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INTRODUCTION
Management of neuroma-related pain, residual limb 

pain, and phantom limb pain after amputation is chal-
lenging. Physiologically, a neuroma forms when a tran-
sected peripheral nerve regenerates. However, nerve 
regeneration in the absence of a receptive target can lead 
to disorganized axonal sprouting. This results in painful 
sensations and neuroma-related pain partly due to ectopic 
firing of transected nerve endings, coupled with a lack of 
afferent feedback from a distal target.1–4

Symptomatic neuromas can be managed non-
operatively with pain medication, neuromodulation, 
or desensitization.5 Surgical techniques for neuroma 
management can be broadly classified as “passive” or 
“active.”5 Passive techniques include excision combined 
with burying or implantation of nerve endings.5 Active 

techniques, like targeted muscle reinnervation (TMR) 
and regenerative peripheral nerve interface (RPNI), 
provide a physiologic distal target for a transected nerve 
ending: “somewhere to go and something to do.”3–6 TMR 
involves transferring and coapting the transected nerve 
stump to a nearby recipient motor nerve branch. This 
allows regenerating axons from the transected nerve 
stump to grow through existing endoneurial tubes of 
the motor nerve branch to reinnervate the denervated 
but vascularized muscle.1 In contrast, RPNI involves 
wrapping the transected nerve stump with a piece of 
denervated and desvascularized muscle graft, which 
does not contain specific endoneurial tubes to guide the 
nerve regeneration. RPNI relies on spontaneous axo-
nal sprouting within the muscle graft for reinnervation, 
following these steps: (1) initial devascularization and 
denervation of the muscle graft, (2) early muscle graft 
atrophy and degeneration, (3) delayed muscle graft 
revascularization via vascular ingrowth, and (4) reneu-
rotization of the revascularized muscle graft.5–7

Both TMR and RPNI have demonstrated efficacy 
when used independently. In a recent article, Valerio et al 
described a hybrid technique combining the optimal com-
ponents of TMR and RPNI.3 Their technique uses TMR to 
provide a distal nerve target for direct nerve coaptation, 
while also using a denervated but vascularized muscle 
cuff to wrap the nerve coaptation site. This vascularized 
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muscle cuff is called vascularized RPNI, and serves to cap-
ture escaping axons arising from donor-recipient nerve 
size mismatch.

We propose a different hybrid of TMR and RPNI, 
where the transected nerve stump is coapted to a recipi-
ent unit consisting of an intact distal nerve branch with 
its associated muscle graft. We called this recipient unit 
a targeted peripheral nerve interface (TPNI) because 
it contains a distal nerve stump for nerve coaptation 
and can guide axonal regeneration from the transected 
nerve stump to its target muscle graft. Unlike TMR, 
where donor-recipient nerve size mismatch can be a 
challenge, TPNI can be created with minimal donor-
recipient nerve size mismatch, since a large caliber 
donor nerve stump can be split via internal neurolysis 
into smaller fascicles to match the size of the TPNI nerve 
branch. In this article, we present our utilization of this 
technique in 2 patients and provide a concise literature 
review.

CASE REPORT AND TECHNIQUE
We describe the use of TPNI as performed by the 

senior author in the setting of below knee amputation. 
Amputation was indicated due to the sequelae pilon 
fractures in both patients: (1) a 65-year-old woman with 
25 years of post-traumatic right ankle pain refractory to 
nonsurgical and surgical management, and (2) a 42-year-
old man with recurrent osteomyelitis of the left ankle. A 
similar technique may be utilized for other upper or lower 
extremity amputation sites.

Surgical Technique
In each patient, to create a TPNI, we identify the tibial 

nerve (adjacent to the posterior tibial artery) in the ampu-
tated leg (Fig. 1) and trace it distally as it arborizes into the 
muscles within the deep posterior compartment (Fig. 2). 
We then excise a 3 cm × 1 cm × 0.5 cm muscle graft cen-
tered on the location where the nerve branch penetrates 
into the muscle, with the long axis of the muscle graft par-
allel to the direction of the muscle fibers. This yields a 
TPNI consisting of a standard RPNI with an intact nerve 
branch penetrating the muscle graft in the central portion 
(Fig. 3).

Next, we identify the proximal transected ends of 
the tibial, deep peroneal, superficial peroneal, sural, 
and saphenous nerves in the below knee amputation 
stump wound. Tibial and superficial peroneal nerves 
are usually of larger caliber, and internal neurolysis 
is performed to split each large caliber nerve into 2–4 
smaller fascicles for better size match to the TPNI nerve 
branches (Fig. 4). Nerve coaptation is performed using 
two 8-0 nylon sutures, followed by application of fibrin 
glue. Lateral edges of the muscle graft are then sutured 
together using 5-0 Vicryl sutures, similar to the standard 
RPNI technique previously described.7–9 Typically, 3–6 
TPNI can be harvested from the amputated portion of 
the leg. If there are insufficient TPNI units to be used, 
we then manage the remaining transected nerve stumps 
using standard RPNI.

Outcome
At 3 months follow-up, both patients had been fitted 

with prosthetic limbs and were ambulating independently. 
Both patients reported infrequent minimal residual limb 
or phantom pain that did not interfere with their activities 
and neither patient required narcotic pain medication at 
this follow-up timepoint.

DISCUSSION
Prevention and treatment of neuropathic pain from 

potentially symptomatic neuromas is increasingly impor-
tant in the treatment of patients undergoing amputation.5 
In this article, we propose a modified RPNI technique, 
where the transected nerve stump is coapted to a nerve 
branch associated with a piece of denervated, devascu-
larized muscle graft to help guide nerve regeneration 
(TPNI). With this construct, nerve regeneration can 
occur along an intact nerve branch associated with the 
neuromuscular unit, potentially leading to better intra-
muscular distribution of reinnervation pattern and less 
neuroma-related pain. Furthermore, we theorize that with 
more even distribution of axonal sprouting along existing 
endoneurial tubes, TPNI may have the potential to pro-
duce stronger signals for prosthetic control. For example, 
a recent study by Nassif and Chia demonstrated reanima-
tion of eyelid function using neurotized platysma grafts 
that functioned as “mini neuromuscular units.” Such units 
could act as a source of contraction signals for prosthetic 
control.10 Histological and animal studies may be helpful 

Fig. 1. Clinical picture of a tPNI harvested from the amputated por-
tion of the leg.
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Fig. 2. anatomy of tibial nerve branches entering the muscles of the 
deep posterior compartment.

Fig. 3. Clinical picture of the tracing of the distal nerve branch as 
it arborizes into the muscle. this segment of the tibial nerve has 2 
branches. two separate tPNI units can be harvested from this seg-
ment (each measuring 3 cm × 1 cm × 0.5 cm, with the muscle graft 
centered on the nerve branch insertion point).

Fig. 4. Clinical picture of the splitting of the proximal tibial nerve 
stump into multiple fascicles for better size match at donor-recipi-
ent nerve coaptation site.
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to delineate the nerve branching pattern within the 
muscle graft, to determine if a larger TPNI unit (longer 
and wider, but not thicker, to ensure graft survival) would 
potentially offer stronger signals for prosthetic control.

TPNI utilizes the muscle graft harvested from the 
amputated body part, with no donor site morbidity. 
Furthermore, it has the added benefit of having an associ-
ated nerve branch to allow primary nerve-to-nerve coapta-
tion with good donor-recipient nerve size match, since the 
donor nerve size can be surgically modified via internal 
neurolysis. Nerve coaptation using 8-0 nylon sutures can 
easily be done under loupe magnification, and branching 
points of the tibial nerve are easily visible on the ampu-
tated part of the leg traveling with the posterior tibial 
artery, requiring minimal additional dissection. This mod-
ified technique may offer improvement in outcome with 
regard to the management of amputation stump neuroma 
pain and prosthetic control.
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