

function of €, for realistic app adoption levels f (see legend). In the inset we plot, as a function of €, the ratio between r¢
MANUAL+APP/,,§A

threshold when only app-based CT is implemented, ra?. ¢ The ratio r’

and the epidemic threshold when only manual CT is implemented, r"NUAL b Plot of the ratio r¥

MANUAL-%—APP/',QA as a

and the epidemic
is plotted as a function of f2 and € through a heat map: the red dash-

MANUAL+APP

dotted lines are plotted fore = 0.3 and f= 0.2, i.e., they correspond to the red dashed curves of panel a and b. In all panels the distribution p(as, bs) is given
by Eq. (1), the manual CT features a delay of 7c =3 days and limited scalability is considered.

the two approaches (which have not been taken into account
here) suggest that a careful integration of the two protocols may
be the key for more effective mitigation strategies. As suggested in
the last part of our results, an optimal set up should include both
procedures, adopted simultaneously. In this respect, the avail-
ability of detailed data about the rates of app adoption in various
population groups (and correlations with age or activity levels), as
well as more precise estimates of other parameters, such as the
recall probability, would be highly beneficial. The design of
optimal hybrid CT protocols, including decisions on how to
allocate resources and how to target recommendations for app
adoption, is a very promising direction for future work.

Methods

Mean-field equations and implementation of CT protocols. We consider an
activity-attractiveness based mean-field approach, dividing the population into
classes of nodes with the same activity as and attractiveness bs and treating them as
if they were statistically equivalent. For each class (as, bs) we consider the prob-
ability that at time ¢ a node is in one of the epidemic compartments. For arbitrary
plas, bs) distribution and arbitrary functional form of flas) and e(as) we build the
mean-field equations which describe the temporal evolution of the network, the
epidemic spreading and the adaptive behavior due to isolation and CT. In particular,
in order to model the manual and app-based CT we introduce two further com-
partments: T traced asymptomatic and Q isolated asymptomatic. An asymptomatic
individual became traced T when infected by a presymptomatic node or when she
infects a susceptible node that eventually develops symptoms. In the manual case
the tracing is effective with probability e(a). In the app-based case, tracing occurs
only if both nodes involved in the contact downloaded the app. A traced node is still

infective (ar, br) = (as, bs) and with rate y, = 1/7, > p it is quarantined, TL‘; Q;
while a quarantined node is no more infective since (aq, bq) = (0, 0). In order to
take into account the delay in the manual CT we set: 7o = 7c + 7p for the manual
case and 75 = 7p for the app-based process. See Supplementary Method 1 for the
detailed equations of manual, digital, and hybrid CT protocols.

Epidemic thresholds. We perform a linear stability analysis of the mean-field
equations around the absorbing state obtaining the conditions for its stability and
then the epidemic threshold rc (see Supplementary Method 1 for details). For the
NA case, when infected individuals do not modify their behavior, the threshold is
equal to the one obtained in refs. 344, Indeed, setting p(as, bs) = ps(as)d(bs — as)
we obtain:
NS
e = —= (3)
2a2
If only symptomatic nodes are isolated as soon as they develop symptoms, we
obtain, setting p(as, bs) = ps(as)d(bs — as):

Yo

NA “

rSYMP’l‘O =7
¢ Co+Qa- D

4

For the case with CT on homogeneous population, we set p(as, bs) = 8(as — a)d
(bs — b), e(as) =€ and no delay in manual CT 7o = 0. We obtain the epidemic
threshold for both the manual and digital CT:

2riA L
rlé/IANUAL: C u ®)
S+ (1=8— et [0+ (1—8— o)Ly +doels
réPP — 2VEA).‘/‘i
S+ —-8—fOlr+ \/(6+(1 - 6—f5)%)2 +40f (6 + (1~ f)(1 - 9))
(6)

The more general case of populations with arbitrary distribution p(as, bs), arbitrary
delays 7 and general form of e(as) and f(as), is reported in Supplementary
Method 1. In Supplementary Method 1 we also report the derivation of the epi-
demic threshold for the hybrid protocol. Its values are derived from the stability
conditions of a complex set of 22 differential equations, that we can solve
numerically.

Model parameters. Figures present results where one of the model parameters is
varied and all the others are fixed. Here we report the parameter values used
throughout the paper, unless specified otherwise. They are tailored to describe the
current COVID-19 pandemic.

The fraction of infected individuals who develop symptoms is § = 0.57!. The
time after which a presymptomatic individual spontaneously develops symptoms is
7p = 1.5 days®*14%, while infected individuals recover on average after 7=
14 days*>°0. The time window over which contacts are reconstructed is Ter =
14 days®: it is fixed equal to 7 to track both nodes infected by the index case in the
presymptomatic phase (forward CT) and the primary case who infected the index
case (backward CT)!2. The maximum number of contacts engaged in Tcy by a
single individual that can be reconstructed with the manual CT procedure is kc =
130, according to reasonable estimates of the number of contacts manually traced
for very active individuals*®. Moreover, fixing kc = 130 and for realistic
€~ 0.1 —0.5%8 the average number of traced contacts for each index case is
approximatively 10—60, consistently with reported data on manual CT and with
estimates for resources allocation649-°6:57 (see Supplementary Notes for the
distribution P(kr) of contacts kt traced manually by each index case). The activity-
driven network parameters are fixed so that the average value of the activity is

always the same, i.e., ag = 6.7 days~14348, In particular for a power-law

e —(v+1 . .
distribution pg(ag) ~ ag @1 the values of ag are constrained between a minimum

and a maximum value (a, < ds < ay;). We keep ay = 103a,, and then we tune a,, to
set ag.

Numerical simulations. We perform numerical simulations of the epidemic model
on the adaptive activity-driven network: the network dynamics and epidemic
spreading are implemented by a continuous time Gillespie-like algorithm. We
consider an activity-driven network of N nodes. The results are averaged over
several realizations of the disorder and of the dynamical evolution, so that the error
on the infection peak height is lower than 6%. The initial conditions are imposed
by infecting the node with the highest activity ag and the CT protocols are
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immediately adopted. A detailed description of the simulations is reported in
Supplementary Method 2.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request.

Code availability
The simulation codes that support this study are available from the corresponding author
upon reasonable request.
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