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Abstract
State-space models (SSMs) are a popular tool for modeling animal abundances. Infer-

ence difficulties for simple linear SSMs are well known, particularly in relation to

simultaneous estimation of process and observation variances. Several remedies to

overcome estimation problems have been studied for relatively simple SSMs, but

whether these challenges and proposed remedies apply for nonlinear stage-structured

SSMs, an important class of ecological models, is less well understood. Here we

identify improvements for inference about nonlinear stage-structured SSMs fit with

biased sequential life stage data. Theoretical analyses indicate parameter identifiabil-

ity requires covariates in the state processes. Simulation studies show that plugging in

externally estimated observation variances, as opposed to jointly estimating them with

other parameters, reduces bias and standard error of estimates. In contrast to previous

results for simple linear SSMs, strong confounding between jointly estimated process

and observation variance parameters was not found in the models explored here. How-

ever, when observation variance was also estimated in the motivating case study, the

resulting process variance estimates were implausibly low (near-zero). As SSMs are

used in increasingly complex ways, understanding when inference can be expected to

be successful, and what aids it, becomes more important. Our study illustrates (a) the

need for relevant process covariates and (b) the benefits of using externally estimated

observation variances for inference about nonlinear stage-structured SSMs.

K E Y W O R D S

Bayesian hierarchical models, data integration, delta smelt, Hypomesus transpacificus, parameter identifi-

ability, San Francisco Estuary

1 INTRODUCTION

Understanding what determines changes in animal abundance

through time is a basic question of population ecology and

natural resource management. Estimates of recruitment and

survival can facilitate this, quantifying where, when, and how

populations respond to endogenous (density-dependent) and
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exogeneous (external, density-independent) factors (Turchin,

2003). However, fitting models can be difficult in practice

because field-based estimates of animal population abun-

dances can be incorrect due to sample randomness as well

as systematic biases (Staudenmayer and Buonaccorsi, 2006).

Although population models addressing observation error

due to sampling variability are increasingly common, the
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inclusion of observation bias has been much less studied

because most analyses use annual time step models of data

based on a single survey and the bias is assumed to cancel

out. Relative biases can be especially problematic when abun-

dances from different surveys are integrated into a single pop-

ulation model.

State-space models (SSMs) offer an attractive framework

to integrate disparate datasets with potentially different biases.

SSMs are proving to be important population modeling tools

(Newman et al., 2014) because they allow separate descrip-

tion of process and observation time series. The state pro-

cess time series consists of unobserved values that may be

viewed as an underlying description of the true, alternatively

latent or hidden (Newman et al., 2006), state of a dynamic sys-

tem. The observation time series consists of measurements on

the state process. The explicit separation of process variation

from observation error allows the flexibility needed to address

survey specific errors.

One problem long recognized with some SSMs, especially

the special case of normal dynamic linear models (NDLMs;

West and Harrison, 2006), is the difficulty of simultaneously

estimating both process variance and observation variance

(Dennis et al., 2006; Knape, 2008; Knape et al., 2011; Auger-

Méthé et al., 2016). There are similar difficulties in jointly

estimating process variability and observation noise variances

in nonlinear population dynamics process models (de Valpine

and Hilborn, 2005).

Several remedies for SSM inference have been explored.

One is to formulate the SSM such that the parameters of

the process variance are also parameters for the mean(s) of

the state process. Examples of such parameterizations with

NDLMs include Newman (1998) who used normal approxi-

mations for binomial and multinomial distributions where the

expectations and variances matched those distributions, and

Besbeas et al. (2002) who approximated Poisson and bino-

mial distributions with the corresponding means and vari-

ances. A second remedy is to collect replicate observations

that allow separation of observation variance from process

variance (Dennis et al., 2010). A third remedy is to avoid try-

ing to estimate the observation variance altogether by insert-

ing external estimates of observation variance when such esti-

mates are available (Knape et al., 2013), for example, through

mark-recapture sampling.

With few exceptions, for example, Knape et al. (2013),

most assessments of SSM identifiability problems have been

based on NDLMs and often for situations where the obser-

vations are annual and based on one survey type. In this

paper, we examine the estimation problem of an SSM whose

state process is stage-structured, nonlinear, and non-Gaussian,

and whose observations have stage-specific relative biases.

Stage-structured population models are an important tool to

draw inference about factors affecting recruitment and sur-

vival rates (Caswell, 2001). Although some examples of their

application embedded within an SSM inferential framework

exist (de Valpine, 2003; de Valpine and Rosenheim, 2008),

the effects of both noisy and biased data on inference for non-

linear SSMs are relatively poorly understood. Additionally, in

practice, ecologists are equally concerned with estimation of

coefficients relating predictor variables to vital rates, also a

topic of little focus compared to historical emphasis on esti-

mation of variance parameters and latent states.

The rest of the paper is structured as follows. In Section 2,

we develop a stage-structured SSM that contains stochas-

tic vital rates with covariate dependency and an observa-

tion model with bias terms for some life stages. We also

describe several alternate formulations for the observation

model depending on whether external estimates of observa-

tion variances are available. Section 3 provides a theoreti-

cal analysis of the identifiability of the parameters in this

model while Section 4 presents a simulation study investigat-

ing parameter inference in practice. Attention is given to how

estimation properties differ between models that fix observa-

tion error variance using externally derived values and models

that internally estimate observation error variance. Section 5

presents a case study on the fish species delta smelt (Hypome-
sus transpacificus) to illustrate the utility of such models and

highlight practical issues that arise when fitting them. Discus-

sion is in Section 6.

2 MODEL DESCRIPTION

Throughout we will parameterize the lognormal distribu-

tion using LogNormal(𝜇, 𝜎2), where 𝜇 and 𝜎2 are the

log-mean and log-variance parameters, respectively. Sim-

ilarly, logit-normal distributions will be described using

LogitNormal(𝜇, 𝜎2), where 𝜇 and 𝜎2 are the location and

squared-scale parameters. The distribution designation of

LogitNormal means that the logit transformed survival prob-

abilities are normally distributed.

2.1 State process model

Assume a population can be partitioned into different life

stages where 𝑛𝑠,𝑡 denotes the true abundance of life stage 𝑠

of time (or cohort) 𝑡. In particular, we consider a fish popula-

tion that has four life stages: post-larvae, juveniles, sub-adults,

and adults. Given an initial abundance of reproducing adults

𝑛𝐴,𝑡=0 in cohort 𝑡 = 0, the state process update equations are

Post-larvae|Adults ∶ 𝑛𝑃𝐿,𝑡|𝑛𝐴,𝑡−1 = 𝜌𝑡𝑛𝐴,𝑡−1, (1)

Juveniles|Post-larvae ∶ 𝑛𝐽,𝑡|𝑛𝑃𝐿,𝑡 = 𝜙𝑃𝐿,𝑡𝑛𝑃𝐿,𝑡, (2)

Sub-adults|Juveniles ∶ 𝑛𝑆𝐴,𝑡|𝑛𝐽,𝑡 = 𝜙𝐽,𝑡𝑛𝐽 ,𝑡, (3)

Adults|Sub-adults ∶ 𝑛𝐴,𝑡|𝑛𝑆𝐴,𝑡 = 𝜙𝑆𝐴,𝑡𝑛𝑆𝐴,𝑡, (4)
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where 𝜌𝑡 is time-specific recruitment and 𝜙𝑠,𝑡 are the life stage

and time-specific survival probabilities. Assuming (envi-

ronmental) stochasticity in four processes, the vital rate

models for recruitment and the three survival probabilities

are

Recruitment ∶ 𝜌𝑡 ∼ LogNormal
(
𝐱𝑇
𝑅,𝑡

𝜻 , 𝜎2
𝑃 ,𝑅

)
, (5)

Post-larval Survival ∶ 𝜙𝑃𝐿,𝑡 ∼ LogitNormal
(
𝐱𝑇
𝑃𝐿,𝑡

𝜷, 𝜎2
𝑃 ,𝑃𝐿

)
,

(6)

Juvenile Survival ∶ 𝜙𝐽,𝑡 ∼ LogitNormal
(
𝐱𝑇
𝐽 ,𝑡
𝜼, 𝜎2

𝑃 ,𝐽

)
, (7)

Sub-adult Survival ∶ 𝜙𝑆𝐴,𝑡 ∼ LogitNormal
(
𝐱𝑇
𝑆𝐴,𝑡

𝜸, 𝜎2
𝑃 ,𝑆𝐴

)
,

(8)

where 𝜻𝑇 = (𝜁0,… , 𝜁𝑚𝑅
) is a vector of 𝑚𝑅 + 1 regression

coefficients corresponding to a vector of recruitment predic-

tor variables 𝐱𝑇
𝑅,𝑡

= (1, 𝑥1,𝑡,… , 𝑥𝑚𝑅,𝑡), and 𝜎2
𝑃 ,𝑅

is the recruit-

ment process variance on the log scale. The terms in the sur-

vival functions, Equations (6)-(8), are defined analogously

but with possibly different dimensions reflecting life stage-

specific numbers of covariates used in survival predictions.

2.2 Observation model

Observation error in the abundance estimates 𝑛𝑠,𝑡 can

include both bias, such that 𝐸[𝑛𝑠,𝑡|𝑛𝑠,𝑡] = 𝜓𝑠,𝑡𝑛𝑠,𝑡, and

sampling variance 𝑉 [𝑛𝑠,𝑡] (Staudenmayer and Buonac-

corsi, 2006). Different choices of the conditional distribu-

tion for 𝑛𝑠,𝑡|𝑛𝑠,𝑡 can be made, which in turn can affect

inference (Knape et al., 2011). We chose a lognormal distri-

bution because it ensures strictly positive abundance indices

(especially useful when abundance indices are near zero), it is

perhaps the most common assumption (although more often

in terms of a normal distribution when working with log abun-

dances), and because earlier work (Polansky et al., 2019) sug-

gests it is to be preferred over a normal distribution for the case

study model described in Section 5.

Due to nonidentifiability problems, we do not consider

estimating biases that are both life stage and cohort specific

because in that case the parameters would confound with

the latent abundance estimates. Motivated by the case study

in Section 5, we assume juvenile and sub-adult abundance

indices are biased by factors 𝜓𝐽 and 𝜓𝑆𝐴, and we use

the following parameterizations for the observation model

equations:

𝑛𝑃𝐿,𝑡 ∼ LogNormal

(
ln(𝑛𝑃𝐿,𝑡) −

𝜎2
𝑂,𝑃𝐿,𝑡

2
, 𝜎2

𝑂,𝑃𝐿,𝑡

)
, (9)

𝑛𝐽,𝑡 ∼ LogNormal

(
ln(𝜓𝐽𝑛𝐽,𝑡) −

𝜎2
𝑂,𝐽 ,𝑡

2
, 𝜎2

𝑂,𝐽 ,𝑡

)
, (10)

𝑛𝑆𝐴,𝑡 ∼ LogNormal

(
ln(𝜓𝑆𝐴𝑛𝑆𝐴,𝑡) −

𝜎2
𝑂,𝑆𝐴,𝑡

2
, 𝜎2

𝑂,𝑆𝐴,𝑡

)
,

(11)

𝑛𝐴,𝑡 ∼ LogNormal

(
ln(𝑛𝐴,𝑡) −

𝜎2
𝑂,𝐴,𝑡

2
, 𝜎2

𝑂,𝐴,𝑡

)
. (12)

With these parameterizations, the expected index is

𝐸[𝑛𝑠,𝑡] =

{
𝑛𝑠,𝑡 observation bias absent

𝜓𝑠𝑛𝑠,𝑡 observation bias present
(13)

and the variance is

𝑉 [𝑛𝑠,𝑡] =

{
(𝑒𝜎

2
𝑂,𝑠,𝑡 − 1)𝑛2𝑠,𝑡 observation bias absent

(𝑒𝜎
2
𝑂,𝑠,𝑡 − 1)(𝜓𝑠𝑛𝑠,𝑡)2 observation bias present.

(14)

Irrespective of whether a bias factor is included, the coeffi-

cient of variation (CV) is

𝐶𝑉 [𝑛𝑠,𝑡] =
√

𝑒
𝜎2
𝑂,𝑠,𝑡 − 1 (15)

from which it follows that

𝜎2
𝑂,𝑠,𝑡

= ln
(
𝐶𝑉 [𝑛𝑠,𝑡]2 + 1

)
. (16)

Plugging the right-hand side of Equation (16) into Equa-

tions (9)-(12), the observation model equations can be written

as

𝑛𝑠,𝑡 ∼ LogNormal

⎛⎜⎜⎜⎝ln
⎛⎜⎜⎜⎝

𝜓𝑠𝑛𝑠,𝑡√
𝐶𝑉 [𝑛𝑠,𝑡]2 + 1

⎞⎟⎟⎟⎠, ln
(
𝐶𝑉 [𝑛𝑠,𝑡]21 + 1

)⎞⎟⎟⎟⎠ ,
(17)

where 𝜓𝑠 = 1 if there is no bias term present in a given life

stage or survey specific observation model.

2.3 Observation model formulations

There are three scenarios for how the observation model equa-

tions can be formulated. These scenarios are presented in

Table 1. Scenarios 1 and 2 depend on the availability of esti-

mates of uncertainty (either coefficients of variation or vari-

ances) for 𝑛𝑠,𝑡 that are derived externally to the SSM. In
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T A B L E 1 Different scenarios for how observation model equations can be formulated, including cases where external estimates of observation

error variance are available

Scenario Equation and description
1 𝑛𝑠,𝑡 ∼ LogNormal(ln( 𝜓𝑠𝑛𝑠,𝑡√

𝐶𝑉 [𝑛𝑠,𝑡]2𝐸𝑥
+1
), ln(𝐶𝑉 [𝑛𝑠,𝑡]2𝐸𝑥

+ 1))

Use the external coefficient of variation estimates within Equation (17).

2 𝑛𝑠,𝑡 ∼ LogNormal(ln( 𝜓𝑠𝑛𝑠,𝑡√
𝑉 [𝑛𝑠,𝑡]𝐸𝑥∕(𝜓𝑠𝑛𝑠,𝑡)2+1

), ln( 𝑉 [𝑛𝑠,𝑡]𝐸𝑥

(𝜓𝑠𝑛𝑠,𝑡)2
+ 1))

Use the external abundance estimate variances 𝑉 [𝑛𝑠,𝑡]𝐸𝑥 but use the bias corrected latent abundance value 𝑛𝑠,𝑡 to obtain the

𝐶𝑉 term in Equation (17).

3 𝑛𝑠,𝑡 ∼ LogNormal(ln(𝜓𝑠𝑛𝑠,𝑡) − 𝜎2
𝑂,𝑠,𝐼𝑛

∕2, 𝜎2
𝑂,𝑠,𝐼𝑛

)
Do not use external information about the variances of 𝑛𝑠,𝑡, and instead internally estimate observation variance along with the

other parameters and latent states of the SSM. In this case, it is not feasible to estimate both life stage and cohort specific

values, but life stage-specific (and possibly survey method specific if multiple surveys are used to monitor a single life stage)

parameters may be estimable. The observation model equations are similar to Equations (9)–(12) but with a life stage 𝑠

specific observation log-variance parameter.

Note. The bias terms are included for generality with the understanding that 𝜓𝑠 = 1 if there is no bias term present in the life stage or survey specific observation model.

Scenario 3, observation variance is estimated within the SSM.

The choice between Scenarios 1 and 2 may depend on whether

estimated coefficients of variation or estimated variances are

closer to the true values.

3 THEORETICAL
IDENTIFIABILITY

We applied methods developed by Cole and McCrea (2016) to

evaluate the theoretical identifiability of the parameters in the

SSM described in Section 2 under various scenarios involving

fixed or estimated observation error CV and the inclusion or

exclusion of covariates in the state process model. An exhaus-

tive summary vector based on (approximate) expected val-

ues and variances of the observations was derived assuming

each state process had an intercept and either no covariates or

one covariate. The derivative matrix, formed by taking par-

tial derivatives of this vector with respect to the parameters

of the model, was computed using Maple 17 (Maple, 2013)

and code modified from the appendices of Cole and McCrea

(2016). If the rank of the derivative matrix, 𝑟, equals the num-

ber of parameters, 𝑝, then all the model parameters are sep-

arately identifiable. If 𝑟 < 𝑝, then 𝑟 parameters or parameter

combinations are identifiable, and Maple code from Cole and

McCrea (2016) specifies which single parameters and combi-

nations of parameters are identifiable.

One analysis examined the identifiability of parameters

in the SSM defined by Equations (1)–(12) assuming a sin-

gle covariate was used in the modeling of each of the four

state processes. This model has 18 parameters: eight state

process model parameters determining expected values (𝜁0,

𝜁1, 𝛽0, 𝛽1, 𝜂0, 𝜂1, 𝛾0, 𝛾1), two observation bias parameters

(𝜓𝐽 , 𝜓𝑆𝐴), four process noise parameters (𝜎2
𝑃 ,𝑅

, 𝜎2
𝑃 ,𝑃𝐿

, 𝜎2
𝑃 ,𝐽

,

𝜎2
𝑃 ,𝑆𝐴

), and four observation variance parameters assum-

ing that these parameters were time-invariant (𝜎2
𝑂,𝑃𝐿

, 𝜎2
𝑂,𝐽

,

𝜎2
𝑂,𝑆𝐴

, 𝜎2
𝑂,𝐴

). Crucially, the initial state component, 𝑛𝐴,0, was

viewed as a known parameter, which seemed reasonable given

the assumption of unbiased estimates of the abundance of

adults in the year prior to the start of the time series. An

exhaustive summary vector of length 20 (which proved to

be of sufficient length) was constructed based on first-order

approximations of the expected values and variances of the

observations. A subset of the vector including examples of

the expectations and variances is

𝐸[𝑛𝑃𝐿,1] = 𝐸[𝑛𝑃𝐿,1] ≈ 𝑒𝜁0+𝜁1𝑥𝑅,1𝑛𝐴,0, (18)

𝐸[𝑛𝐽,1] = 𝐸[𝜓𝐽𝑛𝐽,1] ≈ 𝜓𝐽
𝑒𝛽0+𝛽1𝑥𝑃𝐿,1

1 + 𝑒𝛽0+𝛽1𝑥𝑃𝐿,1
𝑒𝜁0+𝜁1𝑥𝑅,1𝑛𝐴,0,

(19)

𝐸[𝑛𝑆𝐴,1] = 𝐸[𝜓𝑆𝐴𝑛𝑆𝐴,1]

≈ 𝜓𝑆𝐴
𝑒𝜂0+𝜂1𝑥𝐽,1

1 + 𝑒𝜂0+𝜂1𝑥𝐽,1

𝑒𝛽0+𝛽1𝑥𝑃𝐿,1

1 + 𝑒𝛽0+𝛽1𝑥𝑃𝐿,1
𝑒𝜁0+𝜁1𝑥𝑅,1𝑛𝐴,0,

(20)

𝑉 [𝑛𝑃𝐿,1] = 𝜎2
𝑂,𝑃𝐿

+ 𝑉 [𝜌1𝑛𝐴,0] ≈ 𝜎2
𝑂,𝑃𝐿

+ 𝑛2
𝐴,0

(
𝑒𝜁0+𝜁1𝑥𝑅,1

)2(𝑒𝜎2𝑃 ,𝑅 − 1). (21)

The matrix of first derivatives of the exhaustive summary

vector with respect to each of the parameters had a full rank

of 18, thus all 18 parameters were identifiable. Further details

on the exhaustive summary calculations for this SSM are pro-

vided in Web Appendix A.

A second set of analyses examined the effect of state pro-

cess covariates on identifiability. This was largely motivated

by the fact that observations for two of the life stages in the
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case study (Section 5) were biased. The potential for non-

identifiability can be seen in the case of a single life stage

auto-regressive process model fit with biased estimates. For

example, given 𝑛1 ≈𝜓𝑛1 and 𝑛1 ≈ 𝑒𝜁0𝑛0, then 𝐸[𝑛1] ≈𝜓𝑒𝜁0𝑛0
and difficulty in separating 𝜓 and 𝜁0 is apparent. The case for

multiple life stages, where unbiased estimates were available

for some life stages, is more complicated and the effect of

including covariates for different processes in the state pro-

cess model was of interest. Focusing solely on estimability

of mean parameters in the state and observation models, the

effects on identifiability of a single covariate being present or

absent in each of the four process models (24 = 16 combina-

tions) were examined. In the case where the derivative matrix

is not full rank, additional Maple code developed by Cole and

McCrea (2016) determines which parameters or combinations

of parameters are identifiable.

The results of this second set of analyses are shown in

Table 2. In the most limited setting where no covariates

are used to model the process dynamics (case 1), there are

six parameters, but only four parameter combinations can

be estimated, and the only separately identifiable parame-

ter is the intercept, 𝜁0, for the process model dynamics. The

identifiability of 𝜁0 is readily seen given 𝑛𝐴,0 is assumed

known and 𝑛𝑃𝐿,1 is unbiased for 𝑛𝑃𝐿,1: 𝐸[𝑛𝑃𝐿,1] ≈ 𝑒𝜁0𝑛𝐴,0.

An example of an identifiable combination, also from case

1, is 𝜓𝐽 (𝑒𝛽0∕(1 + 𝑒𝛽0 )), which shows that the bias in esti-

mates of juvenile abundance cannot be separated from post-

larval survival. When a covariate is used for a given pro-

cess, the intercept and slope parameters for that process are

always identifiable; for example, in case 3 a covariate for

post-larval survival is included and 𝛽0 and 𝛽1 are separately

identifiable. When at least two survival process models have

covariates (cases 9-16) all the parameters are individually

identifiable. Whether a bias parameter is identifiable is a

function of the inclusion of covariates and which life stage

abundance observation is biased. For example, parameter 𝜓𝐽

(but not 𝜓𝑆𝐴) was identifiable when a covariate for the sur-

vival of post-larvae to the juvenile stage was included (case

3), while 𝜓𝑆𝐴 was identifiable when a covariate for the sur-

vival of sub-adults to the adult stage was included (case 5). If

covariates were available for all four processes, and observa-

tions for all four life stages were biased, that is, there were

also 𝜓𝑃𝐿 and 𝜓𝐴, say, all the parameters were identifiable

(cases 17-18).

These theoretical calculations are based on a frequen-

tist model formulation, while in Sections 4 and 5 we apply

Bayesian methods to fit the SSM. Nonidentifiability in a fre-

quentist context implies nonidentifiability in a Bayesian con-

text with uninformative priors, although it is possible for infor-

mative priors to help alleviate this issue (Cole and McCrea,

2016). Scenarios 1 and 2 in Table 1 assume a prior proba-

bility of 1 for the externally estimated observation variance

values.

4 SIMULATION STUDY

4.1 Design

Although we identified conditions under which parameter

identifiability is ensured theoretically, data-specific features

can result in practically nonidentifiable, or nearly redundant,

parameters, sometimes identified by flat profile likelihoods

and infinitely large confidence intervals in a frequentist con-

text (Raue et al., 2009). We therefore used simulations to

explore practical identifiability and to explore the potential

benefits of fixing external estimates of 𝐶𝑉 [𝑛𝑠,𝑡]𝐸𝑥 as in Sce-

nario 1 (Table 1). Datasets were generated in R (R Core Team,

2019) according to Equations (1)-(12) with 20 cohorts. Moti-

vated by the case study (Section 5), the post-larval and adult

life stages were assumed to have no observation bias (𝜓𝑃𝐿 =
𝜓𝐴 = 1) while the juvenile and sub-adult life stages had obser-

vation biases less than one. Each dataset was used to fit two

models, one with 𝐶𝑉 [𝑛𝑠,𝑡] fixed at externally derived esti-

mates (Scenario 1) and one with 𝐶𝑉 [𝑛𝑠,𝑡] internally estimated

as part of the model (Scenario 3). In the first model, the fixed

values were assumed to be potentially imperfect according

to the distribution 𝐶𝑉 [𝑛𝑠,𝑡]𝐸𝑥 ∼ Unif((1 − 𝑎)𝐶𝑉 [𝑛𝑠,𝑡], (1 +
𝑎)𝐶𝑉 [𝑛𝑠,𝑡]), where 𝐶𝑉 [𝑛𝑠,𝑡] is the true value and 𝑎 ∈ [0, 1).

We ran 100 simulations each for 𝑎 = 0, in which case

𝐶𝑉 [𝑛𝑠,𝑡]𝐸𝑥 is equal to the true value𝐶𝑉 [𝑛𝑠,𝑡], and for 𝑎 = 0.5,

which represents a more realistic case where 𝐶𝑉 [𝑛𝑠,𝑡]𝐸𝑥 is

estimated imperfectly. True values of 𝐶𝑉 [𝑛𝑠,𝑡]were generated

from a Uniform(0.1, 1) distribution. The recruitment and three

survival processes were each functions of single covariates.

To incorporate the concept of model selection in the study

along with parameter estimation, we included two potential

covariates per process (the true covariate used to generate data

and a second covariate) in the fitted models. The true val-

ues used to generate data and the prior distributions used for

model fitting are described in Web Appendix B (Table B.1).

Model fitting here and in Section 5 used Bayesian methods

implemented within R (R Core Team, 2019) using JAGS v4.3.0

(Plummer, 2003; 2016; Su and Yajima, 2015). Model perfor-

mance was evaluated by calculating marginal posterior sum-

mary statistics as well as relative bias, that is, (posteriorMean

- trueValue)/trueValue. Model convergence was assessed by

examining trace plots for adequate mixing and calculating

Gelman-Rubin statistics.

4.2 Results

Posterior means of the vital rate coefficients, process vari-

ance, and observation bias parameters, averaged across sim-

ulations, were similar whether observation error was exter-

nally or internally estimated and whether the level of noise

in the external estimates was low (𝑎 = 0) or high (𝑎 = 0.5)
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T A B L E 2 Summary of parameter identifiability results for state process mean parameters and observation bias parameters conditional on the

inclusion or exclusion of covariates in a given set of state processes

Case
State processes
with covariates Parameters to be estimated (total)

Number of identifiable
parameter combinations

Identifiable singleton
parameters

1 None {𝜁0, 𝛽0, 𝜂0, 𝛾0, 𝜓𝐽 , 𝜓𝑆𝐴} (6) 4 𝜁0

2 𝜌 {𝜁0, 𝜁1, 𝛽0, 𝜂0, 𝛾0, 𝜓𝐽 , 𝜓𝑆𝐴} (7) 5 𝜁0, 𝜁1

3 𝜙𝑃𝐿 {𝜁0, 𝛽0, 𝛽1, 𝜂0, 𝛾0, 𝜓𝐽 , 𝜓𝑆𝐴} (7) 6 𝜁0, 𝛽0, 𝛽1, 𝜓𝐽

4 𝜙𝐽 {𝜁0, 𝛽0, 𝜂0, 𝜂1, 𝛾0, 𝜓𝐽 , 𝜓𝑆𝐴} (7) 6 𝜁0, 𝜂0, 𝜂1

5 𝜙𝑆𝐴 {𝜁0, 𝛽0, 𝜂0, 𝛾0, 𝛾1, 𝜓𝐽 , 𝜓𝑆𝐴} (7) 6 𝜁0, 𝛾0, 𝛾1, 𝜓𝑆𝐴

6 𝜌, 𝜙𝑃𝐿 {𝜁0, 𝜁1, 𝛽0, 𝛽1, 𝜂0, 𝛾0, 𝜓𝐽 , 𝜓𝑆𝐴} (8) 7 𝜁0, 𝜁1, 𝛽0, 𝛽1, 𝜓𝐽

7 𝜌, 𝜙𝐽 {𝜁0, 𝜁1, 𝛽0, 𝜂0, 𝜂1, 𝛾0, 𝜓𝐽 , 𝜓𝑆𝐴} (8) 7 𝜁0, 𝜁1, 𝜂0, 𝜂1

8 𝜌, 𝜙𝑆𝐴 {𝜁0, 𝜁1, 𝛽0, 𝜂0, 𝛾0, 𝛾1, 𝜓𝐽 , 𝜓𝑆𝐴} (8) 7 𝜁0, 𝜁1, 𝛾0, 𝛾1, 𝜓𝑆𝐴

9 𝜙𝑃𝐿, 𝜙𝐽 {𝜁0, 𝛽0, 𝛽1, 𝜂0, 𝜂1, 𝛾0, 𝜓𝐽 , 𝜓𝑆𝐴} (8) 8 All

10 𝜙𝑃𝐿, 𝜙𝑆𝐴 {𝜁0, 𝛽0, 𝛽1, 𝜂0, 𝛾0, 𝛾1, 𝜓𝐽 , 𝜓𝑆𝐴} (8) 8 All

11 𝜙𝐽 , 𝜙𝑆𝐴 {𝜁0, 𝛽0, 𝜂0, 𝜂1, 𝛾0, 𝛾1, 𝜓𝐽 , 𝜓𝑆𝐴} (8) 8 All

12 𝜌, 𝜙𝑃𝐿, 𝜙𝐽 {𝜁0, 𝜁1, 𝛽0, 𝛽1, 𝜂0, 𝜂1, 𝛾0, 𝜓𝐽 , 𝜓𝑆𝐴} (9) 9 All

13 𝜌, 𝜙𝑃𝐿, 𝜙𝑆𝐴 {𝜁0, 𝜁1, 𝛽0, 𝛽1, 𝜂0, 𝛾0, 𝛾1, 𝜓𝐽 , 𝜓𝑆𝐴} (9) 9 All

14 𝜌, 𝜙𝐽 , 𝜙𝑆𝐴 {𝜁0, 𝜁1, 𝛽0, 𝜂0, 𝜂1, 𝛾0, 𝛾1, 𝜓𝐽 , 𝜓𝑆𝐴} (9) 9 All

15 𝜙𝑃𝐿, 𝜙𝐽 , 𝜙𝑆𝐴 {𝜁0, 𝛽0, 𝛽1, 𝜂0, 𝜂1, 𝛾0, 𝛾1, 𝜓𝐽 , 𝜓𝑆𝐴} (9) 9 All

16 𝜌, 𝜙𝑃𝐿, 𝜙𝐽 , 𝜙𝑆𝐴 {𝜁0, 𝜁1, 𝛽0, 𝛽1, 𝜂0, 𝜂1, 𝛾0, 𝛾1, 𝜓𝐽 , 𝜓𝑆𝐴} (10) 10 All

17 𝜌, 𝜙𝑃𝐿, 𝜙𝐽 , 𝜙𝑆𝐴 {𝜁0, 𝜁1, 𝛽0, 𝛽1, 𝜂0, 𝜂1, 𝛾0, 𝛾1, 𝜓𝑃𝐿, 𝜓𝐽 , 𝜓𝑆𝐴, 𝜓𝐴} (12) 12 All

18 𝜌, 𝜙𝐽 , 𝜙𝑆𝐴 {𝜁0, 𝜁1, 𝛽0, 𝜂0, 𝜂1, 𝛾0, 𝛾1, 𝜓𝑃𝐿, 𝜓𝐽 , 𝜓𝑆𝐴, 𝜓𝐴} (11) 11 All

Note. Bias parameter identifiability depends on covariate inclusion and where in the sequence of observations they occur. With juvenile and sub-adult biases only (cases

1-16), inclusion of a process covariate allows identifiability of the corresponding intercept and slope parameters (cases 2-16) and all parameters are identifiable if at least

two survival process models have covariates (cases 9-16). With biases in all life stages and covariates in all processes, all parameters are identifiable (cases 17-18).

T A B L E 3 Summary of simulation study parameter estimates

(a) Simulation with 𝒂 = 𝟎. (b) Simulation with 𝒂 = 𝟎.𝟓.
True Mean SD Rel bias Mean SD Rel bias

Parameter value 𝑴𝑬𝒙 𝑴𝑰𝒏 𝑴𝑬𝒙 𝑴𝑰𝒏 𝑴𝑬𝒙 𝑴𝑰𝒏 𝑴𝑬𝒙 𝑴𝑰𝒏 𝑴𝑬𝒙 𝑴𝑰𝒏 𝑴𝑬𝒙 𝑴𝑰𝒏

𝜁0 1.00 1.02 1.07 0.12 0.18 0.02 0.07 1.03 1.08 0.11 0.18 0.03 0.08

𝜁1 1.00 0.98 0.97 0.09 0.12 −0.02 −0.03 0.99 1.00 0.10 0.12 −0.01 0.00

𝜁2 0.00 0.00 0.01 0.09 0.12 NA NA 0.01 0.00 0.09 0.12 NA NA

𝛽0 1.30 1.33 1.28 0.60 0.67 0.02 −0.01 1.34 1.27 0.60 0.68 0.03 −0.02

𝛽1 1.00 0.82 0.70 0.39 0.45 −0.18 −0.30 0.78 0.69 0.40 0.45 −0.22 −0.31

𝛽2 0.00 0.01 0.00 0.36 0.43 NA NA 0.00 −0.02 0.37 0.43 NA NA

𝜂0 1.30 1.34 1.32 0.60 0.67 0.03 0.01 1.32 1.28 0.60 0.66 0.02 −0.01

𝜂1 1.00 0.80 0.68 0.40 0.46 −0.20 −0.32 0.82 0.71 0.40 0.45 −0.18 −0.29

𝜂2 0.00 −0.01 0.02 0.36 0.43 NA NA −0.05 −0.04 0.36 0.43 NA NA

𝛾0 1.30 1.40 1.37 0.59 0.66 0.08 0.05 1.46 1.43 0.60 0.67 0.12 0.10

𝛾1 1.00 0.85 0.76 0.40 0.46 −0.15 −0.24 0.75 0.66 0.42 0.47 −0.25 −0.34

𝛾2 0.00 −0.01 −0.05 0.37 0.43 NA NA 0.02 −0.01 0.39 0.45 NA NA

𝜎𝑃 ,𝑅 0.05 0.11 0.15 0.09 0.12 1.27 1.93 0.15 0.15 0.10 0.11 2.04 2.01

𝜎𝑃 ,𝑃𝐿 0.50 0.48 0.53 0.36 0.43 −0.04 0.06 0.58 0.56 0.41 0.44 0.16 0.12

𝜎𝑃 ,𝐽 0.50 0.52 0.58 0.38 0.45 0.03 0.16 0.53 0.55 0.39 0.43 0.07 0.10

𝜎𝑃 ,𝑆𝐴 0.50 0.51 0.55 0.38 0.44 0.01 0.10 0.59 0.61 0.42 0.46 0.18 0.21

𝜓𝐽 0.50 0.52 0.55 0.08 0.15 0.04 0.10 0.51 0.53 0.08 0.14 0.03 0.07

𝜓𝑆𝐴 0.20 0.21 0.23 0.03 0.06 0.05 0.13 0.21 0.23 0.03 0.06 0.05 0.15

Note. Average posterior mean (Mean), posterior standard deviation (SD), and relative bias (Rel Bias) were calculated across simulations for the cases with 𝑎 = 0 and

𝑎 = 0.5. Externally estimated CV equals true CV when 𝑎 = 0, and randomly varies from 50% to 150% of the true CV when 𝑎 = 0.5. 𝑀𝐸𝑥 and 𝑀𝐼𝑛 represent the models

with externally and internally estimated observation error, respectively. Relative biases for the coefficients 𝜓2, 𝛽2, 𝜂2, and 𝛾2 are undefined because the true values are zero.
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(Table 3). On average, observation bias parameters were well

estimated, while recruitment process variance exhibited the

highest level of relative bias (Table 3). Internally estimated

observation CV was also generally biased high relative to the

mean true observation CV for each life stage (Figure B.1).

Plugging in external estimates of observation CV resulted

in lower average posterior standard deviations and relative

biases, as well as reduced diffusivity in joint posteriors (Fig-

ure B.2). Latent abundance posterior means were similarly

well estimated regardless of how observation CV was han-

dled, although plugging in external observation CV estimates

can lead to smaller latent abundance standard deviations (Fig-

ure B.3). The findings presented here for the case with 𝑎 = 0.5
are qualitatively similar to those for the case with 𝑎 = 0.

5 CASE STUDY

We used the model described in Section 2 to quantify the rel-

ative importance of salient factors posited to determine the

population dynamics of delta smelt (Hypomesus transpaci-
ficus). Delta smelt are a small, nearly annual pelagic fish

endemic to the interior “Delta” portion of the San Francisco

Estuary (Moyle et al., 1992; 2016). Spawning typically takes

place during the winter and spring, with offspring maturing

through a number of life stages to eventually become spawn-

ing adults by winter of the next calendar year.

Abundance indices and coefficients of variation developed

in Polansky et al. (2019) were used as observations on the

abundances of each life stage starting with the 1994 birth

cohort adult abundance index and including the subsequent

21 cohorts. Based on the abundance index construction work

in Polansky et al. (2019), we assumed post-larval indices, and

adult indices for 𝑡 > 6, were unbiased relative to an overall

unknown scaling factor, that is, 𝜓𝑃𝐿 = 1 and 𝜓𝐴,𝑡 = 1 for

𝑡 > 6. Juvenile and sub-adult observation biases, 𝜓𝐽 and 𝜓𝑆𝐴,

respectively, were estimated. Because the sampling method

used to collect data about adult abundances prior to 2002 was

the same as that used for sub-adult data collection, and indices

include length based corrections, we set 𝜓𝐴,𝑡 = 𝜓𝑆𝐴 for 𝑡 ≤ 6.

Covariate data used to model recruitment and survival con-

sisted of a collection of abiotic habitat condition metrics,

abundance indices of bottom up and top down trophic drivers,

and competitors summarized in Web Appendix C Table C.1.

The steps of assembling covariate sets to model each vital

rate and the complete set of parameter posterior results are

described in detail in Web Appendix C. Model validation was

done in several ways, including graphical posterior checks of

response residuals (Gelman and Shalizi, 2013), and q-q plots

of one step ahead forecast residuals (Smith, 1985).

Two “global” models with the same sets of covariates for

each vital rate were considered: one that used external esti-

mates of observation error CV (Scenario 1), and one that used

internally estimated observation error CV (Scenario 3). Poste-

rior summaries are provided in Table C.4. Process noise vari-

ance estimates in the model fit using Scenario 1 were higher

than those estimated under Scenario 3, while the internally

estimated observation coefficients of variation were generally

larger than the externally derived ones (Figure C.3). As pre-

dicted by the simulation study, Scenario 1 posterior standard

deviations of latent abundances and observation bias were

smaller compared to those estimated under Scenario 3 (Table

C.4 and Figure C.4). Posterior distributions of the bias param-

eters in both cases showed them to be considerably smaller

than one. The model from Scenario 2 was not applied because

it is similar to the model from Scenario 1, and the external

estimates of abundance variance, 𝑉 [𝑛𝑠,𝑡]𝐸𝑥, were expected to

be as informative as the external estimates of abundance CV,

𝐶𝑉 [𝑛𝑠,𝑡]𝐸𝑥.

We found a number of covariates with more support than

others for each vital rate (Table C.4). Here we present a sub-

set of these results to illustrate the most important vital rate

predictions. Using the results from the global model fit with

external estimates of observation error CV plugged in, and

selecting (somewhat arbitrarily) a 0.80 value as the lower limit

for which evidence, the posterior distribution probability that

the coefficient is above (below) zero when the expected effect

of a covariate is positive (negative), is considered substan-

tial enough to report on here, the following relationships were

observed: (a) recruitment was most influenced by tempera-

ture, the approximate location of the 2-ppt isohaline during

the previous fall, and adult food (note also the export-inflow

ratio had high evidence of support based on the models sum-

marized in Table C.2); (b) post-larval survival by outflow and

turbidity; (c) juvenile survival by turbidity (Secchi depth) and

temperature; and (d) sub-adult survival by turbidity in the

south Delta (south Secchi depth), a spatially localized hydro-

dynamics flow measure in the Old and Middle River corri-

dor (OMR), and adult striped bass (Morone saxatilis). Of the

predator/competitor indices considered here, only the effect

of summer inland silverside (Menidia beryllina) abundance

on post-larval survival, and juvenile and adult striped bass

on sub-adult survival, had biologically plausible negative esti-

mated effects.

To illustrate vital rate predictions, a model including only

the covariates with the highest posterior evidence for each

vital rate was constructed. Also included was an interaction

between the two covariates that most impact sub-adult sur-

vival, both of which had near one evidence of support. There

is little difference between the distribution of vital rate pre-

dictions when parameter estimate uncertainty is not included,

and the interquartile prediction range is considerably more

bounded than the 95% prediction interval (Figure 1). Increases

in sub-adult survival with decreases in turbidity (increases in

south Secchi) become more pronounced as OMR decreases

(Figure 1).
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F I G U R E 1 Predicted vital rates for the

case study example model. In all panels the

solid curved lines show expected values. In

panels (a)-(c), dark and light gray shadings show

the 100(1 − 𝛼)% central credible intervals for

𝛼 = 0.5 and 𝛼 = 0.05, respectively, and include

posterior parameter estimate uncertainty. The

dashed and dotted lines show the 50% and 95%,

respectively, central credible intervals using the

mean values of the posterior. Ratios of

abundance indices are shown with the last two

digits of the cohort year, adjusted by the inverse

of the posterior means of observation error bias

when relevant. Covariate units are mean daily

values over the time interval of each vital rate

[Correction added on 8 October 2020, after first

online publication: Author corrected labels and

units]

6 DISCUSSION

Identifiability issues for SSMs fit to ecological datasets have

primarily concentrated on normal dynamic linear models

(de Valpine and Hilborn (2005) and de Valpine and Rosen-

heim (2008) provide some exceptions), with specific focus

on accurately distinguishing the magnitudes of process and

observation variances (Dennis et al., 2006, 2010; Knape et al.,
2011; Auger-Méthé et al., 2016), and difficulties in accu-

rately assessing density dependence in SSMs for population

dynamics (Freckleton et al., 2006; Knape, 2008). The effects

of covariates and the effects of external estimates of observa-

tion variance on identifiability, particularly for nonlinear and

non-Gaussian SSMs, have not received as much attention.

For the nonlinear non-Gaussian SSMs examined here, the

utility of covariates for enabling identifiability, particularly in

the case of biased observations, was clear. Without covariates,

but with bias in some of the observations, nonidentifiability

occurs. In some cases, one can use method of moments to

determine identifiability by setting the observations to their

expected values and solving the resulting system of equa-

tions. However, the algebra involved in this approach can be

extremely difficult and determining what parameter combi-

nations are identifiable can also be challenging. The recently

developed methods of Cole and McCrea (2016) are attractive

and elegant tools for analytically assessing parameter iden-

tifiability for SSMs in a far less algebraically tedious man-

ner, indicating both how many parameter combinations are

identifiable as well as what they are. These methods deserve

routine application both to guide SSM formulation as well as

for after-the-fact assessment. A cautionary note, however, is

that theoretical identifiability does not rule out practical non-

identifiability for a given dataset (Raue et al., 2009). Simu-

lating datasets from a hypothesized SSM and then examining

the ability to estimate the known parameters can be a helpful

exercise for identifying practical estimation difficulties and

data specific modeling challenges. We note that data cloning

(Lele et al., 2010), while not applied here, is an alternative

method of determining estimability of model parameters and

functions of parameters that relies only on the observed data.

Based on the simulation study, the improvement in infer-

ence when observation error CV was externally estimated

(Scenario 1) compared to when it was internally estimated

(Scenario 3) was relatively minor, given the presence of mod-

eled covariate effects. The primary advantage of using exter-

nal estimates was an increase in precision, particularly for the

observation bias and state estimates. As expected, these gains

decrease when the external estimates of observation vari-

ance are themselves measured with error. Case study results

based on these two scenarios mostly mirror the simulation

study findings, particularly with respect to inference about

latent states and observation bias parameters. However, an
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important difference is that when observation error CV

was estimated internally, estimation difficulties appeared to

be greatly exacerbated in general, with complex joint pos-

terior distributions containing multiple modes and ridges,

particularly in the process variance and intercept param-

eter dimensions. One consequence was that process vari-

ance estimates were unrealistically low. The exact aspect

of the case study dataset responsible for the low pro-

cess noise estimates is not clear. A longer time series

may help separate process variance from observation

variance. However, process variance estimates were not

unrealistically low in the simulation study when only

20 cohorts were used, suggesting that unidentified sources of

bias or uncertainty (or both) remain in the case study when

observation error CV is estimated.

A practical concern when modeling empirical data is

that relationships between covariates and response vari-

ables may appear weaker than they are in reality because

of noise in the covariate data, also known as error-in-

variables (Carroll et al., 2006), or because the covari-

ate data were summarized in a nonoptimal way (Ferguson

et al., 2017). Exploratory simulations indicated that covari-

ate noise affects estimated vital rates in the SSM presented

here, making this an aspect of the model that requires fur-

ther development. An estimation issue that seems partic-

ularly challenging given the model framework considered

here is that as covariate effect size diminishes, nonidenti-

fiability issues can emerge. Including covariates does not

guarantee that straightforward application of computational

methods will be sufficient for estimation.

The delta smelt population modeling presented here inte-

grated data from more surveys than has been done previously.

Although the sequential life stage model required addressing

relative bias in abundance estimates, this model framework

allowed new insights about drivers of population abundances.

For example, we found flow related impacts on summer sur-

vival and lagged fall flow effects on recruitment, whereas

prior analyses by Feyrer et al. (2011) were unable to precisely

identify where in the life cycle the flow effects on population

dynamics occur. Extending the findings by Grimaldo et al.
(2009), who found that OMR and turbidity predict an index of

south Delta mortality, we found these spatially localized pre-

dictor variables interact and predict population wide sub-adult

survival. A number of predator/competitor relationships with

delta smelt vital rates were biologically implausible, suggest-

ing that some cohabitant species are more influenced in the

contemporary Delta by shared habitat conditions than inter-

specific interactions.

Auger-Méthé et al. (2016) remarked that SSMs are

“becoming the favoured statistical framework [in ecology] for

modelling animal movement and population dynamics.” The

state-process equations describing realistic population mod-

els are often nonlinear, non-Gaussian, and link multiple life

stages. Because SSMs allow integration of multiple datasets,

they are an important tool for advancing population modeling

in practice. Here we focused on a particular kind of population

in which different age classes are not concurrently observed.

More general populations with multiple age classes observed

at the same time such as those as described by matrix mod-

els can encompass a wide variety of life history strategies

(Caswell, 2001), and the number of possible configurations

where biases and covariates appear can be quite numerous in

general. Mapping out the theoretical and practical identifia-

bility requirements for a given SSM remains an ongoing topic

of research.
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