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Abstract

The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-
energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that
leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds.
However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video
from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate
with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during
August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08–3:38 h), and documented
a total of 601 prey captures. Lion’s mane jellyfish (Cyanea capillata) was the dominant prey (83–100%), but moon jellyfish
(Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera’s field of view and
appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration
(p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001).
Estimates of energy intake averaged 66,018 kJNd21 but were as high as 167,797 kJNd21 corresponding to turtles consuming
an average of 330 kg wet massNd21 (up to 840 kgNd21) or approximately 261 (up to 664) jellyfishNd-1. Assuming our turtles
averaged 455 kg body mass, they consumed an average of 73% of their body massNd21 equating to an average energy
intake of 3–7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that
feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with
estimates of mass gain prior to southward migration.
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Introduction

Identifying the spatial and temporal characteristics of foraging

habitat, search tactics, and diet of predators is fundamental to

understanding their role in ecosystems and to developing conser-

vation measures for threatened species, such as the protection of

critical habitat. We expect animals to balance the benefits and costs

of foraging decisions, since time and energy are spent searching for,

capturing, and handling prey [1]. To begin to understand the

foraging decisions of marine predators, it is important to study how

prey characteristics (e.g., size of prey and patch density) influence

their foraging behavior and success (e.g., [2,3,4]). However, prey are

usually encountered and consumed at depth by marine animals,

therefore, foraging behavior and diets are typically inferred

indirectly, for instance from analyses of dive behavior and various

diet estimate methods. The ability to directly observe and quantify

foraging success in conjunction with understanding spatial move-

ments over fine (1–10 km), meso (10s–100s of km), and large

oceanographic scales (.1,000 km) is of great importance to better

understanding marine animal populations and their variability [5].

The leatherback turtle (Dermochelys coriacea) is the largest living

species of marine turtle, and also has the widest global distribution

of any reptile. This species is listed as critically endangered globally

[6] and endangered in Canada [7]. Leatherbacks undertake long-

distance migrations (up to 18,000 km round-trip) between tropical

breeding and foraging grounds and northern temperate foraging

grounds [8,9,10]. Although east-west migrations are typical of

some leatherback populations [8,11] and return trips to specific

foraging areas may span as long as 2–3 years, most sub-adult and

adult leatherbacks in the northwest Atlantic perform these

migrations annually [9,12] to feed on gelatinous zooplankton,

primarily jellyfish [13,14], which are often associated with

oceanographic features such as areas of upwelling [8]. For sexually

mature adult leatherbacks, such migrations to high latitudes are
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presumably driven by the need to accumulate resources for

reproduction [12]. However, during these migrations, leatherback

turtles are exposed to a number of threats including fisheries

bycatch (e.g., pelagic longline and particularly fixed gear in

temperate waters [7]). In addition to human impacts, climate and

oceanographic variability (which also influence prey distributions)

no doubt also impact the life history of turtles in the Northwest

Atlantic and are expected to influence juvenile recruitment and

breeding remigration and contribute to range expansion (e.g.,

[5,15]). Thus, it is of great importance to better understand

leatherback foraging strategies to assess their significance to

leatherback population energetics and to inform management

measures such as the identification of critical habitat.

One of the most intriguing aspects of the foraging strategy of

leatherback turtles is the almost complete reliance of such a large-

bodied animal (up to 640 kg [12]) on a diet of gelatinous

zooplankton, a low-energy food source [16,17]. It has been

estimated that hatchling leatherbacks may consume more than

100% body weight N day-1 [18] and adults at least 50% body

weight N day-1 [19]. However, both the remote location of foraging

and the sub-surface consumption of prey have precluded

verification of such estimates. Found throughout the world’s

oceans, jellyfish are patchily distributed, but occur predictably at

high densities in specific areas and at certain times of year [20].

Temperate coastal shelf waters of the North Atlantic are

characterized by high concentrations of jellyfish during the

summer months [21,22]. Although dedicated studies of jellyfish

distribution and abundance in Atlantic Canadian waters are

lacking, spatial distributions of lion’s mane jellyfish (Cyanea

capillata), the largest extant species of jellyfish and a known prey

of the leatherback turtle [14], are known to overlap with the

occurrence of leatherback turtles (e.g., [23]).

Despite this overlap, the marine environment is dynamic, with

prey often distributed heterogeneously within the landscape over

space and time. The location of these prey are likely predictable at

a large oceanographic scale, given the long-distance migrations of

leatherback turtles and inter-annual fidelity to foraging areas

[24,25]. However, locating prey patches of jellyfish at meso-scales

may be more difficult, as they vary spatially and temporally with

influences from the movement of surface water and associated

nutrients caused by wind [26] and tidal cycles. Because of this

heterogeneity in prey presence with space and time, collecting

simultaneous information about a predator’s prey field and their

movements [24,25,27] is necessary to try to understand an

animal’s foraging behavior. However, such sampling is expensive

and logistically difficult.

Tracking data from satellite tags deployed over several months

and over subsequent years have been used to explore the

migratory movements of leatherback turtles, with foraging

behavior inferred from diving behavior and dive-shape

[9,10,28,29,30]. Such tracking data have been used to estimate

behavioral states of leatherbacks based on changes in movement

parameters such as speed and turning angle [31,32,33]. Movement

data, along with concurrently collected dive data, have been used

as a proxy for studying leatherback foraging (e.g., [34]), and

sensors that can detect mouth opening [35,36] and stomach

temperature [37] may help determine the timing of prey capture

events. Despite the utility of such methods, they are indirect

measures of foraging since prey consumption is not observed.

The use of underwater animal-borne video cameras, in

conjunction with electronic tagging technologies, provides the

opportunity to directly observe foraging behavior. Such camera

systems have been deployed on a variety of large marine predators,

including pinnipeds, whales, sharks, and cheloniid turtles

[38,39,40,41]. Given the challenges associated with conducting

in-situ studies of leatherback turtles at sea and recovering data

loggers from free-swimming turtles, deployments of animal-borne

cameras have been limited to nesting females and have not

documented foraging [42]. However, the predictable occurrence

of leatherback turtles off the coast of Canada during the summer

months [43] provides the opportunity to study foraging leather-

backs when they are presumably acquiring the energy required for

southward migration and, for many, reproduction. We attached

an animal-borne video camera with an incorporated global

positioning system (GPS) to free-ranging leatherback turtles in

shelf waters off Nova Scotia, Canada. Our objectives were to

describe prey-specific components of foraging behavior (e.g.,

encounter rate, capture success rate, and handling time), and to

estimate daily energy intake, with the aim to better understand the

profitability of migratory patterns and implications for character-

izing critical foraging habitat of leatherback populations.

Methods

Ethics statement
This research was conducted in accordance with guidelines of

the Canadian Council on Animal Care. The protocol was

approved by the University Committee on Laboratory Animals,

Dalhousie University’s animal ethics committee (protocol numbers

08-077 and 09-069) and Fisheries and Oceans Canada (license and

permit numbers 2007-024, MAR-SA-2007-006, 2008-454, MAR-

SA-2008-006, 323395, 323398, and 326240). Instruments were

attached to the carapace of free-swimming turtles without capture

from a boat to reduce handling effects on the animals. During

tracking, a minimum observation distance of ,400 m was

maintained to minimize the disturbance of turtles.

Study area
The study was conducted in the temperate shelf waters off Cape

Breton Island, Nova Scotia, Canada (approximately 47u N, 60uW).

Instruments were deployed at a median distance of 13.1 km off the

coast (x2 = 15.7 km, range 3.1–35.0 km) during August and

September 2007–2010. Previous studies have characterized

aspects of this ecosystem and shown that a relatively large and

predictable assemblage of sub-adult and adult leatherbacks feed in

this area every year [9,33,43].

Instruments and deployments
The Serrano-V (Fig. 1a, Xeos Technologies Inc., Bedford, NS,

Canada) is a charge-coupled device color, video camera system

(235683 mm, 270 mm with antennae, 1013 g) which operates

under low light, without the need for accessory lighting, and

records 3206240 QVGA. The unit contains an integrated time-

depth recorder unit (TDR; that also measures temperature), GPS

receiver, suction cup attachment, remote release, and a 900 MHz

spread spectrum two-way radio transceiver to command the unit.

The video camera recorded continuously, and was turned on

either prior to deployment, or remotely, after the camera was

attached to the turtle. The video camera remained on the turtle

until it either detached on its own, or was released remotely

(#4 hours). All camera deployments occurred during daylight

hours to ensure that there was sufficient ambient light to quantify

the components of foraging and to recover the instrument.

Leatherbacks basking and/or handling prey at the surface were

approached by a 10 m commercial fishing vessel equipped with a

3 m bowsprit. Tags were hand-placed on the carapace just behind

the head (Fig. 1a) from a rigid platform suspended from the

bowsprit, approximately 0.5 m above the water’s surface. When

Jellyfish Support Energy Intake of Leatherbacks
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possible, turtles were captured after instrument recovery using a

breakaway dip-net (for details see [30]). Curved carapace length

(CCL; 6 1 cm) and width (CCW; 6 1 cm), sex (judged by tail

length), and, when feasible, body mass (6 0.5 kg), was recorded.

Turtles were equipped with metal flipper tags and a microchip

implant (right pectoral muscle) so that recaptured individuals

could be identified. The maximum width of the dorsal surface of

the head (which was normally within the camera’s field of view,

e.g., Fig. 1b) was only measured for two of the turtles deployed

with video cameras in 2010. We used these values, in addition to

those of 21 other separately captured adult turtles in 2010, to

represent the mean head width for all video-sampled turtles

(mean = 23 cm, range 20.3–25.3, n = 23) in order to estimate the

size of captured prey (see Video analysis and Energetic intake

sections).

Video analysis
Behaviors were scored using the event-recording software

JWatcher [44]. The following behaviors were recorded: (1) time

at surface (interval between dives); (2) time below surface (dive

duration/search time); (3) prey detection (change in head

direction); (4) capture/first contact with jellyfish; (5) bites/head

movements associated with consuming jellyfish; (6) pursuit – the

interval between prey detection and capture; (7) handling time –

the interval from the time of capture until the last bite (in view) or

contact with a subsequent jellyfish; and (8) capture success. Dives

were defined as a time of submersion greater than 30 s. Number of

jellyfish attacked and encounter rate per unit time was calculated

for each dive. Prey size was estimated by comparing the jellyfish

contracted bell diameter relative to the width of the turtle’s head.

To do this, we froze the video immediately prior to prey capture

(e.g., Fig. 1c). This relative measure of jellyfish size was then

converted to an absolute estimate using an average head width of

23 cm (see Instruments and deployments section). To standardize

our estimates, when possible, we measured jellyfish in the

contraction stage of movement with the bell draped down, since

the demarcation of the bell edge was more defined in the

contracted state and was less likely to extend beyond the field of

view just prior to capture (e.g. Fig. 1d). Additionally, when an

estimate of jellyfish size could be made from the video, the bell was

most often in a contracted state near the head. Thus, the bell

diameters we measured represent a minimum size (i.e., contracted

state) in comparison to bell diameters observed during expansion

in the video or measured when removed from the water and

placed on a flat board (the most frequent method used for

measuring jellyfish). We used the contracted-bell measurements to

investigate the relative influence of prey size on handling time.

Nevertheless, we noted many instances in the video when the

diameter of jellyfish with expanded bells, just prior to capture,

exceeded the width of the turtle’s head and the entire field of view

(e.g., Fig. 1d), indicating that turtles were consuming jellyfish

.23 cm and of sizes more consistent with previous measurements

made for this species (e.g., [17]).

Spatial movement
Surface positions of turtles from the Serrano-V’s integrated GPS

unit were used to determine the spatial extent of turtle movements

during foraging. GPS locations were used to calculate the distance

travelled from the deployment location. Total distance travelled

was not calculated as GPS fixes were not reliably obtained for each

surfacing between dives for all turtles; instead, a single displace-

ment value for each turtle was calculated as the maximum distance

from the deployment position.

Statistical analyses
Linear mixed models were used to analyze the effect of prey size

and prey species on handling time, as well as the effect of dive

duration on encounter rate. Separate models were also fitted to

explore whether the displacement distance during the period of

video sampling was related to the number of prey encounters, i.e.,

Figure 1. Serrano-V camera and example still images. Camera with suction-cup attachment to the shell of a leatherback turtle (a) and still
images extracted from a video file recorded on 3 September 2010 showing a turtle approaching a lion’s mane jellyfish that is surrounded by pilot fish,
Naucrates ductor, (b, c) and subsequently consuming this jellyfish (d).
doi:10.1371/journal.pone.0033259.g001

Jellyfish Support Energy Intake of Leatherbacks
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whether the distance between the capture and camera release

locations was inversely related to prey encounter rate. The

intercept of these models was permitted to vary randomly across

animals. A first order autoregressive correlation structure (corAR1)

was used to account for serial correlation among repeated

measurements. Analyses were performed using the ‘glmPQL’

function of the ‘nlme’ package [45] in R 2.8.1 [46]. Residual plots

and partial residual plots were examined to assess model fit and

the normality of residuals were assessed with a two-tailed

Kolmogorov-Smirnov test. All data are expressed as mean 6

standard deviation.

Energy intake
To estimate energy intake during foraging, we assumed that

turtles were foraging on lion’s mane jellyfish during daylight hours

only (at this time of year: ,13.5 hrs), that turtles encountered

jellyfish at the mean encounter rate per minute of each turtle, and

that the average jellyfish consumed had energy contents

comparable to those sampled by Doyle et al. [17]. The assumption

of daylight-only feeding is supported by concurrent research using

stomach temperature telemetry of leatherbacks in the same study

area and during the same time of year which indicates that

foraging occurs primarily, if not exclusively, during the daylight

hours (J. Casey, unpublished data). This assumption of daylight-

only feeding is further supported by archival tags data that

demonstrate diving behavior is largely limited to the photic zone,

with pronounced diurnal changes in dive depth (K. Hamelin,

unpublished data).

Since energy density values for lion’s mane jellyfish were not

available in our study, we used the average size and energy values

determined for lion’s mane jellyfish by Doyle et al. [17] for energy

intake calculations: mean bell diameter 30.366.6 cm (range 15–

47 cm, n = 27), wet mass 1263.16662.3 g, and gross energy

density 0.260.04 kJ g WM-1. Doyle’s measurements were taken

from freshly stranded jellyfish specimens (either on the beach or in

the water close to shore) collected in the North Atlantic (Layton

Beach, County Meath, Ireland; 53.67uN, 6.23uW) between July–

October 2004. These size and energy values were also similar to

those measured previously for lion’s mane jellyfish in the northwest

Atlantic (Newfoundland, Canada [47]). Given that these collec-

tions were in similar northern temperate waters and during the

same season as our study, and that our observations of expanded

bell size of jellies consumed overlap with those sampled by Doyle

et al. [17], we use Doyle’s energy content values as an appropriate

proxy for the jellyfish being consumed in our study.

Results

Video from the Serrano-V camera was recovered from 19

turtles (Table S1) during 2008 (n = 8), 2009 (n = 4), and 2010

(n = 7). Video duration averaged 1 hour and 53 minutes per turtle

(range 0:08–3:38 h). In 2006–2007, when cameras had been

deployed on turtles that were first captured, no foraging behavior

was recorded (MC James, pers. comm.). However, placement of

the camera on free-swimming turtles without capture in 2008–

2010 resulted in no observed behavioral effects and foraging

behavior was recorded for all camera deployments, suggesting that

there was minimal effect of the camera on foraging.

Foraging behavior, prey encounters and spatial
movement

Eighteen of the 19 turtles foraged mainly on lion’s mane jellyfish

(range = 83–100% for each turtle), although moon jellyfish (Aurelia

aurita) were also consumed. One of the 19 turtles was anomalous in

that it was observed scavenging, had a low prey encounter rate,

and 2 of the 5 jellyfish consumed were moon jellyfish. Commensal

pilot fish (Naucrates ductor) were identified from the video for 4/19

deployments for all years and were observed swimming in the

vicinity of the turtle’s head and/or near lion’s mane jellyfish that

were approached and consumed by turtles (e.g., Fig. 1b,c).

Jellyfish were consumed at depth in all years, but 2010 was

notable in that consumption of dead lion’s mane jellyfish floating

at the surface was also observed (range = 0–12% for 2010

deployments). The dive durations (3.2261.77 min; range 0.32–

6.84 min) and surface intervals (2.4461.80 min, range 0.004–

11.26 min; Table S2) we measured were within the range of values

for an additional leatherback turtle equipped with a satellite-linked

TDR, but no camera, that used the study area during the months

of August and September, 2008 (dive duration 4.6462.20 min;

surface interval 3.3262.90 min; median dive depth 21.5 m, range

5.5–97.0 m; K. Hamelin, unpublished data). Foraging at depth

was restricted to the photic zone, and although the camera

routinely switched from color to black and white mode with

decreasing light levels at greater depths, there was always sufficient

ambient light to identify prey encounters. Prey were encountered

in 77622% (range 29–100%) of dives (Table S2). Jellyfish

encounter rates varied among dives and among turtles, with

encounters per minute of diving averaging 0.6060.44 and

encounters per minute of video sampling averaging 0.3760.22

(Table S2). There was no significant relationship between

encounter rate and dive duration (p = 0.74; full details of the

regressions are provided in Table S3). A total of 601 jellyfish

captures were recorded and capture success was 100% for all

turtles. Turtles attacked an average of 83616% jellyfish within the

field of view. These predation rates are an underestimate because,

for some deployments, the field of view of the camera only

included a small part of the head, thus it is possible that additional

jellyfish may have been consumed by the turtle outside the field of

view of the camera.

The straight-line distance turtles traveled from the position of

camera deployment to position of camera release ranged from

0.72–9.02 km and turtles generally traveled away from the

deployment position (Figure S1). There was an inverse correlation

between prey encounter rate and total distance travelled from the

deployment location (i.e., prey encounter rates were relatively

lower in turtles traveling further from the deployment location,

p,0.05).

Prey size, handling time and energy intake
Six-hundred and ninety lion’s mane jellyfish (593 captured) and

24 moon jellyfish (8 captured) were observed in the videos. Of the

captured lion’s mane jellyfish, 350 were measured to examine the

relationship between relative prey size and handling time.

Contracted bell diameter of lion’s mane jellyfish consumed by

turtles averaged 11.264.4 cm (range 3.1–22.7 cm; Fig. 2a) and

moon jellyfish contracted diameter was estimated to be

4.662.1 cm (range 2.1–9.3 cm). These values underestimate

jellyfish contracted size because it was not always possible to

measure the contracted jellyfish right before capture (were

measured at a greater distance from the camera), and the relative

size of the turtle’s head in the field of view differed somewhat

among turtles due to the variable placement of the camera on the

carapace. Pursuit time for lion’s mane jellyfish was estimated to be

22.9613 s (range 3–79 s) in two turtles for which the head was in

view to observe a change in head direction that was assumed to

correspond with prey detection. All prey attacked were mostly

eaten, with no apparent preference for particular anatomy.

Jellyfish Support Energy Intake of Leatherbacks
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Handling time for lion’s mane jellyfish was estimated to average

59.5672 s overall, but ranged from 0 to 375 s (Fig. 2b). This wide

range in handling time was explained by differences in prey size.

That is, handling time increased significantly with increasing

contracted bell diameters of the jellyfish consumed (p = 0.0001;

Fig. 3 and Table S3), but there was no difference in the

relationship between handling time and prey size between the

two prey species (p = 0.92; Table S3). Following capture of prey at

depth, turtles often continued processing jellyfish at the surface,

which resulted in a relatively greater handling time for a similar

prey size than may have been consumed during a dive. During a

dive, handling time of jellyfish was often not complete before the

subsequent jellyfish was encountered and attacked. Handling time

of the last jellyfish encountered during a dive often had a relatively

greater handling time than prey encountered earlier in the dive.

Individual estimates of energy intake averaged 66,018642,034 kJ

(range 315–167,797 kJ) per day, assuming a 13.5 hr period of

daylight foraging (Table S2). These values represent a consumption of

3306210.1 kg (range 2–840 kg) wet mass per day or approximately

261 lion’s mane jellyfish (range 1–664) per day.

Discussion

The temperate waters off eastern Canada support one of the

largest seasonal foraging populations of sub-adult and adult

leatherback turtles in the Atlantic [34]. The 12,000–18,000 km

round-trip migrations of leatherbacks from tropical and sub-tropical

breeding areas to high latitude foraging areas in the western Atlantic

is thought to have evolved to permit turtles to capitalize on

seasonally-abundant prey in coastal temperate waters. James et al.

[48] estimated an average ,33% increase in mass of turtles before

their initiation of southward migration. Although surface foraging

by leatherback turtles has been opportunistically documented in this

high latitude foraging area [14], until now, prey encounter rates,

prey size, and handling times at depth had not been quantified nor

had daily energy intake been estimated.

The range of prey encounter rates reported here presumably

reflect patchily distributed jellyfish at fine spatial scales (100s of

meters) [26], even though jellyfish were present in about 75% of

dives. The high encounter rates of jellyfish per dive lend support to

the identification of this area as a foraging ‘‘hotspot’’ for

leatherbacks (e.g., [33,48]). The importance of this foraging area

is further supported by our estimate that turtles in this area

consume an average of 66,018 kJ and up to 167,797 kJ per day.

We were able to measure mass for only two of the turtles equipped

with video cameras (mean = 455 kg; Table S1). However, mean

curved carapace length of six of the turtles was 154 cm, which also

roughly corresponds to a body mass of 455 kg [12,48]. Thus, if we

assume 455 kg was the average mass of individuals in our study,

turtles consumed an average of 73% and up to 184% of their body

mass per day in wet mass of jellyfish, equating to an average

energy intake of 145 kJNkg21 or up to 369 kJNkg21 per day. The

allometric relationship for the field metabolic rate (FMR, kJNd21)

of an ectothermic reptile [49] suggests the predicted FMR for a

455 kg reptile would be 46.2 kJNkg21. Although it has been

proposed that leatherback turtles demonstrate some metabolic

endothermy (perhaps regionally), using doubly-labeled water,

Bradshaw et al. [50] estimated the daily diving metabolic rate

(DMR) of leatherbacks nesting in the tropics to be 20.7 kJNkg21 or

less than half that predicted by for an ectothermic reptile of similar

size (and an order of magnitude lower than a similarly-sized

endotherm). These estimates were not dissimilar to earlier

measurements of leatherback FMR made by Wallace et al. [51],

Figure 2. Frequency distribution of relative prey size (con-
tracted bell diameter) (a) and handling time (b) of lion’s mane
jellyfish. Results represent the size distribution of measured lion’s
mane jellyfish (n = 350) captured by 19 leatherback turtles.
doi:10.1371/journal.pone.0033259.g002

Figure 3. Effect of relative prey size (contracted bell diameter)
on handling time of lion’s mane jellyfish. Solid line represents
mean predicted values with dashed lines indicating 6 s.e.m. Circles
represent observed values.
doi:10.1371/journal.pone.0033259.g003

Jellyfish Support Energy Intake of Leatherbacks
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supporting the conclusion that leatherbacks appear to be

ectothermic and rely on large body size, insulating fat layers,

and thermal inertia to regulate body temperatures above ambient

[50]. The turtles in our study consumed an average of 3 (and up to

8) times their daily metabolic requirements as would be estimated

by allometry, or 7 (up to 17) times their DMR as measured in

nesting leatherbacks.

Although jellyfish are relatively energy-poor [17], our results

demonstrate that leatherback predation on high densities of

readily-captured lion’s mane jellyfish results in high energy intake

at least at this time of year, which is consistent with the estimated

mass gain of leatherback turtles in Canadian waters. Jellyfish graze

on copepods, larvaceans, cladocerans, and meroplankton [52,53],

and leatherbacks in turn graze on patches of these scyphomedusae

which tend to ingest the relatively larger size component of

available zooplankton prey [52,54]. Although jellyfish are patchily

distributed in time and space, oceanographic features and

processes produce predictable foraging opportunities for leather-

backs such that the benefits of reliance on a diet of jellyfish

apparently outweigh the energetic costs of migrating to these

northern waters. Leatherbacks were not likely prey-limited in our

study, as productivity of jellyfish in temperate coastal areas and

particularly here in the strongest outflow of the Gulf of St

Lawrence can yield excellent foraging opportunities. Also there

seems to be little competition for jellyfish apart from niche overlap

with ocean sunfish (Mola mola), a species which is also present in

the study area during the same times of year.

Our data further suggest that leatherback turtles are efficient

predators since no time was wasted on unsuccessful attacks, a

foraging strategy similar to that of grazers. Also jellyfish appeared to

be completely consumed. Predation rate on high density prey is

likely to be limited by handling time or the animal becoming

satiated [55]. We found some evidence for this prediction, as turtles

while they were already handling other prey in ,80% of those

instances when jellyfish in the field of view of the camera were not

targeted. The longer handling times of prey when turtles returned to

the surface further suggests that turtles may require further handling

for some jellyfish. Given the relatively simple body composition of

jellyfish, it is unlikely that digestion time is limiting. Conversely,

given the anatomy of lion’s mane jellyfish, and particularly those

with very large bell diameters and long tentacles, turtles likely face

prey handling challenges. Therefore, it is understandable that even

with the assistance of the leatherback turtle’s specialized esophagus

(with papillae pointing towards the stomach), consuming such prey

may limit intake. We were unable to distinguish between handling

and digesting prey, therefore, it is unclear how digestion may

influence the foraging behavior of turtles.

Our estimates of leatherback turtle foraging behavior are based

on relatively short-term video records compared to a leatherback’s

typical 3–5 month high-latitude foraging period in the Northwest

Atlantic and, therefore, may not be representative of the entire

period. Additional information on daily predation rates, sizes of

prey consumed, and variability in energy contents of jellyfish in

these northwest Atlantic waters during the summer and fall will be

useful to refine these estimates. Nevertheless, our results offer

evidence that the feeding tactics of leatherbacks in this high

latitude coastal foraging area off Atlantic Canada are energetically

profitable and are consistent with estimates of mass gain prior to

southward migration and preparation for the breeding season.

Longer deployments will be needed to confirm our estimates over

time periods that have broader ecological implications, and to

place the fine- to meso-scale foraging movements of leatherback

turtles within the context of the large-scale migratory movements

that have been previously described for this population. Further

studies of the foraging decisions that turtles make would also

benefit from the collection of concurrent conductivity-time-depth

recordings, location and three-dimensional movement data, as

well as better information on the prey field.

By simultaneously collecting video and high-resolution dive and

ocean temperature data, the purpose-built camera we used to

study leatherback foraging behavior during relatively short

daytime periods may help confirm inferences of foraging from

satellite tracking data that has been collected over much broader

spatial and temporal scales. Therefore, this technology offers

promise as a tool for determining critical areas of foraging habitat

in support of conserving this endangered species.

Supporting Information

Figure S1 Distance between original camera deploy-
ment location and each surfacing location of 19 leather-
back turtles as estimated from GPS locations.

(TIF)

Table S1 Instrument deployment details for 19 leath-
erback turtles.

(DOC)

Table S2 Dive and prey encounter data (mean6S.D.)
for 19 leatherback turtles estimated from video, energy
intake estimated from prey encounter rate, and
speed and distance travelled estimated from GPS
locations. 1Estimated energy intake assuming encounter rate

extrapolated over 13.5 hrs daylight and using average size and energy

values for lion’s mane jellyfish measured in Doyle et al. [17]. *Camera

facing to the side or up, head not always in view. +Dead jellyfish

floating at the surface.

(DOC)

Table S3 Parameter estimates and significance of
model terms. This table shows the linear mixed model

parameter estimates and significance of model terms for three

models: the effect of jellyfish encounters per dive minute on dive

duration, the effect of prey size on handling time, and the effect of

prey size and prey species on handling time. The results show that

jellyfish encounters per dive minute are positively correlated with

dive duration, that prey size is positively correlated with handling

time, and that the relationship between prey size and handling

time does not differ among species. The hypothesis that the

residuals of these fits follow a normal distribution is not rejected by

two-tailed Kolmogorov-Smirnov tests (p.0.05).

(DOC)
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