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Daniel Kraushaar,6 Patricia Castro,7 Jianhua Zhang,2 and Anil K. Sood1,8,10,*

SUMMARY

Bulk and single-cell RNA sequencing do not provide full characterization of tissue
spatial diversity in cancer samples, and currently available in situ techniques
(multiplex immunohistochemistry and imaging mass cytometry) allow for only
limited analysis of a small number of targets. The current study represents the
first comprehensive approach to spatial transcriptomics of high-grade serous
ovarian carcinoma using intact tumor tissue. We selected a small cohort of pa-
tients with highly annotated high-grade serous ovarian carcinoma, categorized
them by response to neoadjuvant chemotherapy (poor or excellent), and
analyzed pre-treatment tumor tissue specimens. Our study uncovered extensive
differences in tumor composition between the poor responders and excellent re-
sponders to chemotherapy, related to cell cluster organization and localization.
This in-depth characterization of high-grade serous ovarian carcinoma tumor tis-
sue from poor and excellent responders showed that spatial interactions be-
tween cell clusters may influence chemo-responsiveness more than cluster
composition alone.

INTRODUCTION

Epithelial ovarian cancer is a heterogeneous disease, with the most common subtype being high-grade se-

rous ovarian carcinoma (HGSC) (Matulonis et al., 2016). Even within the same histologic subtype, clinical

response to therapy (e.g., platinum-based chemotherapy), either before or after debulking surgery, is high-

ly variable. For example, 44%–66% of patients (depending on stage at diagnosis) become long-term

survivors with no evidence of recurrence after 10 years of observation (Rubin et al., 1999), whereas others

experience disease progression within a much shorter time after first-line treatment (Davis et al., 2014; Jay-

son et al., 2014). Mechanisms underlying such diversity of response to treatment are not well understood

(Peres et al., 2020).

We previously attempted a comprehensive multi-omics approach based on bulk transcriptomic, genomic,

and proteomic analyses aimed at identifying molecular and cellular differences between responders and

non-responders to neoadjuvant chemotherapy (NACT) in a highly clinically annotated dataset (Lee et al.,

2020, 2021). Although differences in copy number variation and T cell infiltration were present between

the two groups, these differences were not as extensive as we had anticipated. These findings suggested

that important molecular differences between such tumors cannot be fully identified by bulk molecular an-

alyses. Thus, we carried out an in-depth spatial analysis of both epithelial and stromal components of tumor

tissue to explore the heterogeneity of HGSC and determine how the dynamic behavior between the tumor

and the tumor microenvironment varies between poor and excellent responders to NACT. To generate

these data, we performed deep spatial transcriptomic profiling in situ (Cable et al., 2021).

RESULTS

Spatial transcriptomics to explore the tumor microenvironment of HGSC

We assessed gene expression of 12 chemotherapy-naive high-grade serous ovarian carcinoma samples

with full spatial orientation. These 12 samples were classified into one of two groups: six were considered

excellent responders to NACT (ER) and six were considered poor responders to NACT (PR) (Lee et al., 2020)

(Figure 1A). After initial analysis, one sample in the PR group was excluded owing to poor tissue quality

(high necrotic fraction).
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For the first step, we used an unsupervised clustering approach to generate expression profiles of all sam-

ples grouped together, and we identified nine distinct clusters. We opted for the unsupervised approach to

define clusters of cells with similar transcript patterns and determine the distribution of these clusters inside

the tissue (Figure 1B). In the second step, we examined the distribution of the defined clusters in the clin-

ically defined ER and PR groups. We observed that not all clusters were identified between the two groups

or in all samples within each group. For example, clusters 0–4 were largely represented in both groups,

Figure 1. Spatial transcriptomics to explore the tumor microenvironment of high-grade serous ovarian carcinoma

(HGSC)

(A) Schematic representation of the study for tissue collection in patients with HGSC. R0, no gross residual disease.

Created with BioRender.com.

(B) Representative image of a hematoxylin-and-eosin-stained section (top) and unsupervised clustering (bottom).

(C) Heatmap of putative cell composition of each cluster in the excellent responder (ER) and poor responder (PR) groups.

(D) Dot-plot representing differential gene expression of known ovarian cancer genes (COSMIC) in bulk RNA sequencing

and in spatial transcriptomics of the main clusters (0–4). Black boxes are shown around the point when the gene set

enrichment analysis adjusted p value is <0.1.
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whereas cluster seven was exclusive to the PR group and cluster eight was exclusive to the ER group (Fig-

ure S1A, and Table S1). Also, the clusters were represented in different proportions in each group (Fig-

ure S1B). The false-discovery rates (FDR) of clusters 6–8 (Table S1) show a reduced number of genes

with significantly differentially expressed genes (DEGs) at the cluster definition. Clusters 0–4 are the largest

physical clusters and also the ones with the most DEGs with significant FDR. Overlaying the cluster perim-

eters onto the hematoxylin-and-eosin-stained images, we found that distinct patterns of stromal and

epithelial areas identified through gene expression mirrored the stromal and epithelial areas defined by

morphology (Figure 1B). This approach demonstrates the effectiveness of using an unsupervised approach

in spatial transcriptomics to detect cell populations, which has not been previously described in attempts at

deep sequencing coupled with spatial distribution.

In the next step, we aimed to identify the cell types present in these tissues (Figure 1C). For this, we used well-

defined markers of 20 cell types and examined larger cell areas, named stromal and immunity CD45. We iden-

tified all 20 proposed cell types in both the stromal and immunity subgroups of cells. It is important to highlight

that many cell types were identified within the same cluster; this shows once again the potential of resolved

spatial profiling for characterizing more cell types than in conventional histology and RNA sequencing.

A comparison of the cell populations enriched in the two response groups identified more stromal-domi-

nated cell groups, largely formed by myofibroblasts rather than conventional cancer-associated fibroblasts

(as defined by the cell markers used for cell identification), in the PR group (Figure S2). This could be ex-

plained by poor identification of cancer-associated fibroblasts in previous studies, which have been mainly

based on imaging techniques that use a limited number of nonspecific markers. This transcriptomic-based

approach allows the use of multiple markers at the same time, which ensures better identification of cell

types. However, ER tumors containedmore immune-related areas; more than half of the clusters presented

a high proportion of immune cells, including T cells, B cells, and natural killer cells (Figure S2). This finding

supports the well-established role of cytotoxic immune cells in strengthening chemotherapy response

(Wang et al., 2018) and better progression-free survival and overall survival (Zhang et al., 2003) (Figures

1A and S2). Conventional immunohistochemistry or immunofluorescence techniques for studying the

tumor microenvironment require high-quality and intact tissue with viable expression of the protein of in-

terest (often destroyed by chemicals and tissue archiving processes); also, these techniques are highly

operator-dependent. With the spatial transcriptomics approach, we identified cell types and subtypes us-

ing only a fragment of tissue RNA, without requiring complete and intact cell structure. We observed

epithelial-mesenchymal-transition-like cells in most of the clusters in the PR group, in contrast with the

ER group (Figure 1C). This confirms the prominent role of myofibroblasts and mesenchymal cells, rather

than cancer-associated fibroblasts, in promoting poor response to therapy.

Spatial analysis of HGSC unravels characteristics of the tumor microenvironment

Next, we examined whether our approach, as compared with blending all RNA information from cells (i.e.,

bulk sequencing), could reveal differences in expression of specific genes. We used previously published

bulk RNA-sequencing data from the same samples (Lee et al., 2020), as well as the spatial transcriptomics

data, used as individual clusters and combined, imitating bulk sequencing. We observed that the blending

phenomenon hides deeper profiling of the tumor, in addition to destroying the geographic organization of

the tissue. First, we used the genes reported in the Cancer Gene Census (https://cancer.sanger.ac.uk/

census) as a Catalogue Of Somatic Mutations In Cancer (COSMIC) whose aberrant expression has been

causally implicated in cancer and deregulated from previous dataset analyses. The comparison of expres-

sion of these genes between the groups mentioned above highlighted profound differences, which often

reached statistical significance (Figure 1D). Most prominently, genes such asNF1,MSH6,CTNNB1, BARD1,

AKT1, and AKT2 showed inverse expression levels in several clusters compared with that shown in bulk

sequencing for the PR group compared with the ER group. For example, BARD1 showed lower expression

in the PR group by bulk sequencing, but it had higher expression in the PR group by in situ sequencing

(when considering all clusters together). This results from its higher expression in the PR group (cluster

0), which represents the biggest physical size-wise cluster of the PR samples (Figure 1D). This finding is

quite important because it signifies higher definition of the spatial technique, which allows for a more ac-

curate analysis due to the preservation of the original cell localization. Similarly, other DNA repair genes,

such as ATR, ARID2, and ARID1B, had significantly higher expression in PR samples when all clusters were

considered together, as compared with results from bulk sequencing (lower expression in PR samples). This
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finding suggests that tumors from the PR group had better DNA surveillance and higher cell survival

compared with the ER group.

In additional analyses, we used gene set enrichment analysis to compare the PR group with the ER group

(Figure 2A and Table S2). We observed that specific enriched pathways from bulk sequencing were also

enriched in the combined cluster analysis following the same pattern of deregulation (e.g., GOBP_Cell

Population Proliferation, Hallmark_Angiogenesis, Hallmark_WNT Beta Catenin Signaling, Hallmark_Inter-

feron Gamma Response, and Hallmark_Interferon Gamma Response). Conversely, we also observed path-

ways that were enriched with both techniques, but in the opposite direction (e.g., Hallmark_UV response,

Hallmark_TGF Beta signaling, and Hallmark_Oxidative phosphorylation). When looking specifically into

single clusters, we observed a large variation in patterns. Some pathways were statistically enriched in spe-

cific clusters of the ER group compared with the PR group, proving that a real and deep characterization of

tumor heterogeneity can be achieved only when exploring specific clusters of cells. We clearly observed

how different clusters showed opposite trends of upregulation and downregulation of pathways between

the two groups, and these opposite trends were not apparent in the bulk analysis. This was clearer when

analyzing immune-related pathways, in which we observed downregulation of multiple pathways in bulk

sequencing but differential upregulation in specific clusters from our spatial transcriptomic analysis

(e.g., GOBP_Activation of immune response, GOBP_Activation of innate immune response, and GOB-

P_Immune response-regulating signaling pathway; Figure S1C). By combining all clusters together, we

confirmed in the pathway analysis our previous finding of reduced representation of immune cells in PR tis-

sues, and that pathways of cell activation to immune response, adaptive immune response, and regulation

of innate response were downregulated in the PR group when all clusters were considered together. Sin-

gle-cluster analysis instead identified cluster 4 as consistently showing upregulation of immune pathways,

mostly the innate immune pathway, in the PR group. In the cell classification analyses, this cluster showed

higher representation of macrophages, dendritic cells, and neutrophils, consistent with prominent activa-

tion of the innate response.

Geographical location of specific cell populations defines cell-to-cell communication

Next, we analyzed the spatial localization of the identified cell clusters by measuring the physical distance

between them inside the tissues (Figure 2B). We observed that cluster distribution largely differed between

groups. For example, in the PR group, the clusters tended to be physically larger and distributed

throughout the whole tissue area, which translates into a larger distance between spots from the same clus-

ter in the heatmap (blue areas). By comparison, in the ER tissues, clusters were smaller and more compact,

and the distance between spots in the same cluster was smaller (yellow areas).

When analyzing the distances between clusters, we found that some clusters were often located close to

each other in one group and significantly farther from each other in the other group. For example, clusters

2 and 5 were closer to each other in the ER group, whereas clusters 3 and 8 were closer to each other in the

PR group. This indicates that different cell-to-cell contacts are found in different groups, showing that the

disposition of a cell type, more so than its abundance, could explain different mechanisms of response to

therapy. For example, cluster 8 (represented mostly by epithelial-mesenchymal-transition-like cells,

mesenchymal cells, endothelial cells, and myofibroblasts) had more physical interactions in tissues from

the PR group than in the ER group, and the most frequent interaction was between clusters 5 and 2, which

are highly dominated by immune cells.

To explore the relationship between cells of neighboring clusters, we performed a ligand-receptor (LR)

analysis to identify the expression of an LR couple (identified as the product of L in one cluster and R in

the neighboring cluster) in cluster combinations. To explore the extent of LR expression, we chose five clus-

ter combinations: 5–2, 8–1, 8–2, 8–3, and 8–4, which are differentially located from each other in ER and PR

tissues (Figure 2B).

Figure 2. Geographical location of specific cell populations define cell-to-cell communication

(A) Dot-plot of gene set enrichment analysis comparing bulk RNA sequencing and spatial transcriptomics of the main clusters (0–4). Black boxes are shown

around the point when the gene set enrichment analysis adjusted p value is < 0.1.

(B) Heatmap indicating the physical distance between clusters of the excellent responder (ER) and poor responder (PR) groups, where each square

represents a cluster-cluster comparison, the blue range of colors indicates longer distance between clusters, and the red range of colors indicates shorter

physical distance between clusters.

(C) Heatmap of ligand-receptor (LR) analysis showing patterns of the top co-expressed LRs between clusters of ER (left) and PR (right).
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The heatmap showing co-expression patterns defines two distinct patterns in the ER and PR tissues (Fig-

ure 2C). We found that co-expression of specific LR pairings exists depending on their geographic locali-

zation. Specifically, at clusters 5 and 2 of the ER group (geographically close), there was stronger co-expres-

sion of GPC3-IGF1R (score 0.45) compared with clusters 8 and 2 in the same ER group (geographically

distant; score 0.18). The same pattern is observed when looking in cluster 8–2 (geographically close in

PR), where the same LR (GPC3-CD81) had strong co-expression patterns (score 0.66) compared with clus-

ters 5 and 2 (geographically distant; score 0.41- Table S3). These findings indicate that the co-expression

pattern of specific LRs depends on the geographic localization in the tissue; closer interactions lead to

stronger co-expression patterns.

DISCUSSION

Single-cell RNA sequencing has greatly improved detailed analysis of the tumor microenvironment. However,

single-cell RNA sequencing methods mostly analyze suspensions of dissociated cells, which completely erase

the complexity of the physical organization of cells and provide partial information concerning cell-cell interac-

tions. To overcome such limitations, some investigators have coupled single-cell RNA sequencing onmicrodis-

sected tissues with staining for multiple targets and imaging mass cytometry (Zhu et al., 2021), or employed

bioinformatic tools to profile physically interacting cells in ’’multiplets’’ derived from partially undissociated tis-

sues (Andrews et al., 2021). However, such techniques are not able to produce high-resolution RNA sequencing

applied directly on intact tissues through a simple and scalable pipeline. To the best of our knowledge, the cur-

rentmanuscript is the first applicationof an in situRNA-sequencingapproach to study cell-cell communication in

HGSC tissues from poor and excellent responders to NACT.

Two important findings emerged from our analyses: one is the assessed importance of the stromal compo-

nent as a potential driver of poor response to chemotherapy; the second is the identification of differential

clusters (distribution and composition) in ER compared with PR tissues, both at a cohort level and at a single

patient level. The existence of such clusters could be recognized only by the in situ technique. Focusing on

the epithelial-mesenchymal transition pathway, known to contribute to tumor progression, metastasis, and

resistance to therapy (Ashrafizadeh et al., 2021; Liu et al., 2021; Smith and Bhowmick, 2016), we noticed that

among different areas of the same tumor tissue, as well as in specific areas of the tissue within the whole

group of patients (in this case, the PR group), the epithelial-mesenchymal transition pathway was subject

to large variation in downregulation or upregulation. This finding means that specific populations of cells

may contribute to the poor response to therapy.

The physical location of the cell clusters in the TME is important to understand response to therapy. For

example, we identified cluster 8, a mainly mesenchymal cluster, as a cluster with multiple physical connec-

tions to all the other clusters, mostly in the PR group. This underlines the role of crosstalk between the

mesenchymal compartment and other cell clusters in potentially sustaining resistance. Moreover, the tight

physical connection between clusters 2 and 5 (both represented mostly by immune cells) presented homo-

geneously in the ER tissues, suggesting a fundamental role of the immune response in enhancing the cyto-

toxic effect of chemotherapy. In conclusion, comparison of the in situ technique with bulk RNA sequencing

allowed characterization of specific cell subpopulations with defined molecular traits. These clusters, with

their specific set of overexpressed genes, might be important determinants of lack of response to therapy,

representing the ideal target for effective therapeutic approaches.

Our work overcomes many of the limitations of previous approaches. Each sequenced spot of 50-mm

diameter allows analysis of the transcriptome of a limited number of cells ranging between 3 and 5.

Despite this low resolution, one strength of this technique is the ability to perform the analysis on undis-

sociated tissues. Dissociation techniques can often cause major environmental stresses that could impact

the transcriptional machinery (Denisenko et al., 2020; van den Brink et al., 2017). When this technique is

used, tissues do not undergo extensive manipulations before RNA sequencing and are homogeneously

treated. It is likely that further refinement of the bioinformatics tools might address the limitations of de-

convolution and assess each cell type at a higher resolution for cell identification and transcriptomics

analyses.

In conclusion, our work provides a new understanding of the tumor microenvironment and chemotherapy

response in ovarian cancer. We identified spatially defined cell clusters, in particular, the ones represented

by mesenchymal-derived cells, in tumor samples that were resistant to chemotherapy.
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Limitations of the study

The small sample size in this project represents a potential limitation; we are evaluating an expanded

cohort. Moreover, the current techniques allow for a resolution of 5–15 cells; ongoing efforts are aimed

at further increasing the resolution of spatial transcriptomics to a single cell level.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Patients

d METHOD DETAILS

B Spatial transcriptomics

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.103923.

ACKNOWLEDGMENTS

We thank E. Goodoff (Research Medical Library, The University of Texas MD Anderson Cancer Center,

Houston, Texas) for editorial assistance. This research was performed in collaboration with the Pathology

and Histology Core, which is supported in part by the P30 Cancer Center Support Grant (NCI-CA125123)

and by the Genomic and RNA Profiling Core at Baylor College of Medicine with funding from the NIH S10

grant (1S10OD023469). This research was supported, in part, by the MD Anderson Ovarian Cancer SPORE

(P50 CA217685) and grants R35 CA209904 and U01 CA213759, P30 CA016672, the MD Anderson Ovarian

Cancer Moon Shot, by the American Cancer Society, the Ovarian Cancer Research Alliance, the Dunwoody

Fund, the Gordon Fund, and by the FrankMcGrawMemorial Chair in Cancer Research. E.S. is supported by

Ovarian Cancer Research Alliance (OCRA number FP00006137). S.C. is funded by the Foundation Amy

Krouse Rosenthal Ovarian Cancer Early Detection Research Grant through The Foundation for Women’s

Cancer 2020/2021 (AWD00005708). Graphical abstract adapted from ‘‘New strategies for treating cancer’’,

by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates

AUTHOR CONTRIBUTIONS

Conceptualization, Methodology, Investigation, Visualization, Writing (Original Draft/Review and Editing):

E.S., S.C.

Conceptualization, Review and Editing, Supervision, Funding Acquisition and Project Administration:

A.K.S.

Data collection and curation: E.S., S.C., S.L., E.R., D.K., J.L., and P.C.

Formal Analysis, Data Curation, Software: M.X., K.C., and J.Z.

DECLARATION OF INTERESTS

Anil K. Sood is a shareholder of BioPath and is a consultant for Merck, Astra Zeneca, GSK, and Kiyatec. The

other authors declare no competing interests.

Received: August 16, 2021

Revised: November 23, 2021

Accepted: February 10, 2022

Published: March 18, 2022

ll
OPEN ACCESS

iScience 25, 103923, March 18, 2022 7

iScience
Article

https://doi.org/10.1016/j.isci.2022.103923
http://BioRender.com
https://app.biorender.com/biorender-templates


REFERENCES
Andrews, N., Serviss, J.T., Geyer, N., Andersson,
A.B., Dzwonkowska, E., Sutevski, I., Heijboer, R.,
Baryawno, N., Gerling, M., and Enge, M. (2021).
An unsupervised method for physical cell
interaction profiling of complex tissues. Nat.
Methods 18, 912–920.

Ashrafizadeh, M., Mirzaei, S., Hashemi, F.,
Zarrabi, A., Zabolian, A., Saleki, H., Sharifzadeh,
S.O., Soleymani, L., Daneshi, S., Hushmandi, K.,
et al. (2021). New insight towards development of
paclitaxel and docetaxel resistance in cancer
cells: EMT as a novel molecular mechanism and
therapeutic possibilities. Biomed. Pharmacother.
141, 111824.

Cabello-Aguilar, S., Alame, M., Kon-Sun-Tack, F.,
Fau, C., Lacroix, M., and Colinge, J. (2020).
SingleCellSignalR: inference of intercellular
networks from single-cell transcriptomics.
Nucleic Acids Res. 48, e55.

Cable, D.M., Murray, E., Zou, L.S., Goeva, A.,
Macosko, E.Z., Chen, F., and Irizarry, R.A. (2021).
Robust decomposition of cell type mixtures in
spatial transcriptomics. Nat. Biotechnol. https://
doi.org/10.1038/s41587-021-00830-w.

Davis, A., Tinker, A.V., and Friedlander, M. (2014).
Platinum resistant" ovarian cancer: what is it, who
to treat and how to measure benefit? Gynecol.
Oncol. 133, 624–631.

Denisenko, E., Guo, B.B., Jones, M., Hou, R., De
Kock, L., Lassmann, T., Poppe, D., Clement, O.,
Simmons, R.K., Lister, R., and Forrest, A.R.R.
(2020). Systematic assessment of tissue
dissociation and storage biases in single-cell and
single-nucleus RNA-seq workflows. Genome Biol.
21, 130.

Gennady Korotkevich, V.S., Budin, N., Shpak, B.,
Artyomov, M.N., and Sergushichev, A. (2021).

Fast gene set enrichment analysis. Preprint at
bioRxiv. https://doi.org/10.1101/060012.

Hafemeister, C., and Satija, R. (2019).
Normalization and variance stabilization of
single-cell RNA-seq data using regularized
negative binomial regression. Genome Biol. 20,
296.

Hanzelmann, S., Castelo, R., and Guinney, J.
(2013). GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC
Bioinformatics 14, 7.

Jayson, G.C., Kohn, E.C., Kitchener, H.C., and
Ledermann, J.A. (2014). Ovarian cancer. Lancet
384, 1376–1388.

Lee, S., Zhao, L., Little, L.D., Westin, S.N., Jazarei,
A.A., Fleming, N.D., Zhang, J., Futreal, P.A., and
Sood, A.K. (2021). Distinct T cell receptor
repertoire diversity of clinically defined high-
grade serous ovarian cancer treatment
subgroups. iScience 24, 102053.

Lee, S., Zhao, L., Rojas, C., Bateman, N.W., Yao,
H., Lara, O.D., Celestino, J., Morgan, M.B.,
Nguyen, T.V., Conrads, K.A., et al. (2020).
Molecular analysis of clinically defined subsets of
high-grade serous ovarian cancer. Cell Rep. 31,
107502.

Liu, X., He, M., Li, L., Wang, X., Han, S., Zhao, J.,
Dong, Y., Ahmad,M., Li, L., Zhang, X., et al. (2021).
EMT and cancer cell stemness associated with
chemotherapeutic resistance in esophageal
cancer. Front. Oncol. 11, 672222.

Matulonis, U.A., Sood, A.K., Fallowfield, L.,
Howitt, B.E., Sehouli, J., and Karlan, B.Y. (2016).
Ovarian cancer. Nat. Rev. Dis. Primers 2, 16061.

Peres, L.C., Sinha, S., Townsend, M.K., Fridley,
B.L., Karlan, B.Y., Lutgendorf, S.K., Shinn, E.,
Sood, A.K., and Tworoger, S.S. (2020). Predictors
of survival trajectories among women with
epithelial ovarian cancer. Gynecol. Oncol. 156,
459–466.

Rubin, S.C., Randall, T.C., Armstrong, K.A., Chi,
D.S., and Hoskins, W.J. (1999). Ten-year follow-up
of ovarian cancer patients after second-look
laparotomy with negative findings. Obstet.
Gynecol. 93, 21–24.

Smith, B.N., and Bhowmick, N.A. (2016). Role of
EMT in metastasis and therapy resistance. J. Clin.
Med. 5, 17.

van den Brink, S.C., Sage, F., Vertesy, A.,
Spanjaard, B., Peterson-Maduro, J., Baron, C.S.,
Robin, C., and van Oudenaarden, A. (2017).
Single-cell sequencing reveals dissociation-
induced gene expression in tissue
subpopulations. Nat. Methods 14, 935–936.

Wang, W., Zou, W., and Liu, J.R. (2018). Tumor-
infiltrating T cells in epithelial ovarian cancer:
predictors of prognosis and biological basis of
immunotherapy. Gynecol. Oncol. 151, 1–3.

Zhang, L., Conejo-Garcia, J.R., Katsaros, D.,
Gimotty, P.A., Massobrio, M., Regnani, G.,
Makrigiannakis, A., Gray, H., Schlienger, K.,
Liebman, M.N., et al. (2003). Intratumoral T cells,
recurrence, and survival in epithelial ovarian
cancer. N. Engl. J. Med. 348, 203–213.

Zhu, Y., Ferri-Borgogno, S., Sheng, J., Yeung, T.L.,
Burks, J.K., Cappello, P., Jazaeri, A.A., Kim, J.H.,
Han, G.H., Birrer, M.J., et al. (2021). SIO: a
spatioimageomics pipeline to identify prognostic
biomarkers associated with the ovarian tumor
microenvironment. Cancers (Basel) 13, 1777.

ll
OPEN ACCESS

8 iScience 25, 103923, March 18, 2022

iScience
Article

http://refhub.elsevier.com/S2589-0042(22)00193-6/sref1
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref1
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref1
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref1
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref1
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref1
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref2
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref2
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref2
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref2
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref2
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref2
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref2
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref2
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref3
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref3
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref3
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref3
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref3
https://doi.org/10.1038/s41587-021-00830-w
https://doi.org/10.1038/s41587-021-00830-w
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref5
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref5
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref5
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref5
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref6
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref6
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref6
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref6
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref6
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref6
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref6
https://doi.org/10.1101/060012
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref8
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref8
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref8
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref8
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref8
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref10
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref10
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref10
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref11
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref11
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref11
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref11
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref11
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref11
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref12
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref12
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref12
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref12
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref12
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref12
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref13
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref13
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref13
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref13
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref13
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref14
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref14
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref14
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref19
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref19
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref19
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref19
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref20
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref20
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref20
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref20
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref20
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref20
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref21
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref21
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref21
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref21
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref21
http://refhub.elsevier.com/S2589-0042(22)00193-6/sref21


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Anil K. Sood (asood@mdanderson.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Spatial transcriptomics data have been deposited at GEO and are publicly available. Accession numbers

are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients

High-grade serous ovarian carcinoma biopsy samples from 12 female patients (age range 45–78 years old)

were collected under a protocol approved by the Institutional Review Board of The University of Texas MD

Anderson Cancer Center, and all patients provided written informed consent. The fresh frozen tumor tis-

sues were obtained from the MD Anderson Gynecologic Tumor Bank. Patients underwent a standardized

therapeutic approach following chemotherapy and surgery protocols established in the Department of Gy-

necology Oncology & Reproductive Medicine at MD Anderson.

We selected six patients with poor response to NACT with carboplatin and paclitaxel and six patients with

excellent response to NACT. The definition of poor response was stable or progressive disease after three

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Patients with HGSC (tumor tissue) MDACC N/A

Critical commercial assays

Dual Index Kit TT Set A 10X Genomics 1000215

Visium Spatial Gene Expression Slide &

Reagents Kit

10X Genomics 1000187

Visium Spatial Gene Expression Starter Kit 10X Genomics 1000200

Visium Spatial Tissue Optimization Slide &

Reagents Kit

10X Genomics 1000193

Deposited data

RNA Sequencing data Lee et al., 2020 EGA: EGAD00001005240

Spatial Transcriptomics sequencing data Own data GSE189843

Software and algorithms

spaceranger v1.1.0 10X Genomics

R package Seurat v4.0.1 Hafemeister and Satija, 2019

R package GSVA v1.36.3 Hanzelmann et al., 2013

R package fgsea v1.14.0 Gennady Korotkevich et al., 2021

SingleCellSignalR Cabello-Aguilar et al., 2020
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to four cycles according to radiologic evaluation and/or suboptimal interval cytoreduction after NACT ac-

cording to the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). Excellent responders were those

with complete response or only microscopic disease left at the time of interval surgery and/or pathologic

analysis after interval surgery (Lee et al., 2020).

METHOD DETAILS

Spatial transcriptomics

Tissue optimization. For spatial transcriptomics, we used the Visium Spatial Gene Expression Reagent

Kit (10X Genomics). Tissue optimization was done using the Visium Spatial Tissue Optimization Slide & Re-

agent kit. The optimization, as well as the analysis, was performed using tissue at 10-mm thickness per the

manufacturer’s protocol. The selected permeabilization time was 20 min. Bright-field images of the tissue

were captured according to the requirements of the manufacturer, using a Nikon Eclipse Ni microscope

and Nikon DS-Ri1 8-bit camera. The objective was a Nikon Plan Apo with 103 magnification and 0.45 nu-

merical aperture. We used Nikon Elements software with a resolution of 0.91 mm/pixel. Camera settings

were as follows: format 1280 3 1024 (fine), exposure 10.0 ms (G0.0 EV), analog gain 1.00.

Library construction. The Visium Spatial Gene Expression Slide & Reagent kit was used for library con-

struction. One section per patient (10 mm) was mounted into each capture area. Each capture area on a Vis-

ium for FFPE slide has an array containing capture probes that bind to RNA. The probe pairs are extended

to incorporate complements of the spatial barcodes, and sequencing libraries are prepared. The libraries

are then sequenced, and data visualized to determine which genes are expressed and where, as well as in

what quantity. A capture area is defined as a 6.53 6.5 mm area that contains 5,000 barcoded spots that are

55 mm in diameter and 100 mm center to center between spots, providing an average resolution of 1–10

cells (10X Genomics). All of the following steps (cDNA synthesis and amplification, library construction,

and post-library construction quality control) were done according to the manufacturer’s protocol. The li-

braries were sequenced on a NovaSeq 6000 (Illumina).

QUANTIFICATION AND STATISTICAL ANALYSIS

The Visium sequencing data were processed by spaceranger v1.1.0 with commands spaceranger mkfastq

and spaceranger count. The count matrix output and image data were further analyzed by R package

Seurat v4.0.1. Specifically, the matrices of each sample were loaded individually and the function SCTrans-

form was used to perform data transformation (Hafemeister and Satija, 2019). To remove batch effects, the

list of data from individual samples was processed by functions SelectIntegrationFeatures, PrepSCTInte-

gration, and FindIntegrationAnchors, and finally integrated into a single Seurat object by the function In-

tegrateData. The integrated data underwent principal component analysis, and 30 principal components

were used for UniformManifold Approximation and Projection. Cluster-specific cell type scores were calcu-

lated by performing gene set variation analysis on the average expression matrix of clusters using R pack-

age GSVA v1.36.3 (Hanzelmann et al., 2013). The pairwise distances between two clusters were calculated

by median Euclidean distances of each spot pair on the slides in the two clusters. The differential gene

expression analyses between two clusters were performed by the function FindMarkers, and the resulting

ranks were used for gene set enrichment analyses by R package fgsea v1.14.0(Gennady Korotkevich et al.,

2021). The ligand receptor interaction (SingleCellSignalR) scores were calculated by multiplying the

average expression of the ligand and the receptor in the respective clusters and further normalized to

[0,1], as performed in previous studies (Cabello-Aguilar et al., 2020). The codes used to perform this anal-

ysis are in Data S1.
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