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Simple Summary: Peptidergic systems play an important role in cancer progression. The galaninergic
system (the peptide galanin and its receptors: galanin 1, 2 and 3) is involved in tumorigenesis, the
invasion and migration of tumor cells and angiogenesis and it has been correlated with tumor
stage/subtypes, metastasis and recurrence rate in many types of cancer. Galanin exerts a dual action
in tumor cells: a proliferative or an antiproliferative effect depending on the galanin receptor involved
in these mechanisms. Galanin receptors could be used in certain tumors as therapeutic targets and
diagnostic markers for treatment, prognosis and surgical outcome. This review shows the importance
of the galaninergic system in the development of tumors and suggests future promising clinical
antitumor applications using galanin agonists or antagonists.

Abstract: The aim of this review is to show the involvement of the galaninergic system in neuroen-
docrine (phaeochromocytomas, insulinomas, neuroblastic tumors, pituitary tumors, small-cell lung
cancer) and non-neuroendocrine (gastric cancer, colorectal cancer, head and neck squamous cell carci-
noma, glioma) tumors. The galaninergic system is involved in tumorigenesis, invasion/migration of
tumor cells and angiogenesis, and this system has been correlated with tumor size/stage/subtypes,
metastasis and recurrence rate. In the galaninergic system, epigenetic mechanisms have been related
with carcinogenesis and recurrence rate. Galanin (GAL) exerts both proliferative and antiproliferative
actions in tumor cells. GAL receptors (GALRs) mediate different signal transduction pathways and
actions, depending on the particular G protein involved and the tumor cell type. In general, the
activation of GAL1R promoted an antiproliferative effect, whereas the activation of GAL2R induced
antiproliferative or proliferative actions. GALRs could be used in certain tumors as therapeutic
targets and diagnostic markers for treatment, prognosis and surgical outcome. The current data show
the importance of the galaninergic system in the development of certain tumors and suggest future
potential clinical antitumor applications using GAL agonists or antagonists.

Keywords: galanin; galanin receptor; galanin receptor antagonist; galanin receptor agonist; neuroendocrine
tumors; signaling pathways

1. Introduction

The GLOBOCAN 2020 database (World Health Organization (WHO)) states that of the
7,794,798,844 inhabitants of our planet, 19,292,789 of them were diagnosed with some type
of cancer and 9,958,133 died, with prevalence cases at 5 years of 50,550,287. Female breast
cancer is the most diagnosed cancer and the leading cause of cancer death is lung cancer
(1.8 million deaths) [1]. In 2040, 28.4 million patients suffering from cancer are expected in
the world [1]. These data are sufficiently representative of the health problem that cancer
represents today. Cells, escaping from normal behavior, acquire distinctive characters
(evading growth suppressors, maintaining proliferative signaling, allowing replicative im-
mortality, resisting cell death, activating invasion/metastasis, inducing angiogenesis) that
make them cancerous [2] (Figure 1). Moreover, the reprogramming of energy metabolism
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and evasion of immune destruction have also been added to the previous hallmarks of
cancer [2]. These behaviors arise from the instability of the genome that produces genetic
diversity, and inflammatory mechanisms that promote the multiple actions described above
(Figure 1). Tumors are not currently considered as simple masses of cancer cells; they are
more complex in that they contain a repertoire of apparently normal recruited cells that
contribute to the acquisition of distinctive features by regulating the tumor microenviron-
ment [2]. The full knowledge of the previously mentioned hallmarks will help to develop
new therapeutic strategies against cancer.
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Figure 1. Ten keys of cellular/tissue behavior that make a cell a cancer cell, contrary to its normal
biological destiny, leading to the formation of a primary tumor and later a secondary one. Red arrows
show the involvement of the galaninergic system in these mechanisms: note that GAL is involved in
six of them.

Neuropeptides such as galanin (GAL), angiotensin II, apelin, adrenomedullin, endothelin-1,
bombesin, orexin, substance P, neuropeptide Y, calcitonin gene-related peptide, vasoactive
intestinal peptide and neurotensin are involved in cancer [3–9]. The overexpression of the
peptidergic systems has been involved in the progression of some types of cancer [3,5,9].
In general, the mentioned peptides promote the proliferation, invasion and migration of
tumor cells, angiogenesis and lymphangiogenesis and exert an antiapoptotic effect in these
cells. However, other peptides exert an anticancer action; this is the case of the heptapeptide
angiotensin (1–7) which blocks cell proliferation and angiogenesis. For these reasons, it is
necessary to investigate the roles played by the peptidergic systems in cancer in more depth.
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This line of research has been developed over the last several years and the knowledge of
the roles played by peptides in tumor progression has notably increased [9]. It is important
to note that the galaninergic system has been involved in six (e.g., proliferative action,
invasion, metastasis, angiogenesis) of the ten cancer hallmarks previously mentioned
(Figure 1). Unlike what happens with other peptides (e.g., substance P, neurotensin), which
exclusively exert a proliferative action on tumor cells [9,10], GAL exerts this proliferative
action, but also suppresses the development of certain types of cancer (e.g., neuroblastoma,
head and neck squamous cell carcinoma, gastric cancer) [11–13]. Thus, due to the crucial
role that GAL plays in cancer, the aim of this review is to show the involvement of the
galaninergic system in this disease and to suggest potential therapeutic strategies to block
the development of tumors using GAL receptor antagonists or agonists. The latter is an
important point that must be developed in the future to identify potential antitumor targets
and to better evaluate the involvement of GAL in cancer.

2. The Galaninergic System: Galanin and Its Receptors

GAL was discovered in porcine intestinal extracts and contains 29 amino acids [14];
however, in humans, the peptide contains 30 amino acid residues (Figure 2) and, unlike
porcine GAL, the carboxy-terminus is not amidated [15–17]. The amino acid sequence
of GAL is highly conserved among species (almost 90%) [18]. The C-terminus of GAL is
involved in its receptor-binding affinity and the N-terminus is crucial for its biological
activity [19]; the fifteen N-terminal residues of GAL are highly conserved throughout
evolution [20]. GAL and other peptides (GAL message-associated peptide (GMAP), GAL-
like peptide (GALP), alarin) belong to the GAL family of peptides. In addition, the peptide
spexin (neuropeptide Q, 14 amino acids) is the most recently discovered member of this
family; spexin has been shown to be involved in reproduction, nociception, renal function
and energy homeostasis [21]. GALP, an endogenous ligand that activates the three known
types of GALRs, was isolated from the porcine hypothalamus, contains 60 amino acids
and is involved in reproduction and energy homeostasis [22,23]. Alarin (25 amino acids)
is a splice variant of GALP mRNA [24]. The human chromosome 11q13.3-q13.5 contains
the pre-pro-GAL gene-encoding GAL, which shows five introns and six exons, which in
turn are translated into a pre-prohormone (123 amino precursor) containing the signal
peptide, GAMP and GAL [17,25] (Figure 2). Some oncogenes have been located in the
abovementioned region, which is also the breakpoint for the translocation t (11; 14) (q13;
q32) in diffuse B-cell lymphoma and chronic lymphocytic leukemia [26]. The gene spans
6.5 kb and its first exon only encodes the 5′ untranslated sequence. In the pre-pro-GAL gene,
its 5-prime flanking sequence shows a TATA box preceded by binding sites for transcription
factors (e.g., NF-κB) and contains a CT-rich region that is flanked by two Alu repeats-,
2.3 kb upstream of the transcriptional start site; the region (500 bp) preceding this site
contains 79% CG [27]. GALP and alarin are encoded by the pre-pro-GALP gene, which
is located on the human chromosome 19q13.43 and comprises six exons [28]. The region
encoding GALP is contained in exons 2–5 and alarin is formed when post-transcriptional
splicing leads to the exclusion of exon 3, resulting in a frame shift and a novel precursor
peptide [24].

The galaninergic system (GAL and GAL receptors (GALRs)) is widely distributed
by the mammalian gastrointestinal tract, testis, ovary, uterus, kidney and heart, and by
the immune, endocrine, peripheral and central nervous systems (e.g., endocrine pan-
creas, pituitary gland, paravertebral sympathetic ganglia, myenteric plexus, glial cells,
dorsal root ganglion, spinal cord, brainstem, thalamus, hypothalamus, hippocampus,
amygdala) [25,29–36]. The half-life of GAL in plasma is about five minutes and GAL
coexists with many other neuroactive substances (e.g., enkephalin, vasopressin, calci-
tonin gene-related peptide, substance P, neuropeptide Y, cholecystokinin, growth hormone,
luteinizing hormone-releasing hormone, dopamine, glutamate, noradrenalin, serotonin,
acetylcholine) [29,37–44]. In general, GMAP in the rat central nervous system showed
a similar profile of expression to GAL; however, GALP and alarin showed a more re-
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stricted expression than GAL [45]. Due to the widespread distribution of the galanin-
ergic system by the whole body, GAL has been involved in many physiological actions
after binding to specific G protein-coupled receptors: smooth muscle contraction, acetyl-
choline release inhibition, energy metabolism, food and water intake, hyperglycemia,
osmotic and metabolic homeostasis, spinal reflexes, injury response, nociception, repro-
duction, memory, cognition, learning, arousal, sleep, neural growth, glucose-induced
insulin release inhibition and respiratory, cardiovascular, neuroendocrine and gastroin-
testinal mechanisms [8,14,18,20,25,29,33,38,46–50]. Moreover, GAL regulates the level of
growth hormone, prolactin, dopamine, pancreatic peptide, luteinizing hormone, luteiniz-
ing hormone-releasing hormone, somatostatin and insulin [18,42,51–53]. GAL acts as a
neurotransmitter and neuromodulator in the central nervous system and the peptide has
been involved in several diseases (e.g., anxiety, depression, stroke, alcoholism, Alzheimer’s
disease, Parkinson’s disease, epilepsy); the galaninergic system also plays an important role
in inflammatory bowel diseases and diabetes [18,20,25,54–58]. In addition to the nervous
system actions mediated by the galaninergic system (e.g., GAL exerts a neuroprotective
action in the hippocampus and favors neurite outgrowth) [49,50], GAL also mediates
non-neural functions including the emerging roles played by the peptide in tumorige-
nesis [20] and in tumor-infiltrating immune cells (e.g., glioma-associated macrophages,
microglia, neutrophils) [30]. GAL regulates the expression of chemokines (CCL2, CCL3,
CCL5, CXCL8) and anti-inflammatory cytokines (tumor growth factor-β, interleukin-10,
interleukin-1Ra) in macrophages [59]. The expression of GALRs in tumor-related immune
cells suggests that GAL regulates the homeostasis of the tumor microenvironment. In hu-
mans, the expression of GAL is regulated in a cell type-specific manner by the brain-derived
nerve growth factor, dexamethasone, progesterone, thyroid hormone, nerve growth factor,
activity-dependent neuroprotective protein, leukemia inhibitory factor, vasoactive intesti-
nal peptide and gonadotropin-releasing factor [20]. Protein kinase A (PKA) and protein
kinase C (PKC) are inducers of the expression of the GAL gene, and the expression and
release of GAL is promoted by axotomy, chronic stress, ischemic brain damage, orofacial
pain, virus infection and chronic constriction nerve injury [20] (Figure 3).

GALRs (GAL 1 receptor (GAL1R), GAL 2 receptor (GAL2R), GAL 3 receptor (GAL3R))
belong to the rhodopsin-like (class A) G protein-couple receptor family (seven transmem-
brane receptors or 7TM) [60]. They contain three extracellular loops, three intracellular
loops, an extracellular N-terminus and three intercellular loops [60,61]. The helix 8 acts
as a conformational switch at the C-terminus [62]. GALRs have sequence homologies in
the transmembrane region: GAL1R-GAL3R (33%) and GAL2R-GAL3R (54%) [20], whereas
human GAL3R and GAL2R respectively show 89% and 92% sequence homology with their
receptor homologs present in the rat [63]. Human GAL has tens of nanomolar affinity
at GAL3R, subnanomolar to nanomolar affinity at GAL2R and subnanomolar affinity at
GAL1R [64]. Although the structure of GALRs is quite similar, different binding character-
istics and intracellular signaling pathways have been reported after the activation of these
receptors by ligands [60,61]. Thus, the lengths of the N-terminus (which plays an impor-
tant role in the binding of ligands) and C-terminus are different in GALRs (C-terminus:
GAL1R, 37 residues; GAL2R, 30; GAL3R, 13; N-terminus: GAL1R, 47 residues; GAL2R,
80; GAL3R, 62) [60]. The physiological actions of GAL are mediated by GAL1R, GAL2R
and GAL3R; several signaling pathways are activated after the binding of GAL to these
receptors: the stimulation of phospholipase C (PLC, mediated by GAL2R) or the inhibition
of cyclic adenosine monophosphate (cAMP)/PKA (mediated by GAL1R/GAL3R) [26].
Moreover, GAL2R mediates the inhibition of adenylate cyclase (AC) via coupling to Gi type
G protein [65,66]. GALR type is determined by the region between the transmembrane
helix 7 and the extracellular loop 2 (a variable region affecting the binding of ligands) and
by the cavity size (e.g., the GAL3R binding cavity is narrower than that observed in GAL1R
or GAL2R) [60]. Human GAL2R and GAL3R genes have respectively been localized in
chromosomes 17q25 and 22q12.2-13.1 [66].
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GAL1R was isolated from a human melanoma cell line [67]. It is coupled to Gβγ/Gαi
signaling pathways and promotes, via a PKC-independent mechanism, the activation of
mitogen-activated protein kinases (MAPKs) [17,68]. Moreover, the activation of GAL1R
inhibited AC activity via an interaction with G-proteins (Gαi/αo), leading to G protein-
coupled inwardly-rectifying potassium (GIRK) channels opening [32,67,69]. GAL1R acti-
vation can also inhibit the transcription factor cAMP regulatory element binding protein
(CREB)-dependent signaling pathway [70], and the expression of GAL1R (but not that of
GAL2R or GAL3R) was controlled by cAMP via CREB [71,72]. The GAL1R gene (located in
chromosome 18q23) in humans shows three exons that are translated into a long protein
containing 349 amino acids; GAL1R homology is high between species (e.g., in mouse,
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93% of the residues are identical to those observed in humans) [73]. GAL1R has been
located in the central (e.g., cortex, amygdala, hippocampus, thalamus, hypothalamus,
locus coeruleus, medulla oblongata, spinal cord) and peripheral (e.g., dorsal root ganglion)
nervous systems [33,34] and in the gastrointestinal tract [67,74].
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GAL2R was first identified in the rat central nervous system [35,75,76] and was cloned
in rat hypothalamic cells for the first time [35]. GAL2R contains His252/His253 (trans-
membrane domain 6) and Phe264/Tyr271 (extracellular loop 3) residues, which play a
crucial role in the binding of ligands and in the activation of the receptor [77]. The sequence
of human GAL2R shows a high homology with that observed in the rat (85–92%) and
it was 39% identical to human GAL1R [33,63,78]. In the rat, GAL2R shows 38% amino
acid identity with GAL1R [35]. In comparison with GAL1R, the distribution of GAL2R
is more widespread since it has been observed in the nervous system (piriform cortex,
dentate gyrus, amygdala, hypothalamus, mammillary nuclei, spinal cord), skeletal muscle,
liver, testis, ovary, uterus, spleen, heart, kidney, lung, gastrointestinal tract and pituitary
gland [33,35,63,79,80]. GAL2R mRNA expression has been reported in the neocortex, den-
tate gyrus, hypothalamus, cerebellar cortex, substantia nigra, vestibular complex and dorsal
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root ganglion [7,80,81]. GAL2R expression was modified in the thalamus and cerebral cor-
tex during brain development; this suggests that the receptor is involved in important
mechanisms during the establishment/maturation of synaptic circuits and during neu-
ral damage/repair in the mature nervous system [82]. GAL2R activates the G protein
(Gαq/11) pathway by triggering the intracellular phosphoinositol turnover, the activity
of PLC and the release of Ca2+ into the cytoplasm [35,63,68]. GAL2R, via PKC and G
protein (Gαo), activated MAPKs, favoring the downstream phosphatidylinositol 3-kinase
(PI3K)-dependent phosphorylation of PKB and blocked the activity of caspases 3 and
9 [68,83]. GAL, via GAL2R, induced the nuclear factor of activated T-cells and the cyto-
plasmic 2 (NFATC2)-mediated transcription of cyclooxygenase 2 and GAL, leading to the
secretion of prostaglandin E2 and GAL, which favored cell invasion and neuritogenesis,
respectively [84]. GAL2R can block forskolin-stimulated cAMP production; this suggests
the activation of Gαi/αo [66,85], and CREB [70]. GAL, via GAL2R, activated extracellular-
regulated protein kinase (ERK) and the phosphorylation of the serine/threonine kinase Akt
signaling pathway [86]. The activation of GAL2R promoted, via the Akt (PKB) pathway, cell
survival and proliferation; both processes were MAPK1/MAPK3-dependent [87]. GAL2R
mediated the neuroprotective effect promoted by GAL after injury and also activated PKC,
PLC and ERK via Gq/11 [17,68,88]; this means that after binding to GAL2R, GAL agonists
could be used to treat neurodegenerative diseases (e.g., multiple sclerosis) [49]. This is an
important line of research that must be developed in the future; in particular, research must
be focused on the search of GAL2R-specific agonists.

GAL3R was first isolated from rat hypothalamic cDNA libraries [89]. Human GAL3R
(368 amino acids long) shows 36% amino acids identity with human GAL1R, 58% with
human GAL2R and 90% with rat GAL3R [63]. The distribution of GAL3R (olfactory cortex,
hippocampus, hypothalamus, medulla oblongata) is more restricted than that reported
in the brain for GAL1R or GAL2R [33,63,77,89–91]. GAL3R mRNA has been located in
the amygdala, periaqueductal gray, locus coeruleus, brainstem reticular formation, spinal
cord, pancreas, adrenal gland and testis [63,91]. GAL3R promotes the activation of Gαi/αo,
blocking AC activity and opening GIRK channels [63,90]. Spexin binds to human GAL2/3Rs
(not to GAL1R), exerting a higher potency toward GAL3R than GAL [21,92].

GAL agonists or antagonists (e.g., galantide, M35, M40, C7) have been used for the
treatment of several disorders: GAL antagonists have been administered for the treatment
of food intake disorders and Alzheimer’s disease, whereas GAL agonists have been used
for the treatment of chronic pain [18,93]. Some fragments of GAL (GAL1-15; GAL1-16,
GAL1-29), exerting physiological actions through GALRs (e.g., mood or cardiovascular reg-
ulation, alcohol intake), have been reported [94–97]. The conformational changes observed
in GAL1R lead to a higher affinity of this receptor for GAL1-15 than for GAL, increasing
the signaling (mediated by Gi/o) and decreasing AC activity and CREB level [98]. GALRs
may form heteromers with each other and with other types of G protein-coupled receptors
in the central nervous system [99]. Thus, the GAL1R/GAL2R heteroreceptor complex [98]
and heteromers of GALRs with alpha2-adrenoceptors and 5-hydroxytryptamine (HT),
dopamine 1, neuropeptide Y1 or Y2 receptors have been reported [20]. The formation of
the heterotrimer GAL1R-GAL2R-5-HT1A receptor complex could explain why GAL1-15,
but not GAL1-29, antagonistically moderated the serotonin receptor [99]. In addition, this
heterotrimer has been suggested as a potential target to reverse the actions mediated by
fluoxetine on memory mechanisms [94,100]. Thus, heteromers can alter the recognition of
GAL ligands, and they are promising new targets for therapeutic interventions.

3. The Galaninergic System and Cancer

Peptides and their receptors are one of the molecular bases for the therapeutic target-
ing of tumors [101]. The galaninergic system is expressed in normal tissues and, in cancer
cells, is involved in tumorigenesis, invasion and migration (metastasis) [30,36,39,101–112],
although in some tumors, GAL and GALRs are silenced [113]. This system has been ob-
served in neuroendocrine (e.g., phaeochromocytoma, pituitary adenoma, gangliocytoma,
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paraganglioma, neuroblastoma) and non-neuroendocrine (e.g., glioblastoma and other
brain tumors, melanoma, basal cell carcinoma, head and neck squamous cell carcinoma,
embryonic carcinoma, colon cancer, breast cancer, gastrointestinal cancer, prostate cancer)
tumors [30,36,39,75,101–112,114–121]. For example, in squamous cell carcinoma, GAL1R
was involved in tumor suppression and GAL2R favored tumor development and decreased
survival [122,123]. GAL exerted a tumor-reducing effect in experimental murine models
(gastrointestinal cancer), but in other models (adenoma formation), GAL promoted cell
proliferation and tumor formation [101]. Thus, GAL can promote or inhibit the develop-
ment of tumors; this is an important characteristic of the galaninergic system: to exert
both proliferative and antiproliferative actions on tumor cells. Importantly, GAL/GALR
expression has been correlated with tumor subtypes (colon carcinoma, squamous cell
carcinoma, neuroblastic tumors, pituitary adenoma) or with tumor stage [101] and the
activation of GAL1R was generally antiproliferative, whereas the activation of GAL2R
showed antiproliferative or proliferative effects [101]. The stage and tumor size in colon
cancer have been related to the GAL mRNA level: the higher the GAL expression, the
shorter the disease-free survival [30,106]. In general, the data reported above suggest that
the galaninergic system is a promising target for the diagnosis, prognosis and treatment
of tumors expressing GAL and GALRs. In this section, the involvement of this system in
neuroendocrine tumors (phaeochromocytomas, insulinomas, neuroblastic tumors, pituitary
tumors, small-cell lung cancer), gastric cancer, colorectal cancer, head and neck squamous
cell carcinoma and glioma will be reviewed as well as other cancer types in which the
galaninergic system has been less studied.

3.1. Galanin and Neuroendocrine Tumors

Neuroendocrine tumors (NETs) are a very heterogeneous tumor group including: (1)
carcinoid gastroenteropancreatic tumors; (2) non-carcinoid gastroenteropancreatic tumors
(vasoactive intestinal peptide (VIP)oma, gastrinoma, insulinoma); (3) catecholamine-secreting
tumors (neuroblastoma, sympathoblastoma, ganglioneuroblastoma, ganglioneuroma, para-
ganglioma, phaeochromocytoma); (4) chromophobe pituitary tumors; (5) medullary carci-
noma of the thyroid; (6) Merkel cell tumors; and (7) small-cell lung cancer. NETs originate
from neuroendocrine cells, which release peptides (e.g., GAL, somatostatin, pancreatic
polypeptide, chromogranins) and express their corresponding receptors [124–126]. Thus, a
high expression of peptidergic receptors has been reported in NETs for neurotensin, gastrin-
releasing peptide, cholecystokinin, somatostatin and vasoactive intestinal peptide [125].
Importantly, the expression of the peptidergic systems in NETs has been correlated with
prognosis and tumor stage [127].

Regarding the galaninergic system, many data demonstrated its involvement in NETs
pathophysiology and carcinogenesis; for example, high doses of estrogens or dopamine
agonists reversed rat pituitary hyperplasia and decreased the expression of GAL, suggesting
that the peptide acted as a proliferative agent [128–132]. GAL expression is restricted to
some NETs [107]: the peptide was observed in adrenal phaeochromocytoma (62%), jugulo
tympanic paraganglioma (40%) and carotid body paraganglioma (18%), but it was not
found in metastatic or recurrent paraganglioma, extra-adrenal phaeochromocytoma and
carcinoid tumor [107,108]. Moreover, endocrine tumors from gastrointestinal tract, pancreas
and lung did not show GAL [107]. This means that the utility of GAL as a diagnostic marker
is limited to certain NETs. In this section, the involvement of the galaninergic system in
those NETs (phaeochromocytoma, insulinoma, neuroblastic tumor, pituitary tumor, small-
cell lung cancer) expressing this system will be reviewed (Table 1). The methodology
(e.g., immunohistochemistry, in situ hybridization, Western blot) applied in the studies
appearing along the text in different tables is reported. However, it is important to note that
antisera directed against G protein-coupled receptors (including GALRs) are frequently
unspecific [133,134]; accordingly, the findings found regarding GALRs should be taken
with caution and only accepted when using valid controls, with the specificity of these
antisera fully confirmed.
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Table 1. Involvement of the galaninergic system in neuroendocrine tumors.

Cancer Actions/Presence References

Corticotroph adenoma
Human

- High GAL expression (RIA) [102]

- GAL in 84% of tumors (IH) [103]

- GAL expression: smaller adenomas and
better prognosis (IH) [105]

- GAL release and responded to
corticotropin-releasing factor [135]

Ganglioneuroma
Human

- No correlation between prognosis/tumor
markers and GAL level (RIA) [136]

- GAL1R/GAL3R immunoreactivity
decrease (IH) [137]

Insulinoma
Rat Rin14B cell line

- GAL1R expression (Northern blot, in
situ hybridization) [32]

Insulinoma
Rat RINm5F cell line

- GAL moderately suppressed insulin
accumulation, but did not affect
cell proliferation

[138]

- Pancreatic beta-cells: GAL inhibited
adenylate cyclase activity and insulin secretion [53]

Insulinoma
Mouse

- Beta TC-1 cells: GAL, released from
sympathetic nerve terminals, inhibited
pro-insulin gene expression stimulated by
glucagon-like peptide-I (Northern blot)

[139]

Neuroblastic tumors
Human

- GAL mRNA, GAL immunoreactivity and
GAL binding sites expression (IH, in
situ hybridization)

[137]

- Low level of GAL binding sites correlated
with survival; GAL/GALR expression related
to tumor differentiation stage (RIA, IH, in
situ hybridization)

[136,137]

Neuroblastoma
Human

- No correlation between prognosis/tumor
markers and GAL concentration [136]

- GAL expression; GAL2R mRNA was less
common than GAL1R mRNA (IH, in
situ hybridization)

[104]

- GAL1R/GAL3R highly expressed; GAL
promoted tumor growth (IH, in
situ hybridization)

[137]

Neuroblastoma
Human IMR32 cell line

- Dense core secretory vesicles: coexistence of
GAL and beta-amyloid (IH) [140]

Neuroblastoma
Human SH-SY5Y cell line

- GAL2R mediated apoptosis. GAL
antiproliferative potency: 100-fold higher in
SY5Y/GAL2R cells than in SY5Y/GAL1R cells

[12]

- GAL2R transfection: cell proliferation was
blocked and caspase-dependent apoptotic
mechanisms induced

[12]

Neuroblastoma
Rat B104 cell line

- GAL, GAL2R and GAL3R mRNAs were
detected, but not GAL1R mRNA
(reverse transcription-PCR)

[141]

- GAL promoted cell proliferation

Paraganglioma
Human - GAL expression (IH) [108,112,142]
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Table 1. Cont.

Cancer Actions/Presence References

Paraganglioma
Human carotid body - GAL was detected in 18% of tumors (IH) [108]

Paraganglioma
Human jugulo tympanic - GAL was detected in 40% of tumors (IH) [108]

Phaeochromocytoma
Human

- High GAL2R mRNA expression
(Western blot) [143]

- Higher GAL concentration than in normal
adrenal glands (RIA) [144]

Phaeochromocytoma
Rat PC12 cell line

- GAL inhibited cell proliferation and GAL1R,
GAL2R and GAL3R mRNA expression, but not
GAL mRNA (reverse transcription-PCR)

[141]

Pituitary adenoma
Human

- GAL/GALR expression correlated with
tumor stage (IH) [101]

Pituitary adenoma
Human

- High GAL3R levels found in some patients
who relapsed shortly after surgical
intervention (q-PCR)

[145]

Pituitary adenoma
Rat

- GAL promoted pituitary cell proliferation
and tumor development [38]

Pituitary adenoma
Rat MtTW-10 cell line - Estradiol increased GAL mRNA level [146]

Prolactinoma
Rat

- GAL concentration increased and GAL
promoted tumor development [147,148]

- Levonorgestrel decreased GAL mRNA
expression and GAL-expressing cells (IH, in
situ hybridization)

[149]

Small-cell lung cancer
Human H345, H510
cell lines

- GAL, via GAL2R, mediated cell proliferation [88,150]

Small-cell lung cancer
Human H69, H510
cell lines

- GAL, via GAL2R, activated G proteins and
promoted cell proliferation [88]

- GAL increased the levels of inositol
phosphate and intracellular Ca2+ and
promoted cell growth

[151]

Small-cell lung cancer
Human H345, H510
cell lines

- Ca2+-mobilizing peptides (e.g., GAL)
promoted cell growth. Broad spectrum
antagonists directed against multiple
Ca2+-mobilizing receptors inhibited
cell growth

[150,152]

Small-cell lung cancer
Human H69, H345, H510
cell lines

- GAL, via the p42MAPK pathway, promoted
cell growth. Protein kinase C inhibitors
blocked cell growth induced by GAL

[153,154]

Small-cell lung cancer
Human SBC-3A cell line,
mouse SBC-3A tumor

- SBC-3A cells secreted the pre-pro-GAL
precursor which was extracellular processed to
GAL1-20 by plasmin

[155,156]

Somatotroph adenoma
Human

- Low GAL level (RIA) [102]

- GAL increased circulating growth hormone
level and growth hormone-producing tumors
expressed GAL (IH)

[157]

- GAL blocked growth hormone release [158]
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Table 1. Cont.

Cancer Actions/Presence References

Somatotroph adenoma
Rat GH1 cell line - GAL inhibited growth hormone release [159]

Somatotroph adenoma
Mouse

- GAL mRNA level and peptide concentration
increased [147]

- GAL secretion increased [160]

Thyrotroph adenoma
Rat - GAL gene expression blocked [147]

Thyrotroph adenoma
Mouse - GAL synthesis inhibited [160]

IH: immunohistochemistry; q-PCR: quantitative real time PCR; RIA: radioimmunoassay.

3.1.1. Phaeochromocytoma

GAL and GALRs have been observed in human phaeochromocytomas (Table 1).
Compared with normal adrenal glands, the concentration of GAL was much higher in
phaeochromocytomas; however, the authors of the study reported that in both phaeochro-
mocytoma patients and normal individuals, the concentration of GAL in plasma was
below the detection limit of the assay (less than 10 pmol/liter) [144]. The last observation
is surprising, since GAL plasma levels are usually not below the detection limits of the
assays. In the latter study, GAL was localized in 5 of 11 of the phaeochromocytomas
studied, and in normal adrenal glands, the peptide was only observed in a few cortical
nerve fibers/chromaffin cells. A high GAL2R mRNA expression was observed in human
phaeochromocytomas [143] and GAL inhibited the proliferation of phaeochromocytoma
tumor cells [141]. GAL blocked the proliferation of rat PC 12 cells in which the expression
of mRNAs encoding the three GALRs, but not GAL mRNA, was observed [141].

3.1.2. Insulinoma

Insulinomas appear sporadically or can be related with multiple endocrine neoplasia
type 1 (MEN1 syndrome: an autosomal dominant condition due to MEN1 gene inacti-
vating mutations) [161]. This syndrome is characterized by the presence of tumors in
duodenum/endocrine pancreas, anterior pituitary adenomas and primary hyperparathy-
roidism, with gastrinomas and insulinomas being the most common functioning islet cell
tumors [161]. The expressions of GALRs and GAL1R have respectively been reported in
RINm5F [162] and Rin14B [32] insulinoma cells. GAL (released from sympathetic nerve
terminals located in the endocrine pancreas) in insulinoma beta TC-1cells (mouse) blocked
the expression of the pro-insulin gene promoted by glucagon-like peptide-I (7-37) [139]
(Table 1). It has been reported that GAL did not block the secretion of insulin by simply
decreasing the Ca2+ level [163]. In the RINm5F insulinoma cell line, GAL inhibited the
activity of AC and moderately suppressed the accumulation of insulin, but did not affect
cell proliferation [138]; Gi3, a G protein coupled to GALRs, was involved in this inhibi-
tion [53]. In pancreatic beta-cells, GAL blocked the secretion of insulin and the activity of
AC via pertussis-toxin-sensitive G proteins [53]. Finally, the chimeric peptide M35 (galanin
(1-13)-bradykinin (2-9) amide) showed a dual effect depending on the concentration admin-
istered: acting as a GALR antagonist (at low concentrations) or as a GALR agonist (at high
concentrations) [93].

3.1.3. Neuroblastic Tumor

The expression of GAL mRNA, GAL immunoreactivity and GAL binding sites has
been reported in neuroblastic tumors [136,137] (Table 1). Neuroblastoma and ganglioneu-
roma are neuroblastic tumors, and in both, no correlation between prognosis or tumor
markers and the concentration of GAL has been reported [136]. However, a low level of
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GAL binding sites has been correlated with survival [136] and GAL/GALR expression has
been related to the tumor differentiation stage [137].

Neuroblastoma is the result of an aberrant sympathetic nervous system development,
usually arising from the paraspinal ganglia or adrenal medulla [116,164]. Thus, neuroblas-
toma appears in very young children (median age: 17 months; 10.2 cases/million children
under 15 years) [165,166]; GAL and GAL mRNA have been detected in this disease [12,104].
The coexistence of GAL and beta-amyloid peptide in dense core secretory vesicles has
been reported in the human neuroblastoma IMR32 cell line; this finding suggests that
both substances are involved in the regulation of brain functions [140]. Moreover, GAL1R
and GAL3R are highly expressed (immunoreactivity) in neuroblastoma, whereas the pres-
ence of GAL2R mRNA is less common than that of GAL1R mRNA [104,137]. By contrast,
the immunoreactivity for both GAL1R and GAL3R decreased in ganglioneuromas [137].
GAL, GAL2R and GAL3R mRNAs were detected in the rat neuroblastoma B104 cell line,
but not GAL1R mRNA [141]. It is important to note that the galaninergic system (by
autocrine/paracrine mechanisms) exerts an anticancer action or a proliferative effect on
neuroblastoma tumor cells; these effects are mediated by different GALRs, which induce
different signaling pathways after the binding of GAL [141]. Thus, GAL promoted the
growth and development of human neuroblastoma in an autocrine/paracrine manner [137],
and in the rat B104 neuroblastoma cell line, the peptide also increased the proliferation of
tumor cells [141]. By contrast, GAL exerted an antiproliferative effect via GAL2R in the
human neuroblastoma SH-SY5Y cell line [12]. GAL2R mediated apoptosis in the latter
cell line; however, the GAL antiproliferative potency was 100-fold higher in SH-SY5Y
neuroblastoma cells overexpressing GAL2R than in SH-SY5Y neuroblastoma cells over-
expressing GAL1R, suggesting that a high level of GAL2R is able to block tumor cell
proliferation [12]. In this sense, GAL2R transfection into neuroblastoma SH-SY5Y cells
inhibited cell proliferation and promoted a caspase-dependent apoptotic mechanism [12].
Finally, the expression of GAL has been reported in human paragangliomas [108,112,142]
and the peptide was respectively found in 18% and 40% of carotid body or jugulo tympanic
paragangliomas [108].

3.1.4. Pituitary Tumor

GAL and the three GALRs have been observed in normal pituitary glands [30,36,145].
GAL was located in cells also containing growth hormone, prolactin, thyroid-stimulating
hormone or adrenocorticotropic hormone (ACTH) [38,167]. GAL1R was the most abundant
receptor observed in normal anterior pituitaries, followed by GAL3R, whereas GAL2R was
not found [30]. In another study, GAL, GAL1R and GAL2R mRNAs were found in human
pituitaries, but not GAL3R mRNA [145]. Estrogens increased GAL mRNA and peptide
levels in the rat anterior pituitary [167].

GAL was detected in some, but not all, pituitary tumors [36] (Table 1). Importantly,
GAL/GALR expression is related to the pituitary tumor stage. Human pituitary adenomas
display an increased expression of GAL1R [145], while high levels of GAL3R have been
reported in some patients who relapsed shortly after surgical intervention [145]. This
suggests that GAL3R could be a marker for relapsing pituitary tumors and that GAL3R
antagonists could be a therapeutic approach for the treatment of pituitary tumors [145].
GAL may promote pituitary cell proliferation and tumor development in an estrogen-
dependent or independent manner. Thus, in the rat MtTW-10 pituitary tumor cell line, GAL
mRNA levels highly increased after the administration of estradiol. These cells secreted
GAL, a process that was blocked by somatostatin. In rats, a sexual dimorphism was
observed in estrogen-induced anterior pituitary tumorigenesis (female tumors averaging
twice the size of male tumors); this could be due to a differential expression of GAL [168].

GAL and prolactin coexist in lactotrophs [38,167]. In transgenic mice, the overex-
pression of GAL in these cells promoted the synthesis and release of prolactin favoring
hyperprolactinemia; moreover, this study showed that pituitary GAL favored pituitary
hyperplasia (especially lactotrophs) in an estrogen-dependent manner [169]. In fact, high
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estrogen levels promoted prolactin-secreting pituitary tumors, which in turn released
GAL [148] and, in estrogen-induced prolactinomas, the expression of the GAL gene and
the level and secretion of GAL increased in the rat anterior pituitary [147,160]. Thus, GAL
acts as an autocrine/paracrine hormone, regulating the secretion of prolactin [160]. It has
been reported that the synthetic progestin levonorgestrel reduced the pituitary growth by
decreasing the expression of GAL [149].

The coexistence of growth hormone (GH) and GAL has been reported in soma-
totrophs [38,167]. GAL promoted the release of GH from normal rat pituitary cells, but
the peptide blocked this release from rat somatotroph adenoma cells [158,159]. The GAL
level was low in GH secreting adenomas, but the level of the peptide was high in cor-
ticotroph adenomas [102]. In humans, GAL increased the circulating level of GH and
GH-producing tumors expressed GAL [157]. A high increase in both GAL mRNA and
GAL expression/secretion was observed in GH-releasing hormone transgenic mouse (so-
matotroph hyperplasia) [147,160]. The data show that GAL plays an important role in
pituitary hyperplasia mechanisms by promoting cell proliferation [38].

Most of the corticotroph adenomas express GAL [102]. In normal pituitaries, the
co-existence of GAL and ACTH has been reported in corticotrophs and, in the same cells,
GAL and ACTH were also co-expressed in nonfunctioning and functioning pituitary
tumors [102,105]. GAL expression is related to smaller adenomas and better progno-
sis [102,105]. GAL has been observed in 84% of the corticotroph cell tumors associated
with Cushing’s disease [103], although another study has reported that GAL did not play
an important pathophysiological role in this disease because corticotroph adenomas can
function irrespective of the presence of GAL [105]. GAL is secreted by human tumoral
corticotrophs and responds to the corticotropin-releasing factor [135].

The expression of the GAL gene was blocked in thyrotroph adenomas; this means that
GAL did not exert a stimulatory proliferative action on thyrotrophs [147]. Another study
has shown that the synthesis of GAL was inhibited in thyrotroph adenomas [160].

3.1.5. Small-Cell Lung Cancer

Small-cell lung cancer (SCLC) is a poorly differentiated neuroendocrine carcinoma [170].
Approximately, it accounts for 15% of all lung cancers, is very aggressive, and is the leading
cause of cancer death worldwide in men [170–172].

GAL mediated, via GAL2R, the proliferation of SCLC cells [113,150,151,173] (Table 1).
Ca2+-mobilizing peptides (e.g., GAL, neurotensin, cholecystokinin) promoted the growth
of SCLC cells through autocrine and paracrine mechanisms [150]. This finding suggests
that broad spectrum antagonists directed against multiple Ca2+-mobilizing receptors could
exert a therapeutic antitumor action and, in fact, these antagonists inhibited SCLC cell
growth [152]. In H69 and H510 SCLC cell lines, GAL increased the formation of inositol
phosphate and the intracellular level of Ca2+, and the peptide also promoted the growth of
both cell lines, which was dependent on the concentration of GAL [151]. GAL, mediated
by the p42MAPK pathway dependent on the activity of PKC, promoted the growth of
SCLC cells, which was blocked with PKC inhibitors [153,154]. SBC-3A SCLC cells release
pre-pro-GAL precursors, but not active peptides; however, extracts from mouse SBC-
3A tumors contained pre-pro-GAL precursors and GAL1-20 (a cleaved lower-molecular
mass of GAL) [156]. This means that pre-pro-GAL precursors were extracellularly pro-
cessed to GAL1-20 and, in fact, it was demonstrated that the protease plasmin (present
in SBC-3A tumors) was responsible for the processing of the pre-pro-GAL precursors to
GAL1-20 [155,156]. GAL promoted the release of the promatrix metalloproteinase-2/9 from
SBC-3A SCLC cells [156], and SCLC cells produced and released GAL, which exerted, via
GAL2R, a mitogenic action on these cells by activating Gq, Gi and G12 G proteins [88]. Thus,
GAL activates multiple signals through the G12/Rho pathway and the Gq phospholipase
C/calcium sequence and also promotes Ca2+ mobilization [88].
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3.2. Galanin and Gastric Cancer

In nerve cells, the galaninergic system plays an important role in tumor development.
In human stomach samples, obtained from the vicinity of invasive cancer cells, neurons
located in the myenteric plexus showed a high expression of both caspases 3 and 8, but a low
expression of GAL [45,174] (Table 2). In carcinoma-affected regions of the human stomach,
an increase of the GAL-immunoreactive fibers in the longitudinal muscle layer, lamina
muscularis mucosae and in the vicinity of the neoplastic proliferation was observed; thus,
carcinoma invasion affected GAL stomach wall innervation [175]. In patients suffering from
gastric cancer, lower levels of GAL were observed in pre-operative samples (and in plasma)
when compared with those found in post-operative samples obtained from the same
patients or from samples of healthy donors [176]. Moreover, the levels of GAL/GAL1R were
lower in gastric cancer tissues compared with those found in adjacent regions; however,
the GAL2R/GAL3R levels did not change [176]. The low level of GAL could be used as a
biomarker in gastric cancer and, importantly, in these patients (pre-operative samples), the
GAL protein/mRNA levels have been related to tumor size, tumor node metastasis stage
and lymph node metastasis [176].

Table 2. Involvement of the galaninergic system in gastric and colorectal cancer.

Actions/Presence References

Gastric Cancer

Human

- Fibers containing GAL: increased in longitudinal
muscle layer, lamina muscularis mucosae and
neoplastic proliferation vicinity (IH)

[175]

- Myenteric plexus: neurons showed a high
expression of caspases 3/8 and low GAL
expression (IH)

[175]

- GAL/GAL1R level reduced [176]

- GAL2R/GAL3R level unchanged (RT-PCR) [176]

- Lower level of GAL in pre-operative samples
(and plasma) when compared with that found in
post-operative samples or in healthy donors.
Gastric cancer tissues: GAL/GAL1R level was
lower compared with that found in adjacent
regions GAL2R/GAL3R: no change (Western blot;
RT-PCR; ELISA)

[176]

- GAL low level: used as biomarker. GAL
protein/mRNA level related to tumor size, tumor
node metastasis stage and lymph node metastasis

[176]

Human
Gastric cancer cell lines

- GAL expression decreased: restored with a
demethylating agent. GAL hypermethylation:
impaired GAL tumor suppressor action. GAL
downregulation: due to epigenetic inactivation
(Q-MSP, Western blot)

[177]

- GAL: decreased cell proliferation [178]

Rats - GAL blocked gastric carcinogenesis by inhibiting
antral epithelial cell proliferation [13]

Colorectal Cancer
(CRC)
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Table 2. Cont.

Actions/Presence References

Human

- GAL/GAL1R silencing: apoptosis in
drug-sensitive/resistant cell lines and enhanced
the effects mediated by chemotherapy. GAL
mRNA: overexpressed. High GAL level: related to
poor disease-free survival of early-stage CRC
patients (IH, ELISA, RT-PCR, Western blot)

[7,106,117,121]

- Enteric nervous system: number of neurons
containing GAL increased in regions located close
to the tumor (IH) (IH, RT-PCR, ELISA)

[8]

- CRC patients: more GAL-immunoreactive
neurons in comparison to healthy samples
(IH, ELISA)

[121]

- GAL in the vicinity of cancer cell invasion
(IH, ELISA) [121]

- Blood samples: increased GAL concentration.
High GAL level: cancer cells. Lowest GAL level:
muscular layer placed distant from tumors. GAL:
CRC tumor biomarker (ELISA, IH)

[179]

- GAL mRNA level: related to adenocarcinoma
size/stage. Correlation between higher GAL
expression and shorter disease-free
survival (RT-PCR)

[106,117]

- CRC cells showed a high GAL expression: more
malignant and involved in tumor recurrence. High
GAL expression: spread of cancer stem cells
(metastasis) (RT-PCR)

[180]

- High GAL expression: associated with poor
prognosis (stage II) and tumor recurrence. GAL
expression: related to CRC aggressive
behavior (RT-PCR)

[180]

Human (tissue and
cell lines)

- CRC cells/tissues: higher GAL levels than
non-tumor cells/tissues [106,117,179,180]

- CRC tissue: increased GAL gene/protein
expression. CRC cell lines: GAL/GAL1R silencing
promoted apoptosis. GAL1R silencing promoted
FLIPL down-regulation (IH, ELISA, RT-PCR)

[106,117,121]

Human
HCT116 cell line

- Cells overexpressing GAL2R were more
chemosensitive to bevacizumab than control cells [181]

Rat - GAL decreased the incidence of colon tumors [182]
IH: immunohistochemistry; Q-MSP: quantitative methylation-specific PCR; RT-PCR: real time-PCR.

A prolonged administration of GAL (4 µg/kg) blocked gastric carcinogenesis by
inhibiting the proliferation of antral epithelial cells [13]. Human gastric cancer cells (AGS,
KATOIII, SNU-638, SNU-601, SNU-1) showed a low endogenous GAL expression, which
was restored with a demethylating agent (5-aza-2′-deoxycytidine) [177]. In addition, the
hypermethylation of GAL impaired its tumor suppressor action in gastric cancer, and the
exogenous GAL expression in silenced cells promoted a decrease in phosphorylated Akt
expression and apoptosis [177]. This means that the downregulation of GAL in gastric
tumor cells was due to an epigenetic inactivation. Finally, GAL decreased the proliferation
of human gastric cancer cells in vitro [178].
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3.3. Galanin and Colorectal Cancer

Colorectal cancer (CRC), the third most prevalent cancer worldwide, is an invasive
tumor process due to the proliferation of epithelial cells that acquire a neoplastic pheno-
type [8]. This process is known as epithelial-to-mesenchymal transition, in which epithelial
cells lose many morphological and functional characteristics (e.g., shape, cell polarity,
intercellular junctions) [8]. Tumor cells digest the extracellular matrix of the intestine wall,
activating growth factors that promote cell proliferation, the blockade of apoptotic mecha-
nisms and also favor the spreading of cancer cells [8]. Then, the invasion of cancer cells
destroys the enteric nervous system, leading to the atrophy of the submucosal/myenteric
plexuses. The galaninergic system is involved in colon cancer [106,117,121] (Table 2); thus,
for example, the siRNA-mediated silencing of the GAL gene reduced both invasive and
proliferative potential in CRC cells [117].

CRC tissues showed higher GAL levels than the corresponding non-tumor tis-
sues [106,117,179,180], and human colon cancer cell lines (LOVO, HCT15, SW480, SW620)
showed higher levels of GAL than those found in non-colon cancer cell lines [106]. In
blood samples of CRC patients, an increased concentration of GAL (2.4 times higher) has
been reported [179]. GAL mRNA is overexpressed in CRC and its level has been related
to adenocarcinoma size/stage and a correlation between shorter disease-free survival of
early-stage CRC patients and high expression of GAL has been reported [7,106,121]. In
CRC patients, a high GAL expression was related to tumor recurrence, and CRC patients
(stage II) who showed a high GAL expression had a poorer prognosis than those showing
a low expression of the peptide [180]. In addition, a relationship between a high GAL
expression and the spread of cancer stem cells (metastasis) has also been reported in CRC
(stage II) [180]. However, an association between survival and GAL expression was not ob-
served in CRC patients (stage III) [180]. The data show that the expression of GAL is related
to CRC aggressive behavior and it seems that CRC cells showing a high GAL expression
are more malignant and are also involved in the recurrence of the tumor [180]. However,
a recent study has shown that GAL downregulation is correlated with advanced CRC
stages in northern African individuals and it is linked to autophagy, cell cycle and division,
immune system response and the transcriptional regulation of TP53 [183]. Compared to
epithelial cells of the large intestine, a stronger immunoreactivity for GAL1R/GAL3R was
observed in CRC cells and it has been reported that the high expression of GAL3R in CRC
tissue was associated with a better prognosis and longer survival of CRC patients; this
means that GAL3R is a prognostic factor for these patients [184].

The number of neurons containing GAL was higher in CRC patients than in those
showing a healthy intestine, and an increased GAL gene/protein expression was observed
in CRC tissues [106,179]. Compared to control individuals, a higher percentage of neurons
containing GAL was reported in the myenteric plexus of CRC patients; however, no change
was observed regarding the density of the immunoreactive fibers containing GAL located
in the myenteric and submucosal plexuses [121]. The number of neurons containing
GAL also increased in the tissue regions located close to CRC; thus, the release of GAL
from these neurons could block apoptotic mechanisms favoring tumor cell survival and
proliferation [8,185]. In fact, GAL promoted CRC cell proliferation and improved cell
survival [8], and then cancer cell invasiveness increased and tumor development was
accelerated. In another study, CRC tumor samples were collected as well as colon wall
tissues located close to and distant from the neoplastic tissue: a high GAL immunoreactivity
was observed in myenteric/submucosal plexuses, intestinal epithelium and cancer cells,
whereas the lowest GAL level was found in the muscular layer located distant from
the tumor [179]. The author concluded that GAL could be a potential biomarker for
CRC tumors.

GAL1R is mainly expressed in the human colon. The silencing of this receptor or GAL
promoted apoptosis in drug-sensitive/resistant cell lines and enhanced the effects mediated
by chemotherapy; thus, GAL1R regulates drug resistance [117]. The GAL2R gene has
been suggested in CRC as a chemosensitive methylation candidate to bevacizumab, since
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HCT116 CRC cells overexpressing GAL2R were more chemosensitive to the monoclonal
antibody than control cells [181]. GAL1R silencing promoted a downregulation of the FLIPL-
like inhibitory protein long form (FLIPL, a caspase 8 inhibitor), meaning this inhibitor is a
key downstream effector of the anti-apoptotic signaling mediated by GAL/GAL1R [117].
Thus, the downregulation of the inhibitor favors the induction of caspase 8-dependent
apoptotic mechanisms. Finally, GAL decreased the incidence of colon tumors in rats and
it seems that this effect was due to the inhibitory action exerted by GAL on cancer cell
proliferative mechanisms [182].

3.4. Galanin and Head and Neck Squamous Cell Carcinoma

Head and neck squamous cell carcinoma arises from mucosal surfaces of the head
and neck [186] (Table 3). Perineural invasion (PNI), a mechanism of tumor dissemination
via nerves, predicts poor survival in some cancers including head and neck squamous cell
carcinoma (HNSCC), pancreatic cancer, stomach cancer and colon cancer, and is a sign
of cancer cell invasion and metastasis [187]. An interaction between nerves and tumor
cells occurs in PNI. PNI, mediated by molecular signals, promoted neuritogenesis and the
survival, proliferation and invasion of tumor cells [84,188–190]. These cells are attracted to
nerves and communicate with them. GAL (released from nerves) exerted a nerve–tumor
crosstalk by activating GAL2R expressed in tumor cells and by inducing NFATC2-mediated
transcription of cyclooxygenase-2 and GAL; then, GAL released from tumor cells promoted
neuritogenesis, favoring PNI [84].

Table 3. Involvement of the galaninergic system in head and neck squamous cell carcinoma.

Actions/Presence References

Human

- High GAL level (RT-PCR) [120]

- GAL1R gene promoter: frequently
methylated (Q-MSP) [191]

- Methylation status of some peptide-encoding
genes, including GAL, is related with survival
and recurrence. Methylation changes: possible
molecular marker for HNSCC
risk/prognosis (Q-MSP)

[192]

- GAL/GALR epigenetic variants: markers for
prognosis prediction (Q-MSP) [193,194]

- Poor survival: associated with methylation of
GAL/GAL1R genes. Hypermethylation:
inactivation of GAL/GAL1R/GAL2R
genes (Q-MSP)

[195]

Human
Cell lines

- Apoptosis: mediated by GAL2R but not by
GAL1R. GAL1R/GAL2R: tumor suppressors in a
p53-independent manner

[11]

- GAL2R transfection into HNSCC cells: cell
proliferation inhibited. GAL2R re-expression:
blocked cell proliferation (showing mutant p53)

[113,196,197]

- GAL1R/GAL2R negative HNSCC cells:
GAL1R re-expression suppressed tumor cell
proliferation via ERK1/2-mediated actions on
cyclin-dependent kinase inhibitors and cyclin D1

[113,197]

- GAL/GAL1R blocked HNSCC and oral tumor
cell proliferation by cell-cycle arrest (RT-PCR,
ELISA, Q-MSP)

[123,177,196,198]

- GAL1R blocked tumor cell proliferation
through the activation of ERK1/2 [196]



Cancers 2022, 14, 3755 18 of 38

Table 3. Cont.

Actions/Presence References

- GAL2R promoted an antitumor effect by
inducing cell cycle arrest and apoptotic
mechanisms (caspase 3-dependent)

[197]

- GAL2R suppressed HNSCC cell viability.
HEp-2 cells: GAL2R mediated apoptotic
mechanisms (caspase-independent) by
downregulating ERK1/2 and inducing Bim

[199]

Human
Cell lines,
tumor samples

- GAL2R overexpression: favored
survival/proliferation by activating PI3K/Akt
and MAPK/ERK-dependent pathways.
Ras-related protein 1 (Rap1): involved in
HNSCC progression.

[122]

- GAL/GAL1R: tumor suppressor. GAL1R
absent in some cell lines (Q-MSP, RT-PCR) [177,178,198]

- GAL1R promoter: widely hypermethylated
and related to reduced GAL1R expression.
GAL1R/GAL2R hypermethylation: associated
with higher recurrence rate and reduced
disease-free survival (RT-PCR, Q-MSP)

[191,194,198,200]

- GAL1R methylation status: potential biomarker
for predicting clinical outcomes. Methylation:
related to carcinogenesis and decreased GAL1R
expression (RT-PCR, Q-MSP)

[193,194,198]

Human (cell lines)
Mouse

- GAL (released from nerves) activated GAL2R
expressed in tumor cells inducing
NFATC2-mediated transcription of
cyclooxygenase-2 and GAL. GAL released from
tumor cells promoted neuritogenesis, favoring
perineural invasion

[84]

Mouse

- GAL2R promoted tumor angiogenesis through
the p38-MAPK-mediated inhibition of
tristetraprolin (TTP), leading to an enhanced
secretion of cytokines. GAL2R activated
Ras-related protein 1b (Rap1B) favoring a
p38-mediated inactivation of TTP, which acted as
a destabilize cytokine transcript

[201]

Q-MSP: quantitative methylation-specific PCR. RT-PCR: real-time PCR.

The promoter methylation status of the peptide-encoding gene GAL was studied in
HNSCC samples; methylation was observed in 20% of them [192]. The authors showed
that the methylation status of some peptide-encoding genes, including GAL, was related
to survival and recurrence in HNSCC, and they also suggested that methylation changes
could be a possible molecular marker for HNSCC risk/prognosis. In fact, poor survival
has been associated with the methylation of GAL/GAL1R genes, and a hypermethylation
promoted the inactivation of GAL/GAL1R/GAL2R genes [195]. The GAL1R gene pro-
moter is widely hypermethylated in HNSCC (cell lines, primary tumor); this is related to
reduced GAL1R expression, which can be restored by treating with a histone deacetylase
inhibitor (trichostatin A) or with a methyltransferase inhibitor (5-azacytodine) [191,198].
This is important, since the methylation of the GAL1R gene promoter has been related to
HNSCC carcinogenesis [193]. GAL1R/GAL2R hypermethylation has been associated with
a higher recurrence rate and reduced disease-free survival [194,200]. GAL/GALR epige-
netic variants are excellent markers for the prognosis prediction of patients suffering from
HNSCC [193,194]; thus, the GAL1R methylation status could be a biomarker for predicting
HNSCC clinical outcomes. Importantly, because methylation suppresses GAL/GALRs
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expression in some tumors and because GAL/GAL1R act as tumor suppressors (see be-
low) [177], these findings suggest that the methylation-based suppression of GAL/GALRs
eliminates the expression of a tumor-suppressive pathway.

A high level of GAL has been detected in HNSCC [120]; GAL/GAL1R blocked human
oral tumor cell proliferation [177], and GAL1R inhibited the proliferation of keratinocytes
(malignant and immortalized) by blocking the MAPK pathway [123]. Thus, GAL1R acts as
a tumor suppressor gene, which is frequently silenced in HNSCC [177,198]; in fact, in some
HNSCC cell lines, the expression of GAL1R is absent [198]. GAL1R blocked the proliferation
of tumor cells through the activation of ERK1/2 and cyclin-dependent kinase inhibitors,
leading to cell-cycle arrest (regulating cell cycle control proteins such as cyclin D1, p57,
p27) [123,196,198,200]. Moreover, the re-expression of GAL1R in GAL1R/GAL2R-negative
HNSCC cells also suppressed tumor cell proliferation through ERK1/2-mediated actions
on cyclin-dependent kinase inhibitors and cyclin D1 [113]. The overexpression of GAL2R
in HNSCC cell lines favored the survival and proliferation of these cells by activating
respectively the PI3K/Akt and MAPK/ERK-dependent pathways [122]. Rap1 (a Ras-like
signaling protein) is involved in HNSCC progression [122], and GAL2R activated rap1B
(small-GTP protein) favoring a p38-mediated inactivation of the mRNA binding protein
tristetraprolin, which inhibited the production of many pro-inflammatory cytokines. This
means that GAL2R-p38-mediated cytokine production could be a therapeutic target against
HNSCC, since p-38 inhibitors are currently used in clinical practice. In HNSCC, GAL2R
promotes tumor angiogenesis by enhancing the secretion of cytokines (vascular endothelial
growth factor, interleukin-6) via the p38-MAPK-mediated inhibition of tristetraprolin [201].
By contrast, GAL2R exerted an antitumor effect by inducing cell-cycle arrest and apop-
totic mechanisms (caspase 3-dependent) [190] and this means that the activation of these
mechanisms could exert a beneficial therapeutic action against HNSCC. The prolifera-
tive or antiproliferative actions mediated by GAL2R in HNSCC could be explained by
the signaling pathways activated depending on the coupled G protein type. Moreover,
GAL2R transfection into human HNSCC cells suppressed cell proliferation [113,197] and
the re-expression of GAL2R blocked HNSCC cell proliferation (showing mutant p53) [113].
Importantly, apoptotic mechanisms via the activation of GAL1R by GAL have not been
reported, and in HNSCC cells, GAL1R/GAL2R are suppressor tumors in a p53-independent
manner [11]. GAL2R mediated apoptotic mechanisms (caspase-independent) in HEp-2
cells by downregulating ERK1/2 and inducing Bim (a pro-apoptotic Bcl-2 protein) [199].
Although the receptors tend to be tumor suppressive, it has recently been reported that
GAL released by HNSCC cells exerted a pro-tumoral and immune-suppressive effect and
data from the Cancer Genome Atlas have shown that a reduced overall survival of HNSCC
patients was correlated with a high expression of GAL [202].

3.5. Galanin and Glioma

The GAL/GALR system has been described in glioma [30,118] in which the most
abundant receptor observed was GAL1R, followed by GAL3R; GAL2R was not found
(astrocytic/oligodendroglia tumors) [30] (Table 4). A reduced level of GAL has been
observed in the cerebrospinal fluid of patients with glioblastoma [203], and regarding the
expressions of GAL and GAL3R, no correlation with oligodendroglial, astrocytic and mixed
neural–glial tumors was reported [30]. Moreover, no correlation was observed between
the proliferative activity and GAL/GAL binding levels [118]. However, the high-grade
glioma (WHO grade IV) has been related to the expression of GAL3R [30]. GAL has been
reported in gliosarcoma and glioblastoma multiforme [118]; in the latter, the most abundant
receptor found was GAL1R, followed by GAL3R and GAL2R [118]. In glioma, endothelial
and immune (e.g., macrophages, neutrophils) cells expressed GAL3R, but GAL1R/GAL2R
were not observed around the blood vessels [30]. This means that tumor-associated cells
are involved in tumor microenvironment homeostasis. Glioma-associated macrophages
(GAMs) are involved in tumor progression; although macrophages produce/secrete GAL,
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GAMs do not express GAL, but express GAL3R, and this means that GAL could regulate
the activity of GAMs [59,204].

Table 4. Involvement of the galaninergic system in glioma.

Actions/Presence References

Human

- GAL/GAL3R expression: no correlation with
oligodendroglial, astrocytic and mixed
neural–glial tumors

[30]

- High-grade glioma (WHO grade IV): related to
GAL3R expression [30]

- Endothelial/immune cells: GAL3R expression.
Around blood vessels: GAL1R/GAL2R not
observed (IH)

[30]

- GAL1R, followed by GAL3R; GAL2R absent
(astrocytic/oligodendroglia tumors) (IH,
autoradiography, reverse transcription-PCR)

[30,118]

- Glioma-associated macrophages: GAL3R
expression (quantitative PCR) [59,204]

- No correlation between proliferative activity
and GAL/GAL binding levels (IH,
autoradiography, reverse transcription-PCR)

[118]

- Cerebrospinal fluid (glioblastoma): reduced
GAL level [203]

Human
Mice

- GAL blocked, via GAL1R, the proliferation of
glioma cells and tumor growth. These effects
were mediated through ERK1/2 signal
activation. No cytotoxic/apoptotic effect
was observed

[205]

IH: immunohistochemistry.

GAL blocked, through GAL1R, the proliferation of human glioma cell lines (U251,
T98G) and tumor growth in nude mice [205]. The authors reported that GAL did not exert
cytotoxic/apoptotic effects and that the blocking actions exerted by GAL were due to the
activation of the ERK1/2 signal.

3.6. Galanin and Other Cancers

Although the expressions of GAL and pre-pro-GAL mRNA have been reported in
breast cancer, it has been suggested that the GALN gene (which encodes the pre-pro-
GAL protein) is an unlikely candidate oncogene in breast tumors because an increase in
pre-pro-GAL mRNA expression with GALN amplification was not observed [101,206]
(Table 5). Many nerve fibers containing GAL have been reported in cardiac and esophageal
carcinomas [207]; these fibers contacted closely with cancer cells, including those encircling
tumor cells. In this study, GAL favored the extension of processes by dorsal root ganglion
neurons, but the action of the peptide on tumor cells is currently unknown [207]. GAL1R
DNA methylation is among the most epigenetic molecular alterations in endometrial cancer;
this methylation indicates malignancy with a high degree of sensitivity and specificity [208].
The methylation of the GAL1R gene in bladder cancer has been involved in the prognosis
of the disease, but the role played by the galaninergic system in this cancer is currently
unknown [209].
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Table 5. Involvement of the galaninergic system in other cancers.

Actions/Presence References

Breast cancer
Human

- GAL/pre-pro-GAL mRNA level expression.
GALN gene: unlike candidate oncogene
(Northern blot)

[101,206]

Carcinoma (cardiac,
esophageal)
Human

- Fibers containing GAL contacted closely with
cancer cells (IH) [207]

Endometrial cancer
Human

- GAL1R DNA methylation indicated
malignancy (q-PCR) [208]

Bladder cancer
Human

- GAL1R gene methylation involved
in prognosis [209]

Salivary duct carcinoma
Human

- GAL1R/GAL2R: therapeutic
targets/prognostic factors. GAL1R/GAL2R
methylation rates correlated with overall
survival decrease (IH, Q-MSP)

[210]

Melanoma
Human - GAL/GAL1R expression (IH) [101,119]

Pancreas
Human - GAL promoted SW1990 cell proliferation [211]

Pancreas
Rat

- GAL blocked carcinogenesis and decreased
norepinephrine level (IH, HPLC) [212]

HPLC: high-performance liquid chromatography; IH: immunohistochemistry; Q-MSP: quantitative methylation-
specific PCR; q-PCR: quantitative real-time PCR.

It has been suggested that GAL1R/GAL2R are therapeutic targets and prognostic
factors in salivary duct carcinoma [210]. GAL1R/GAL2R methylation rates were higher
in salivary duct carcinomas than in normal tissues, and these rates were correlated with a
decrease in overall survival. The expression of GAL has been reported in melanoma, and
human Bowes melanoma cells expressed GAL1R [119,213]. In the latter case, a biphasic
response (increase of the extracellular acidification rate followed by a decrease below
the basal level) was found after the activation of the receptor, being the magnitude of
the response depending on the concentration of GAL [213]. GAL blocked pancreatic
carcinogenesis in rats, and this was related to the inhibition of the activity of the sympathetic
nervous system [212]. The latter study demonstrated that animals treated with GAL
showed a lesser number of pancreatic adenocarcinomas than control animals and that
GAL decreased the pancreatic level of norepinephrine. By contrast, GAL promoted the
proliferation of SW1990 human pancreatic cancer cells in vitro [211]. These contradictory
findings may be due to the fact that the former experiment was performed in vivo [212].

4. The Galaninergic System and Cancer: Signaling Pathways

Figure 4 shows the main signaling pathways in which the galaninergic system is
involved. A GAL/GALR signaling network map focused on the signaling cascades reg-
ulated by the galaninergic system has recently been published [87]. GALRs (via PKC)
activate the rat sarcoma virus (Ras, a small GTPase)/MAPK/ERK pathway by increasing
the intracellular Ca2+ concentration [8]. The galaninergic system activates many signal
transduction pathways depending on the coupled G protein type: GAL1R/GAL3R, mainly
coupled to Gi/o, decrease the cAMP level and inactivate PKA, whereas GAL2R, prefer-
ably coupled to Gq/11 mobilizing intracellular Ca2+, promotes (via PKC) the activation
of cell survival (via Akt or PKB) and MAPK1/MAPK3-dependent cell proliferation path-
ways [17,30,87]. GAL1R can also be coupled to Gβγ- and/or Gi-signaling pathways and
then the activation of MAPKs occurs in a Ras/Raf-dependent manner [17,25,87]. GAL1R
activation also favors the Akt/Akt substrate of the 160 kDa (AS160) cascade [87], regulates
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GIRK channels [4,77] and activates the ERK1/2 signal through the Gα/i subunit and not
via the PI3K pathway linked to the Gβγ subunit [196]. GAL1R induces cell-cycle control
proteins (p27kip1, p57kip2) and suppresses cyclin D1 in cancer cells [20]. GAL2R, mainly
coupled to Gq/11, mediated the activation of PLC and small GTPase proteins in the Rho
family [87]. PLC converted phosphatidylinositol, 4, 5-bisphosphate (PIP2) into diacylglyc-
erol (DAG) and inositol triphosphate (IP3), which mediated PKC activation and increased
the intracellular concentration of Ca2+ [77]. GAL2R activated the small GTPase protein Rho
A in SCLC cells, suggesting the coupling to G12/13 [20]. GAL2R inhibited the production
of cAMP, meaning that the receptor was coupled to Gi protein [83]. GAL2R decreased
cofilin activation and Rho and Cdc42 GTPase activity [20]. In tumor cells, GAL2R activated
the MAPK/ERK pathway in a PKC manner, meaning that GAL2R was coupled to a Go
protein [20]. GAL2R regulated cell-cycle control proteins (p27kip1, p57kip2) and cyclin D1
and promoted apoptosis (caspase 3-dependent) in HNSCC cells [26]. GAL2R decreased
the expression of p21cip1, phosphorylated BAD forms (pBad) and phosphorylated Akt
(pAkt), downstream of the Gq11/PI3K pathway [26]. The GAL-mediated Akt pathway
blocked the activity of caspases 3 and 9, whereas the GAL2R-mediated apoptosis in tu-
mor cells was induced by the activation of the pro-apoptotic Bcl-2 protein Bim, through a
mechanism independent of caspase [20]. GAL3R, involved in inward potassium ion (K+)
currents, is coupled to the Gi/o signaling pathway and its activation favored the inhibi-
tion of cAMP and AC altering CREB phosphorylation [17,87,90]. GAL opened adenosine
triphosphate (ATP)-sensitive K+ channels and hyperpolarized cell membranes in the rat
RINm5F insulinoma cell line [214], and the peptide blocked the activity of AC and the
secretion of insulin via the interaction with Gαi1, Gαi2 and Gαi3 proteins [53,215]. C7
peptide (GAL1-13-spantide amide), a GAL receptor antagonist, blocked hepatocellular
carcinoma metastasis by targeting the hepatocyte growth factor/c-mesenchymal–epithelial
transition receptor axis signaling pathway [216]. C7 inhibited the migration and invasion
of tumor cells by blocking the phosphorylation of Akt and ERK1/2 [216].
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indicate activation pathways, inverted red “T” indicates blockade/suppression, green arrows mean
final results. AC, adenylate cyclase; Akt, Akt serine/threonine kinase family (also called PKB);
AS160, Akt substrate of 160 kDa; ATP, adenosine triphosphate; Ca2+, calcium ion; cAMP, cyclic
adenosine monophosphate; CKI, cyclin-dependent kinase inhibitor 1; CREB, cAMP regulatory
element-binding protein; D1, a cyclin protein; DAG, diacylglycerol; ER, endoplasmic reticulum;
FORSKOLIN, enzyme that produces cyclic adenosine monophosphate; GAL, galanin; GAL1-15
fragment, galanin 1–15 fragment; GAL1-16, galanin 1–16 fragment; GAL1-29, galanin 1–29 fragment;
GAL1R, galanin receptor 1; GAL2R, galanin receptor 2; GAL3R, galanin receptor 3; GALP: GAL-
like peptide; GIRK, G protein-coupled inwardly-rectifying potassium; Gα/11, G protein alpha
subunit (11); Gαi/αo, G protein alpha i/o subunits; Gαo, G protein alpha subunit (o); Gβγ, G
protein beta-gamma subunit; IL-6, interleukin 6; IP3, inositol triphosphate; K+, potassium ion;
MAPK, mitogen-activated protein kinases cascade; p21cip1, a cyclin-dependent kinase inhibitor;
p27kip1, cell-cycle control protein; p38, a class of mitogen-activated protein kinase; p57kip2, cell-cycle
control protein; pAkt, phosphorylated Akt; pBad, phosphorylated BAD forms (induces apoptosis
by inhibiting antiapoptotic BCL-2 family members); PI3K, phosphatidylinositol 3-kinase; PIP2,
phosphatidylinositol bisphosphate; PIP2, phosphatidylinositol, 4, 5-bisphosphate; PKA, protein
kinase A; PKC, protein kinase C; PLC, phospholipase C; Rap1B, Ras-related protein Rap-1b; Ras, rat
sarcoma virus (a small GTPase); Rho, a family of small signaling G proteins (a subfamily of the Ras
superfamily); TTP, tristetraprolin; VEGF, vascular endothelial growth factor.

The interaction between GAL1R/GAL2R-5-hydroxytryptamine 1A receptor heteromer
(a macromolecular complex formed by at least two different receptor units) promoted
conformational changes in GAL recognition sites, altering the binding affinity of GAL [100].
In this sense, conformational changes in the GAL1R/GAL2R complex favored a higher
affinity of GAL1R for GAL1-15 than for GAL, increasing Gi/o-mediated signaling and
decreasing AC activity and CREB levels [98]. In addition, GAL3R heteromerization with
other peptide receptors or other GALRs has been suggested [20].

5. Therapeutic Strategies

Peptides play an important role in cancer; the in-depth knowledge of the functions
mediated by these substances is an emerging and promising line of research that could lead
to new clinical applications in oncology. One line of research could be the use of peptides
coupled to cytotoxic agents to exert an antitumor action, and another, the use of peptide
receptor antagonists or agonists. In the case of GAL, GALR antagonists or agonists could
be used as antitumor treatments according to the different signaling pathways and actions
mediated by GALRs. GALR antagonists have been administered for the treatment of food
intake disorders, anxiety, depression and Alzheimer’s disease, whereas GALR agonists
have been used for the treatment of chronic pain [18,93]. It has also been reported that
SNAP 37889, a non-peptidergic GAL3R antagonist, promoted apoptosis in promyelocytic
leukemia cells expressing GAL2R [217].

In vitro and in vivo experiments using human gastric cancer cell lines have been
performed to study the antitumor action of a triple treatment with GAL, serotonin and oc-
treotide (an octapeptide that mimics the actions mediated by somatostatin) [178]. Treatment
with one compound or with a double/triple combination decreased cell proliferation and
viability in vitro, and tumor volume/weight was reduced in vivo after the triple treatment.
However, this reduction was not due to apoptosis or cell proliferation inhibition; thus, other
unknown mechanisms were involved [178]. In experimental animals, implanted human
colon cancer cells were treated with the triple treatment (octreotide, serotonin and GAL
were administered subcutaneously or intraperitoneally) [218–220]: tumor volume/weight,
number of viable cells, proliferation index and tumor vascularization decreased, whereas
the apoptotic index increased. In nude mice implanted with colonic adenocarcinoma cells
and treated with the triple treatment, the tumor volume decreased and the apoptotic index
and volume density of the tumor necrotic tissue increased [221]. The triple therapy did
not show any apparent side effects [222]. Low concentrations of GAL, somatostatin and
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serotonin have been reported in CRC patients and treatment with GAL alone showed
an important decrease in the number of tumor blood vessels [223]. Comparing the ad-
ministration of one, two or three compounds, the antitumor effect was higher when the
three compounds (GAL, serotonin, octreotide) were administered [224]. Importantly, the
antitumor effect promoted by the triple therapy was comparable to the treatment with
5-fluorouracil/leucovorin, a chemotherapeutic agent used for CRC treatment [225]. Triple
treatment has a better safety profile and, hence, it is a potential therapeutic strategy against
CRC [226], but more preclinical and clinical studies are needed to confirm its beneficial use
in clinical practice.

Peptide analogs have been used as an antiproliferative strategy and promising results
targeting peptidergic systems have been reported; accordingly, GAL analogs could be
tested in tumors expressing certain GALRs. The half-life of GAL in plasma is about 5 min,
but the half-life of synthetic GAL (e.g., GAL1-29, GAL1-16) is 60–120 min. GAL1-16 was
synthesized as a free carboxylic acid, whereas GAL1-29 was synthesized with a C-terminal
amide corresponding to the endogenous peptide; the data mean that analogs showing an
increased half-life are required for a therapeutic application of the peptide [20]. Ligand
specificity/selectivity must be understood in-depth at GALRs to understand the molecular
interactions that occur in these mechanisms and to develop drug-design studies. It is im-
portant to note that, currently, there are few experiments focused on the antitumor activity
mediated by GALR antagonists or agonists [217]; this is a promising research field that
must be developed immediately, since many in vitro and in vivo experiments are required
to fully demonstrate the anticancer properties of GALR antagonists or agonists. Moreover,
radiolabeled cytotoxic agents linked to peptides have been used for therapeutic applica-
tions (e.g., neurotensinergic system, substance P/neurokinin-1 receptor system) [9,227,228].
Again, this line of research (peptide and non-peptide ligands as radiopharmaceuticals)
must be developed as targeted radionuclide cancer therapy in tumors expressing GALRs
because it could serve to demonstrate the potential use of GALR agonists or antagonists
in nuclear medicine for the diagnosis/treatment of GALR-positive tumors. Thus, it is
important to know whether GALRs are molecular targets to radiosensitize cancer cells.

6. Discussion

The potential antitumor clinical application of GALR ligands (GALR antagonists or
agonists) has unfortunately been neglected by the scientific community and the pharma-
ceutical industry. However, the expression of the galaninergic system could be used for
the diagnosis, treatment and prognosis of tumors [30,36,39,101–112], and this system has
also been correlated with tumor stage/subtypes (Figure 5). Stage/tumor size has been
related to the level of GAL mRNA in colon cancer: the higher the GAL expression, the
shorter the disease-free survival [30,101,106]. In neuroblastic tumors, a low level of GAL
binding sites has been correlated with survival and GAL/GALR expressions have been
related to tumor differentiation stages [136,137]. GAL expression has also been related to
smaller adenomas and better prognosis [102,105]; the low level of GAL has been suggested
for use as a biomarker in gastric cancer, and the level of GAL has been related to tumor
size, tumor node metastasis stage and lymph node metastasis in patients suffering from
gastric cancer [176]. A correlation between the shorter disease-free survival of early-stage
CRC patients and the higher expression of GAL has also been reported [7,106,121]; the
expression of GAL has been related to the aggressive behavior of CRC, and a relationship
between a high GAL expression and metastasis has been observed in CRC [180].
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Some peptidergic systems (e.g., substance P/neurokinin-1 receptor system, neu-
rotensinergic system) exclusively promote the proliferation of tumor cells; however, GAL,
via different GALRs, exerts a tumor cell proliferative action, but also the peptide suppresses
the development of tumors [8,11–13,102,122,157]. This is an important characteristic of the
galaninergic system that opens the door to a double potential therapeutic strategy using
GALR agonists or antagonists. For this reason, it is crucial to determine which are the
GALRs involved in cancer to develop specific antitumor ligands and drug-design studies;
this is a line of research yet to be explored. The expression of GAL1R has been demonstrated
in insulinoma cells [32,162]; however, the proliferative or antiproliferative actions mediated
by GAL on these cells are currently unknown. Importantly, GAL’s antiproliferative potency
was much higher in GAL2R-expressing cells than in those expressing GAL1R, meaning that
a high level of GAL2R could block cancer cell proliferation [12]. The expression of GAL3R
could be used as a marker for relapsing pituitary tumors and GAL3R antagonists could
also be used to treat these tumors [145]; this must be confirmed. The GAL gene expres-
sion was blocked in thyrotroph adenomas [147,160]; these inhibitory mechanisms must
be studied in-depth, since they could be useful to develop antitumor strategies. Another
important point is to understand the role played by GAL in sexual dimorphism in estrogen-
induced anterior pituitary tumorigenesis, since female tumors average twice the size of
male tumors [168]. GAL, via GAL2R, promoted the proliferation of SCLC cells through
an autocrine manner [88,113,150,151,173]; however, it is currently unknown whether or
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not GAL2R antagonists exert an antitumor action against SCLC cells. GAL inhibited the
proliferation of glioma cells and tumor growth via GAL1R [205]; a reduced level of GAL
was observed in the cerebrospinal fluid of patients with glioblastoma [203], and GAL3R
expression has been related to high-grade glioma [30]: the line of research on glioma must
be developed in the future. In other cancers, the galaninergic system must be better studied,
since the current data are fragmentary. Thus, it must be confirmed whether or not GAL
plays an important role in breast cancer, and the proliferative/antiproliferative action of
the peptide in bladder cancer, melanoma and cardiac and esophageal carcinomas must
be investigated in-depth. Confirmation is also required as to whether GAL1R/GAL2R are
therapeutic targets and prognostic factors in salivary duct carcinoma, as well as whether
GAL1R DNA methylation indicates malignancy or not in endometrial cancer. Finally,
the dual role of GAL as a proliferative and antiproliferative agent must be clarified in
pancreatic carcinogenesis.

Epigenetic mechanisms regulate the galaninergic system and play a crucial role in
tumor development (Figure 6). GAL downregulation favored tumor development in gastric
cancer, which was due to an epigenetic inactivation, since the hypermethylation of GAL
impaired its tumor-suppressive action [177]. Poor survival has been associated with the
methylation of GAL/GAL1R genes in HNSCC and it has been reported that hypermethyla-
tion promoted the inactivation of GAL/GAL1R/GAL2R genes [195]. Thus, methylation
changes could be a possible molecular marker for HNSCC risk/prognosis, since the methy-
lation of the GALR gene promoter has been related to HNSCC carcinogenesis [193], and
GAL1R/GAL2R hypermethylation has been associated with higher recurrence rates and re-
duced disease-free survival [194,200]. The GAL1R methylation status could be a biomarker
for predicting HNSCC clinical outcomes. However, more studies must be performed to
confirm whether GAL1R/GAL2R are potential therapeutic targets and prognostic factors.
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Many of the proliferative and antiproliferative actions mediated by GAL on tumor
cells could be explained by the signal transduction pathways depending on the coupled G
protein type [17,30,77,87,196]. These actions could be also explained by GALR heteromer
complexes, formed by GALRs with each other or with other types of G protein-coupled
receptors, that promote conformational changes in GAL recognition sites, altering the
binding affinity of GAL and favoring a certain signaling pathway [99]. This line of research
must be investigated in-depth and it will serve to identify potential antitumor targets
against the galaninergic system. For example, the blockade of signaling pathways common
to several peptides could be an effective antitumor strategy as well as the development of
broad-spectrum antagonists. Detailed studies on the antitumor effects of GAL agonists or
antagonists have yet to be conducted in many types of cancer; thus, to obtain a detailed
understanding of the different distribution patterns of GALRs and the different signaling
pathways involved in tumor cells will help to identify the antiproliferative or proliferative
actions played by these receptors and to develop new antitumor strategies. The use of an
antitumor triple therapy (GAL, serotonin, octreotide) has been tested with good results
against some tumors [219,220,223], but for unknown reasons, these investigations were not
continued. Additional experiments are required to confirm the anticancer actions exerted by
the three compounds. Moreover, two important lines of research must be developed: (1) the
use of GAL analogs in tumors expressing certain GALRs; and (2) targeted radionuclide
cancer therapy: the use of GAL and non-peptide ligands as radiopharmaceuticals for
the diagnosis/treatment of GALR-positive tumors. Because GALRs play a crucial role in
certain tumors, it is important to determine whether GALRs are involved in the viability
of cancer cells, as has previously been demonstrated in tumor cells for the neurokinin-1
receptor [10] Moreover, the possible tumor and/or antitumor actions mediated by GAL
fragments and other members of the GAL family of peptides such as GALP, spexin, alarin
and GMAP must also be studied, since most of the studies in this field have focused on the
entire molecule of GAL. Finally, it is important to note that the expression of peptides (e.g.,
neurotensin) has been reported in fetal tissues, but not in adult organs [9]. The authors
suggested that the expression of peptides in these organs could be related to a malignant
transformation, probably due to the presence of stem cells expressing peptides. This also
suggests that a reversal to the fetal expression pattern occurred. This is an interesting issue
that must be studied in the galaninergic system.

7. Conclusions

The galaninergic system is involved in tumorigenesis, invasion and migration and has
been correlated with tumor stage/subtypes and metastasis and, in this system, epigenetic
mechanisms have been related with carcinogenesis and recurrence rates. GALRs play a
crucial role in cancer and their specific actions must be clearly understood in many tumor
types because GALRs mediate different signal transduction pathways and actions depend-
ing on the tumor cell type and the particular G protein involved. GALRs could be used as
a therapeutic target and diagnostic marker for the treatment, prognosis and surgical out-
come in certain tumors. Different from other peptidergic systems, the galaninergic system
exerts a proliferative action on tumor cells, but GAL also suppresses the development of
tumors (Table 6). Thus, in-depth studies using GALRs agonists or antagonists as antitumor
agents must be conducted to search for therapeutic strategies (alone or in combination
with chemotherapy/radiotherapy) against tumor development. The involvement of the
galaninergic system in cancer is a line of research that has been abandoned, but it must
be re-opened and developed in the future. Additional studies must be carried out, for
example, on the use of GALR agonists/antagonists as antitumor agents, the activation of
signaling transduction pathways, the involvement of heteromers, targeted radionuclide
cancer therapy and the viability of GALRs. This knowledge is crucial to establish future
potential clinical antitumor applications, although unfortunately, the pharmaceutical in-
dustry has generally had no interest in this line of research; however, the data reported
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here suggest that the galaninergic system is a promising target for the treatment of tumors
(Figure 7).
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mediate an antiproliferative effect, whereas GAL2R/GAL3R promote a proliferative action on tumor
cells. GAL originates from tumor cells, tumor-infiltrating cells and nerve cells. Circulating GAL
can also bind to GALRs. ↑: increase; ↓: decrease; ?: mechanisms that must be investigated (pres-
ence/functions of heteromers in tumor cells, involvement of GALRs in the viability of cancer cells
and involvement of GAL fragments and other peptides belonging to the GAL family of peptides in
cancer). *, biomarkers; M: methylation.



Cancers 2022, 14, 3755 29 of 38

Table 6. Proliferative and antiproliferative actions of the galaninergic system in different tumors.
+: action mediated by GAL, GAL1R, GAL2R or GAL3R.

Cancer GAL GAL1R GAL2R GAL3R References

A. Proliferative action

Colorectal + + [8,30,106,117,185]

Glioma + [30]

Head and
neck squamous
cell carcinoma

+ + + [84,122,123,201]

Neuroblastoma + [137,141]

Pancreas + [211]

Pituitary adenoma + + [38,145]

Prolactinoma + [148,160]

Small-cell
lung cancer + + [88,113,150,151,173]

B. Antiproliferative action

Colorectal + [182]

Endometrial + [208]

Gastric + [13,177,178]

Gastrointestinal + [101]

Head and
neck squamous
cell carcinoma

+ + + [13,16,120,170,184,190,192]

Neuroblastoma + [12]

Pancreas + [212]

Phaeochromocytoma + [141]

Salivary duct
carcinoma + + [210]
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