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An iron(Il)-mediated aminohalogenation of a cyclopentenyl N-tosyloxycarbamate provided new access to the key intermediate for

the synthesis of (—)-agelastatin A (AA, 1), a potent antiproliferative alkaloid. The present synthetic endeavour offered an insight

into the mechanism underlying the iron(Il)-mediated aminohalogenation of N-tosyloxycarbamate, in which the radical properties of

the N—iron intermediates in the redox states were operative.

Introduction

Marine organisms often produce bioactive substances that
potentially serve as attractive resources for drug discovery.
(—)-Agelastatin A (AA, 1), a cytotoxic alkaloid isolated from
marine sponges Agelas dendromorpha and Cymbastela sp., is
one such substance, which has drawn considerable attention due
to its potential applicability in the development of anticancer
agents [1-5]. The intriguing biological activity of 1 has stimu-
lated interest in developing various chemical accesses to the
natural product [6-25]. Our previous synthetic endeavours have
established two approaches to 1, in which cyclopentenyl azido-
formates 2 and 3 were utilized as the pivotal intermediates
(Scheme 1).

The first-generation strategy employed a stereoselective thermal
aziridination of azidoformate 2 and a subsequent aziridine-
opening reaction to establish the vicinal ¢rans nitrogen motif 4
[26]. The second-generation strategy involved the radical
aminobromination of azidoformate 3 followed by lactamization
of the resultant bromide 5a to furnish a tetracyclic compound
(structure not shown), which was transformed into the natural
product [27]. In the present study, we disclose a new approach
to the key intermediate for AA synthesis in which N-tosyloxy-
carbamate 8, a nonhazardous azidoformate surrogate, is trans-
formed into aminohalogenated compounds 5a and Sb by FeBry/
BuyNBr [28,29], FeCly/BuyNCl, or FeCl,/TMSCI [30-35]
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Scheme 1: Our first- [26] and second-generation [27] approaches to (—)-agelastatin A (1).

(Scheme 2). Moreover, a plausible mechanism of the present
iron(II)-mediated aminohalogenation, which is inferred from
the unique reactivity of N-tosyloxycarbamate 8 with the
reagents, is discussed.
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Scheme 2: The present iron(Il)-mediated aminohalogenation of
N-tosyloxycarbamate 8 providing key intermediates 5a/5b for
(—)-agelastatin A synthesis.

Results and Discussion

N-Tosyloxycarbamate 8 was prepared from alcohol 6, which
was obtained by a previously reported protocol (Scheme 2)
[26,27]. Alcohol 6 was first treated with CDI (N,N’-carbonyldi-
imidazole) and then with hydroxylamine hydrochloric acid salt
to afford N-hydroxycarbamate 7 in 67% yield [36]. Thereafter,
N-hydroxycarbamate 7 was reacted with TsCl and triethyl-
amine in THF to furnish N-tosyloxycarbamate 8 in 92% yield.

With this carbamate 8, we examined the iron(Il)-mediated
cyclization under various conditions (Table 1).

The application of FeBr, (0.5 equiv)/BuyNBr (1.5 equiv) in
EtOH effected cyclization, but the yield of Sa was poor due to
the concomitant formation of carbamate 9 (39%) and enone 10
(30%) (Table 1, entry 1). This was in marked contrast to
the observation that the same reagent system, i.e., FeBr;
(0.5 equiv)/BugNBr (1.2 equiv), allowed the efficient conver-
sion of azidoformate 3 (2 g scale) in EtOH to afford 5a in 70%
yield (Scheme 3). The distinct yields of the cyclized materials
obtained from N-tosyloxycarbamate 8 and azidoformate 3
suggested the unique reactivity of each substrate towards the
iron(II) halide (see below). An aminochlorination reagent
system, i.e., FeCl, (0.5 equiv)/BuyNCl (1.2 equiv) in EtOH, in
turn, furnished the corresponding chloride 5b in 39% yield as
the major product (Table 1, entry 2). Our recent studies on the
iron(II)-mediated aminobromination reactions of structurally
simple N-tosyloxycarbamates with FeBr,/BuyNBr revealed
significant solvent effects on the product yields [28]. This was
also the case in the present study: FeBr, (0.5 equiv)/BuyNBr
(1.2 equiv) in +-BuOH successfully improved the yield of 5a
relative to the reaction in EtOH (Table 1, entry 3). FeCl,
(0.5 equiv)/BuyNCl (1.2 equiv) in ~-BuOH culminated in the
highest yield of Sb among the examined conditions (Table 1,
entry 4) However, a reduction of FeX, loading even in ~-BuOH
led to erosion of the yields of halides 5a and 5b with recovery
of the substrate (Table 1, entries 5 and 6). With the FeCl,/
TMSCI reagent system [30-35], chloride Sb was accessible
from N-tosyloxycarbamate 8 in 29% yield, along with 9 in 12%
yield (Table 1, entry 7). In this particular case, cyclopentanone
derivative 11 (16%) and diethyl ketal 12 (14%) were produced
as well (Figure 1). An additional experiment to elucidate the
origin of their formation provided evidence that these byprod-
ucts were generated by the intramolecular cyclization of enone
10 with TMSCI in EtOH, suggesting that the FeCl,/TMSCI
system also gave enone 10 in ca. 30% yield [37].
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Table 1: Aminohalogenation of N-tosyloxycarbamate 8 by iron(ll) catalysis.

FeX,

8 5aR=Br 9 10
5b R=Cl

entry conditions?

FeBry (0.5 equiv), BuyNBr (1.5 equiv), EtOH, rt, 1.75 h
FeCly (0.5 equiv), BuyNCI (1.2 equiv), EtOH, rt, 0.75 h
FeBr; (0.5 equiv), BugNBr (1.2 equiv), t-BuOH, rt, 0.5 h
FeCly (0.5 equiv), BuyNCI (1.2 equiv), t-BuOH, rt, 2.5 h
FeBry (0.2 equiv), BuyNBr (1.2 equiv), t-BuOH, rt, 3.3 h
FeCl, (0.2 equiv), BuyNCI (1.2 equiv), t-BuOH, rt, 3.3 h
7 FeCl, (0.5 equiv), TMSCI (1.5 equiv), EtOH, 0 °C tort, 16 h

D O WN -

products (%)

5a (13), 9 (39), 10 (30)
5b (39), 9 (20), 10 (19)
5a (38), 9 (22), 10 (19)
5b (48), 9 (9), 10 (9)
5a (25)°, 9 (16), 10 (5)
5b (31)¢, 9 (9), 10 (14)
5b (29), 9 (12)d

aAll reactions were conducted using 20 mg of substrate 8. P22% of 8 was recovered. ®35% of 8 was recovered. 9Compounds 11 (16%) and 12 (14%)

were obtained.
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Scheme 3: Aminohalogenation of azidoformate 3 (2 g scale) under FeBry/BusNBr conditions.
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Figure 1: Byproducts formed by aminohalogenation of N-tosyloxycar-
bamate 8 with FeClo/TMSCI in EtOH (see Table 1; entry 7).

The present study on the aminohalogenation reaction of carba-
mate 8 has inspired mechanistic insights that deserve discus-
sion (Scheme 4). We hypothesize that cyclized material 5a/5b,
reduced material 9, and enone 10 are generated from an N—iron

complex (i) that has free-radical character, as previously
proposed in the catalytic cyclization of azidoformates [30,38-
40]. The contrasting yields obtained from N-tosyloxycarbamate
8 and azidoformate 3 under FeBr,/BuyNBr in EtOH conditions
(see Table 1, entry 1 versus Scheme 3) likely originate from the
distinct chemical property of the N—iron species (i) generated
from each substrate. The possible coordination of tosylate anion
to the N—iron after the N—O bond cleavage with FeX, may have
affected the electronic and steric characters of intermediate (i),
leading to retardation of the subsequent cyclization. Because of
the low cyclization rate, the production of reduced carbamate 9
and enone 10 became pronounced. This is consistent with the
observation that the relatively efficient production of cyclized
material 5a was observed for azidoformate 3, where N—iron

intermediate (i) was free from such interactions. One of the
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other characteristics found in the present transformations was
the incomplete consumption of substrate 8 by lowering FeBry/
BuyNBr loading (e.g., Table 1, entry 5), which, in turn, enabled
the efficient conversion of structurally simple N-tosyloxycarba-
mates into the corresponding cyclic aminobromides [28]. This
poor conversion under conditions of less FeX,/BusNX loading
may be attributable to the decrease of the concentration of
reactive FeX, through capture with the polar amide function-
ality of 8.
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Scheme 4: Plausible reaction pathways in the aminohalogenation of
N-tosyloxycarbamate 8 with FeX5/BugNX.

It is speculated that product 9 may be produced by trapping
N—iron complex (i) with another FeX, (i—vii—9), whereas
enone 10 is likely to be generated via intramolecular allylic
hydrogen abstraction followed by halogen transfer to regen-
erate iron(Il) species (i—iv—v—10) and/or by directly
releasing FeX, (i—iv—vi—10) [41]. However, it is worth

discussing the process for yielding 9, which theoretically gener-

Beilstein J. Org. Chem. 2013, 9, 860-865.

ates two equivalents of iron(Ill) species per one equivalent of
vii. Given the observation that FeCl3/BuyNCI gave none of the
products shown in Table 1, an iron(III) species possibly gener-
ated via the halogen exchange of vii with BuyNX, if any, no
longer has catalytic activity and thus the catalytic cycle is termi-
nated. Therefore, active FeX; species should somehow be
regenerated to maintain the catalysis. One possible pathway that
may account for the production of carbamate 9 through the
regeneration of FeX, species is the intermolecular hydrogen
abstraction from substrate 8 by N—iron species (i) (Scheme 5).
The intermediacy of the intermolecular hydrogen abstraction of
N-iron species (i) is supported by the fact that the production of
9 was more pronounced in EtOH having a C—H bond a to the
oxygen, which likely served as a hydrogen donor (Table 1,
entries 1 and 2). It should be mentioned that reduced material 9
may also be produced by BuyNBr alone as observed in our
previous study [28]. To elucidate the contribution of this
pathway, compound 8 was treated with BuyNX in ~-BuOH.
However, no reduced material was obtained within the reaction
times depicted in Table 1 [for instance, 0.5 h stirring for
BuyNBr (Table 1, entry 3) and 2.5 h stirring for BuyNCl
(Table 1, entry 4)], indicating that the non-iron-mediated
process is not significant [42]. Various yields of 9 obtained by
loading consistent amounts (1.2—1.5 equiv) of BuyNX salts also
indicated the poor contribution of the pathway. Chan and
co-workers demonstrated that an iron-imido complex gener-
ated from FeCl,/PhI=NTs underwent radical hydrogen abstrac-
tion from a formyl group, and combined the resultant radicals
(hydrogen atom abstraction/radical rebound pathway) to
provide amides [43,44]. The involvement of such an iron com-
plex (shown in brackets in Scheme 4) that features radical/
metal-nitrenoid properties can be considered in our reactions. A
recent study by Betley and co-workers on high-spin iron—imido
complexes generated by the reactions of alkyl azides with FeCl,
bearing dipyrromethene ligands revealed the radical character of
the complex [39,40], harmonizing well with our result, which
implies the intermediacy of the nitrogen radical species.

Bu4NXj: Ix

FeXs
regeneration

i viii
E’ 10

©

Scheme 5: Plausible reaction pathway to produce compounds 9 and
10.
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Conclusion

We have developed a new approach to key compounds 5a/Sb

for (—)-agelastatin A (1) synthesis, which features the iron(II)-

mediated radical cyclization of N-tosyloxycarbamate, a safe

azidoformate surrogate. Although somewhat moderate chemi-

cal yields of the compounds were obtained in this study, the

elimination of hazardous synthetic processes enables the estab-

lishment of more robust strategies to access 1. Furthermore, the

present study has allowed us to obtain mechanistic insights

suggesting that N—iron species (i) has a metal-radical character.

Much work is currently being undertaken to comprehend fully

the unique properties of the present reactions.
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