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Abstract: The measurement accuracy of the precision instruments that contain rotation joints is
influenced significantly by the rotary encoders that are installed in the rotation joints. Apart from the
imperfect manufacturing and installation of the rotary encoder, the variations of ambient temperature
could cause the angle measurement error of the rotary encoder. According to the characteristics of
the 2π periodicity of the angle measurement at the stationary temperature and the complexity of the
effects of ambient temperature changes, the method based on the Fourier expansion-back propagation
(BP) neural network optimized by genetic algorithm (FE-GABPNN) is proposed to improve the
angle measurement accuracy of the rotary encoder. The proposed method, which innovatively
integrates the characteristics of Fourier expansion, the BP neural network and genetic algorithm,
has good fitting performance. The rotary encoder that is installed in the rotation joint of the articulated
coordinate measuring machine (ACMM) is calibrated by using an autocollimator and a regular optical
polygon at ambient temperature ranging from 10 to 40 ◦C. The contrastive analysis is carried out.
The experimental results show that the angle measurement errors decrease remarkably, from 110.2”
to 2.7” after compensation. The mean root mean square error (RMSE) of the residual errors is 0.85”.

Keywords: angle measurement error; BP neural network; genetic algorithm; rotary encoder;
temperature compensation; instrument

1. Introduction

The precision measuring instruments such as laser tracker, articulated coordinate measuring
machine (ACMM) and total station are widely used in the area of field measurement for its portability.
The rotation joint with high-accuracy angle sensor is the core component of these instruments.
The angle measurement accuracy of angle sensors has great influence on the measurement performance
of these precision instruments. Rotary encoders are widely used as high-accuracy angle sensors
in these instruments. The ambient temperature in industrial site varies greatly from place to place.
The measurement accuracy of these precision instruments is influenced greatly by ambient temperature.
One main reason for this is that the angle measurement error induced by temperature will induce
large measurement error of these instruments. Many methods have been developed to improve the
angle measurement accuracy of the rotary encoder. The discrete angle measurement error values
were obtained by the use of an autocollimator and a regular optical polygon to provide reference
angle [1–5]. The eccentricity of the grating disk accounts for the majority of the angle measurement error.
An eccentricity error model was built, and angle measurement accuracy was improved by compensating
the eccentricity error [1–3]. Gao et al. analyzed the discrete values by fast Fourier transform (FFT)
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and calculated the constants with particle swarm optimization (PSO) to solve the problem of the
non-convergence of the traditional least square method [4]. Hong et al. set up the compensation
model which is based on the radial basis function (RBF) neural network [5]. Geckeler et al. built an
experimental set-up that contains two rotary tables, an autocollimator and a five-sided calibration
polygon. The Fourier methods involving transfer functions were presented to calibrate the angle
encoders. Different weighting schemes were tested to reduce the measurement uncertainty [6].
Deng et al. introduced a useful device composed of a high-precision angular sensor to calibrate the
optical encoder. An error compensation model was built based on the Fourier expansion. The weights
were optimized by using the adaptive different evolution (ADE) method for the advantages of high
accuracy and robustness to initial weights [7]. Zhao et al. proposed a method named extreme learning
machine-Fourier neural network (ELM-FNN) to correct the angle measurement error of the optical
encoder. The weights of FNN were calculated by ELM, which has the advantage of higher accuracy [8].

Li et al. proposed a method of angular positioning error analysis of the rotary stage based
on the Abbe principle without using an autocollimator or a regular optical polygon to reduce the
error [9]. The Abbe principle was extended to the angular measurement area to improve the angle
measurement accuracy [10]. The relationship between the angle measurement error and the eccentricity
of grating disk error motions of rotating shaft was analyzed, and the error models were built. The angle
measurement error was decreased significantly [11–13]. The multi-reading heads were set in an
irregularly distributed way and the transfer function was used to realize self-calibration of rotary
encoder installed in the precise rotary table [14,15]. The researches mentioned above proposed many
methods to correct the angle measurement error of the rotary encoder effectively without considering
the effect of the ambient temperature.

Considering the temperature effect of the rotary encoder, Yu et al. proposed a method based
on Fourier expansion-polynomial fitting (FEPF) to improve the angle measurement accuracy [16].
The setting of the degree of polynomial was not done properly and the data analysis of repeated
experiments was insufficient. Except this article, previous researches seldom took into consideration
on the temperature effect of the angle measurement accuracy of the rotary encoder. Many relevant
studies have been presented to compensate the temperature effect of sensors. Hu et al. proposed an
incremental optical linear encoder error model and estimation method. The errors of the different
positions of linear encoder were compensated by using the empirical mode decomposition and the
linear least square fitting method. The errors of the different temperatures were compensated by
the cross-correlation methods [17]. Liu et al. proposed a high-order nonlinear fitting method with
the quadratic model evolution to reduce the temperature effects on the measurement accuracy of
accelerometer [18]. Wang et al. presented a multiple regression model considering the temperature
variables to improve the navigation accuracy of a single-axis rotational inertial navigation system [19].
Zhang et al. proposed a Fourier expansion-back propagation (BP) neural work to compensate the
effect of the temperature of elasto-magneto-electric sensors. A two-dimensional polynomial fitting
method was also proposed for comparison. It was concluded that the BP neural work method was
more effective and robust [20]. Araghi et al. proposed a temperature-dependent model using the RBF
neural network to compensate measurement errors of the micro-electromechanical systems (MEMSs)
inertial sensors. The RBF neural network reached better compensation effect by handling nonlinearity
inherent in sensors [21]. Xu et al. presented a temperature compensation method to improve the
performance of the MEMSs accelerometer based on the improved BP neural network, with advantages
of fast convergence speed and good fitting performance [22]. The neural network was widely used in
measurement compensation of sensors. The genetic algorithm has the advantage in global search to
avoid the network getting stuck with local minimum [23–26].

The structure of the article is introduced as follows. Section 2 presents the structure of the rotation
joints. Section 3 describes the Fourier expansion-back propagation neural network optimized by genetic
algorithm (FE-GABPNN). Section 4 presents the experimental system and analyzes the experimental
results. The discussion and conclusions are presented in Sections 5 and 6 separately.
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The main contributions of this work are: (1) Through the experiments, it is found that the variations
of ambient temperature could cause the significant angle measurement error of the rotary encoder
installed in the ACMM; (2) a novel method based on the FE-GABPNN is proposed to compensate the
angle measurement error of the rotary encoder. The Fourier expansion which is from 0 to 11 orders
is used to build the error compensation model at the temperature of 20 ◦C without residual errors
based on the character of periodicity of angle measurement errors. The improved BP neural network
whose initial parameters are optimized by the genetic algorithm is used to compensate the angle
measurement errors caused by ambient temperature ranging from 10 to 40 ◦C. The proposed method,
which innovatively integrates the characteristics of Fourier expansion, BP neural network and genetic
algorithm, especially has good performance in compensating the angle measurement errors of rotary
encoders when the ambient temperature changes; (3) the method mentioned above has the potential of
being applied to other precisions instruments which contain rotation joints, such as a laser tracker.

2. Rotary Encoder Installed in the Rotation Joint of ACMM

ACMM is a kind of precision measuring instrument in tandem structure and it contains six rotation
joints installed with rotary encoders. The structure of the rotation joint is shown in Figure 1.
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Figure 1. Diagram of the rotation joint.

The reading head is installed on the mounting plate of the reading head that is installed on the
shaft sleeve, the grating disk is installed on the rotating shaft. The reading head is stationary and
the grating disk installed on the rotating shaft is rotated relative to the reading head. The rotary
encoder is composed of the reading head and the grating disk. The model of the rotary encoder is
the Mercury 3000 (Celera MOTION Company, Bedford, MA, USA, resolution is 0.39”, measuring
range is 360◦, measurement accuracy is ±2.1” before calibration, output is A-quad-B and digital index
window). The angle measurement errors of the rotary encoder are mainly caused by error motions of
the rotating shaft, manufacturing and installation eccentricity of the grating disk, and variations of
ambient temperature.

3. Fourier Expansion-BP Neural Network Optimized by Genetic Algorithm

The angle measurement error compensation model was established by FE-GABPNN method.
The discrete angle measurement error values were calibrated by using an autocollimator and a regular
optical polygon with 23 faces at temperatures of 10, 15, 20, 25, 30, 35 and 40 ◦C separately. The repeated
experiments were carried out three times at each temperature among the seven temperatures mentioned
above. A total of (23× 7× 3 =)483 data sets were obtained. Each data set included the ambient
temperature T, the angular position of the rotary encoder θ and the relative discrete angle measurement
error value ∆θ. The structure of the FE-GABPNN method is shown Figure 2. Based on the characteristics
of angle measurement errors of the rotary encoders, the proposed method innovatively integrated the
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characteristics of Fourier expansion, BP neural network and genetic algorithm to further improve the
angle measurement accuracy.
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In the following subsections, Section 3.1 provides the details of the Fourier expansion, Section 3.2
introduces the details of the BP neural network and Section 3.3 introduces the details of the
genetic algorithm.

3.1. Fourier Expansion

The characters of angle measurement errors are circle closure and periodicity [5]. Fourier expansion
method is simple with good fitting accuracy when the ambient temperature is not changed. The average
values of angle measurement errors calibrated at temperature of 20 ◦C were set as the basic angle
measurement errors. The angle measurement error compensation model at the temperature of 20 ◦C
was built by the Fourier expansion, as shown in Equation (1):

ε(θ)20 = a0 +
11∑

i=1

(ai sin(iθ) + bi cos(iθ)). (1)

The 23 discrete values were obtained in the calibration process, so the Fourier expansion which is
from 0 to 11 orders can be used to fit the discrete angle measurement values without residual errors.
The parameters a0, ai, bi, i = 1, · · · , 11 were calculated based on the least-squares method by using the

average discrete values ∆θ
20
k ·k = 1, 2, · · · , 23. The algorithm details of the least-squares method are

introduced in Appendix A.

3.2. BP Neural Network

The improved BP neural network optimized by the genetic algorithm was used to compensate the
angle measurement errors caused by the ambient temperature. The BP neural network is illustrated in
the following section. The remained discrete angle measurement error values ∆θ′m, m = 1, 2, · · · , 483

were obtained by subtracting the average discrete values ∆θ
20
k calibrated at temperature of 20 ◦C from

the discrete angle measurement error values ∆θm mentioned above.
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3.2.1. Structure of the BP Neural Network

The structure of the BP neural network is shown in Figure 3. The BP neural network consists of
one input layer, one hidden layer and one output layer. The remained discrete angle measurement error
values were relative to the angular position and ambient temperature. So the input layer included two
nodes, and the input variables were the angular position of rotary encoder θ and ambient temperature
T. The output layer had one node and the predicted value was the compensation value of the angle
measurement error ε(θ, T). There is no exact algorithm to determine the number of nodes of the
hidden layer n [27]. Some empirical formulas are proposed to calculate the general number nodes of
the hidden layer [28]. When the number of hidden layer nodes is small, the structure of the BP neural
network is too simple to fit the discrete angle measurement error values properly. On the other hand,
when there are too many nodes in the hidden layer, the BP neural network has the risk of overfitting.
The number of hidden layer nodes is decided by the training results of the BP neural network, which is
evaluated by the RMSE of the residual errors after compensation.
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Further, vih was the weight between the input layer and hidden layer; ωh was the weight between
the hidden layer and output layer; γh was the bias of the hidden layer; ϕ was the bias of the output
layer. The input value of the neural cell of the hidden layer was calculated by Equation (2):

αh = v1hT + v2hθ. (2)

The output value of the node of the hidden layer was bh = f (αh − γh). The input value of the
node of the output layer was calculated by Equation (3):

β =
n∑

h=1

ωhbh (3)

The output value of the node of the output layer was ε(θ, T) = g(β−ϕ). Here, i = 1, 2; h = 1, · · · , n.
The transfer functions we used were shown as follows.

bh =
2

1 + e−2(αh−γh)
− 1. (4)

ε(θ, T) = β−ϕ. (5)

3.2.2. Training of the BP Neural Network

The flowchart of the BP neural network is shown in Figure 4.
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Structure establishment. The structure of the BP neural network is described in detail in Section 3.2.1.
There were 483 data sets obtained from the above-mentioned calibration process, and the data sets are
randomly divided, with 90% used for training, 10% for validation.

Data normalization. All the data sets, which consist of the input values and expected values,
were normalized within [0, 1]. The normalization process was shown in Equation (6).

Tm =
Tm − Tmmin

Tmmax − Tmmin
,θm =

θm − θmmin

θmmax − θmmin
, ∆θ′m =

∆θ′m − ∆θ′mmin

∆θ′mmax − ∆θ′mmin
, m = 1, 2, · · · , 483. (6)

Tmmax,θmmax, ∆θ′mmax were the maximum values of the ambient temperature, angular position and
remained discrete angle measurement error values, separately, and Tmmin,θmmin, ∆θ′mmin were the
minimum values.

Parameters initialization. Then the initialized parameters, which consist of the weights vih, ωh and
biases γh, ϕ, are set to random numbers within [−1, 1].

Errors calculation. The predicted values ε(θ, T)m, which are the compensation values of the angle
measurement error in this situation, were calculated by Equations (2)–(5). Then the residual errors
were calculated by subtracting the predicted values ε(θ, T)m from the expected values ∆θ′m.

Update parameters. When mean squared error (MSE) of the residual errors is not less than the
target training error, or iterations are not completed, the weights and biases are updated through
the corresponding algorithms. The residual errors are back-propagated through the neural network,
the Levenberg–Marquardt (LM) algorithm was used to adjust the weights and biases, so as to build
the proper compensation model and reduce the residual errors. The LM algorithm is more efficient
for training the moderate-sized neural networks, which is up to several hundred weights, with good
prediction performance [20,29].

The BP neural network is built when it meets the end condition.

3.3. Genetic Algorithm

The prediction performance of the BP neural network is influenced by the initial weights and
biases. The genetic algorithm is used to optimize the initial weights and biases to improve the prediction
performance. The flowchart of the genetic algorithm is presented in Figure 5.
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Initial values encoding. A population consists of different individuals. Each one is a string of
the real numbers which are consisted of the weights between the input layer and hidden layer vih,
the biases of the hidden layer γh, the weights between the hidden layer and output layer ωh, and the
bias of the output layer ϕ. The parameters mentioned above are encoded in order.

Definition of fitness value. The MSE of the residual errors is set as the fitness value of individual F
in genetic algorithm, as shown in Equation (7):

F =
1

483

483∑
m=1

(∆θm
′
− ε(θ, T)m)

2. (7)

Selection. The selection algorithm used in this article is the roulette method based on the
proportionate fitness. The selection probability is calculated by Equation (8):

fn = 1/Fn

pn =
fn

N∑
i=1

fn

. (8)

Here, Fn is the fitness value of individual n, pn is the selection probability of individual n and
N is the size of individuals. The smaller the fitness value of individual is, the higher the selection
probability will be. The individuals which are selected will be conducted in the subsequent operations.

Crossover. The same parameters of two different individuals are changed by using the crossover
algorithm, as shown in Equation (9):{

amk
′ = amk(1−w) + ankw

ank
′ = ank(1−w) + amkw

, (9)

where amk, ank are the values of the parameter numbered k of the individual m and n, separately.
The parameter numbered k is selected randomly from the whole weights and biases, individuals m, n
are selected randomly from the population. w is a random value within [0, 1].

Mutation. The mutation algorithm is shown in Equation (10):

ai j
′ =

 ai j +
(
ai j − amax

)
∗ f (e)r > 0.5

ai j +
(
amin − ai j

)
∗ f (e)r ≤ 0.5

. (10)
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Here ai j is the value of the parameter numbered j of the individual i. amax, amin are the maximum
and minimum of the parameter numbered j of the whole individuals, separately. f (e) = re(1− e/Emax)

2,
where re is a random value within [0, 1]. e is the current evolution number. Emax is the maximum
evolution value. r is a random value within [0, 1].

Calculation of fitness value. The selection, crossover and mutation mentioned above are operated N
times separately. Then the fitness value of each individual is calculated, the individual whose fitness
value is the smallest is obtained and then the corresponding parameter values are obtained.

Optimized parameters. One evolution process is consisted of the processes mentioned above.
The whole individuals of population evolve Gmax times. At last, the individual whose fitness value is
the smallest in the whole evolutions is found, the corresponding optimized weights and biases are
obtained and used as the initial parameters of the BP neural network.

4. Experimental Results

4.1. Calibration Experiment

The experimental system is shown in Figure 6. The autocollimator and regular optical polygon
were used to obtain the discrete angle measurement error values of the rotary encoder [30]. The model
of autocollimator was TriAngle US 300-57 (TRIOPTICS Company, Wedel, Germany, with resolution
of 0.005” and measurement accuracy of 0.25”). The rotation joint which was installed close to the
bottom of the ACMM is shown as an example. The structure of the rotation joint is shown in Figure 1.
The temperature sensor was fixed on the mounting plate of the reading head. The temperature sensor
used in the experiment was DS18B20 (Maxim, San Jose, CA, USA, with resolution of 0.06 ◦C and
accuracy of 0.5 ◦C). The rotation joint was installed on the foundation support which the shaft sleeve is
fixed on. The installation situation of the rotation joint in experiment and industrial field were same.
The foundation support with the rotation joint was placed in the thermotank. The regular optical
polygon with 23 faces and rotating shaft were fixed by the use of a clamp. The angle measurement
error of the autocollimator will not be caused by the small eccentric installation of the regular optical
polygon. The autocollimator and foundation support were adjusted to make sure that the light beam
was perpendicular to the regular optical polygon. The position of the regular optical polygon was
adjusted relative to the clamp to make sure that the indicating value of the rotary encoder θ was less
than 0.2◦ when the autocollimator was aimed at the first working face of the regular optical polygon.
The initial position error is negligible, because 0.2◦ is small compared with 360◦. Then the regular
optical polygon was fixed by fastening the nut.
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Set the temperature in the thermotank and maintained the temperature for a long enough time
to make sure the internal and external parts of the ACMM reach the same temperature. The thermal
barrier was used to make sure that the variation of temperature was less than 0.2 ◦C during the
calibration. The rotating shaft was rotated by hand without using motor for the reason that it was
similar to the practical application of ACMM. The indicating value of the rotary encoder θk and the
indicating value of the autocollimator along the horizontal direction δXk, k = 1, · · · , 23 were recorded
simultaneously, when the autocollimator was aimed at each working face of the regular optical polygon.
The discrete angle measurement error values ∆θT

k at current ambient temperature T were calculated by
Equation (11):

∆θT
k = (θk − δXk) − (θ1 − δX1) − 360/23 ∗ (k− 1). (11)

All the calibration data mentioned in the previous chapter were obtained in the same way.
During the experiments, it took within 30 min to install and adjust the devices. It usually took

4 h to change and maintain the temperature in the thermotank to make sure the different parts of
ACMM reach the same set temperature at each specific temperature. It took within 20 min to finish the
calibration process, which consists of repeated experiments carried out three times at each specific
temperature. It took about 40 min to train all the calibration data and build the error compensation
model when the time of repeated trials of the BP neural network is included.

4.2. Compensation Results

The average discrete angle measurement error values before compensation at temperatures of 10,
15, 20, 25, 30, 35 and 40 ◦C are shown in Figure 7. The angle measurement errors ranged from −110.2”
to 43.9”. The angle measurement errors caused by the variation of temperature at the same angular
position reached up to (−9.7”, 7.0”).
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The angle measurement errors at the temperature of 20 ◦C were compensated by using the Fourier
expansion mentioned above. The remained angle measurement errors were compensated by the
improved BP neural network optimized by the genetic algorithm. It was obvious that 20 nodes in the
hidden layer was optimal from Figure 8. Here a 2-20-1 BP neural network was selected.
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Figure 8. Performance of the BP neural network whose numbers of nodes in the hidden layer is different.

According to the convergence condition of the fitness value of individuals in genetic algorithms,
the total number of individuals N was set to 30, the maximum evolution number Gmax was set to 25.
The compensation effect of the FE-GABPNN is presented in Figure 9. The RMSE of the residual errors
after compensation was 0.84”, the residual errors were within (−2.2”, 2.5”).
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4.3. Contrastive Analysis

4.3.1. Two-Dimensional Polynomial Fitting

The two-dimensional polynomial fitting is widely used to fit the model that has two independent
variables and one dependent variable. The mathematical model of the two-dimensional polynomial
fitting method is expressed by Equation (12):

ε(θ, T) = p00 + p10θ+ p01T + p20θ2 + p11θT + p02T2 + . . .
+p50θ5 + p41θ4T + p32θ3T2 + p23θ2T3 + p14θT4 + p05T5 (12)

Using the above-mentioned 483 data sets, the parameters p00, p10, · · · , p05 are obtained by the linear
least square fitting method. The compensation effect of the two-dimensional polynomial fitting method
is presented in Figure 10. The RMSE of the residual errors after compensation is 3.69”. The extreme
deviation of the residual errors after compensation is (−9.1”, 10.6”).



Sensors 2020, 20, 2603 11 of 14

Sensors 2020, 20, x FOR PEER REVIEW 11 of 15 

 

 
Figure 9. Compensation effect of the Fourier expansion-BP neural network optimized by genetic 
algorithm (FE-GABPNN) method. 

4.3. Contrastive Analysis 

4.3.1. Two-Dimensional Polynomial Fitting 

The two-dimensional polynomial fitting is widely used to fit the model that has two 
independent variables and one dependent variable. The mathematical model of the two-dimensional 
polynomial fitting method is expressed by Equation (12): 

2 2

5 4 3 2 2
00 10 01 20 11 0

3 4 5
50 41 32 23 14 0

2

5

( , ) ...T p p p T p p T p T
Tp p p T pTp TpT

ε θ θ θ θ
θ θ θ θ θ

+ + + +

+ + + + + +

= + +
. (12) 

Using the above-mentioned 483 data sets, the parameters 00 10 05, , ,p p p⋅⋅ ⋅  are obtained by the 
linear least square fitting method. The compensation effect of the two-dimensional polynomial 
fitting method is presented in Figure 10. The RMSE of the residual errors after compensation is 3.69″. 
The extreme deviation of the residual errors after compensation is (−9.1″, 10.6″). 

 

 
Figure 10. Compensation effect of the two-dimensional polynomial fitting method. 

4.3.2. FEPF Method 

Figure 10. Compensation effect of the two-dimensional polynomial fitting method.

4.3.2. FEPF Method

The FEPF method is proposed to improve the angle measurement accuracy of rotary encoders [16].
First, the compensation model of angle measurement error at each specific temperature is built by
using Fourier expansion, as shown in Equation (13). Then the relationship between the coefficients of
the Fourier series and ambient temperature is established by using of polynomial fitting separately,
as shown in Equation (14). The orders of Fourier series are from 0 to 7, the degree of polynomial is 5.

ε(θ, T) = fa0(T) +
7∑

i=1

(
fai(T) sin(iθ) + fbi(T) cos(iθ)

)
. (13)


fa0(T) = pa01T5 + pa02T4 + · · ·+ pa05T + pa06

fai(T) = pai1T5 + pai2T4 + · · ·+ pai5T + pai6

fbi(T) = pbi1T5 + pbi2T4 + · · ·+ pbi5T + pbi6

. (14)

Using the above-mentioned 483 data sets, the parameters pa01, · · · , pa06, pai1, · · · , pbi6, i = 1, 2, · · · , 7
are calculated by the least square fitting method. The residual errors are calculated by subtracting the
compensation values from the original errors. The RMSE of the residual errors after compensation
is 1.20”. The extreme deviation of the residual errors after compensation is (−2.1”, 2.9”).

4.3.3. Compensation Effect Comparison

The Fourier expansion-standard BP neural network (FE-BPNN) method, without using genetic
algorithm, and the standard BP neural network (BPNN) method, without using Fourier expansion or
genetic algorithm, are presented for comparison. The 25 nodes in the hidden, which is expected to
have the best performance, are set when using the BPNN method. The same experiments’ data sets are
used as the training and test data.

Each approach is evaluated using the mean of the RMSE and the extreme deviation of the residual
errors after compensation. The unit of the RMSE of the residual errors and the angle measurement
errors are the same. Using the RMSE has the advantage of reflecting the magnitude of the residual
errors directly compared with the MSE.

For the FE-GABPNN, FE-BPNN and BPNN methods, the repeated trials are carried out 20 times.
The results are presented in Table 1. The compensation results of two-dimensional polynomial fitting
and FEPF are presented in Table 2.
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Table 1. Comparative result by Fourier expansion-BP neural network optimized by genetic algorithm
(FE-GABPNN), Fourier expansion-standard BP neural network (FE-BPNN) and standard BP neural
network (BPNN).

Item Mean RMSE (”) Mean Extreme Deviation (”)

FE-GABPNN 0.85 −2.3, 2.7
FE-BPNN 0.90 −2.6, 2.8

BPNN 1.38 −4.1, 4.1

Table 2. Compensation results of two-dimensional polynomial fitting and Fourier expansion-polynomial
fitting (FEPF).

Item RMSE (”) Extreme Deviation (”)

Two-Dimensional Polynomial Fitting 3.69 −9.1, 10.6
FEPF 1.20 −2.1, 2.9

Compared with the FE-BPNN and BPNN methods, the FE-GABPNN method shows a better
compensation effect by evaluating the mean RMSE and mean extreme deviation of residual errors.
Compared with the FEPF method proposed in a recent study, the extreme deviation of the residual
errors by using FE-GABPNN method is almost the same, but the RMSE of the residual errors decreases
from 1.20” to 0.85”.

5. Discussion

The angle measurement accuracy of the rotary encoder installed in the rotation joint is mainly
influenced by error motions of rotating shaft, installation eccentricity, imperfect manufacturing of the
grating disk and variations of ambient temperature. In the article, a method based on FE-GABPNN is
proposed to compensate the angle measurement error of the rotary encoder. The Fourier expansion
method has the advantage of compensating periodic errors and the improved BP neural network
optimized by the genetic algorithm method has the advantages of nonlinear fitting capability, regardless
of the exact error model of the angle sensors and overcoming the local minimum. The FE-GABPNN
method innovatively integrates the characteristics of Fourier expansion, BP neural network and
genetic algorithm.

The rotary encoder installed in the rotation joint of ACMM is calibrated by the experiment.
The experimental results show that over the ambient temperature range of 10 to 40 ◦C, the FE-GABPNN
is superior to the FE-BPNN, BPNN, two-dimensional polynomial fitting and FEPF. The FE-GABPNN,
which further decreases the RMSE of the residual errors, has better performance in compensating the
angle measurement errors of rotary encoders when the ambient temperature changes. The FE-GABPNN
method mentioned above has the potential of being applied to other precision instruments which
contain rotation joints, such as a laser tracker.

By using the FE-GABNN proposed in this article, the residual errors after compensation is almost
the same as the random errors of the angle measurement errors. It is hard to improve the angle
measurement accuracy of rotary encoders based on the current devices when using single reading head.
From our previous research work carried out at the stationary temperature, the random errors are
decreased in a certain extent by using the double reading heads which are set in a regularly distributed
way. The reason for this is that some error sources of random errors have the opposite effects on the
double reading heads. The random errors caused by the variations of ambient temperature may have
the similar characteristics. In addition, according to the researches [14,15], different arrangements of
multi-reading heads have different compensation effect.

So, in future work, installing multi-reading heads is considered as the effective way to improve the
angle measurement accuracy of the rotary encoders when the ambient temperature effect is considered,
and the algorithm based on the multi-reading heads will be researched.
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6. Conclusions

In this paper, a novel method based on FE-GABPNN is proposed to improve the angle measurement
accuracy of the rotary encoders installed in the rotation joints of ACMM. The angle measurement
errors decrease remarkably, from 110.2” to 2.7” after compensation. The mean RMSE of residual errors
after compensation is 0.85”. Installing multi-reading heads in a proper way and developing the related
algorithm is the next step to further improve the angle measurement accuracy of the rotary encoders.
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Appendix A

This appendix introduces the algorithm details of the least-square method to calculate the
parameters a0, ai, bi, i = 1, · · · , 11 mentioned in Section 3.1.

The matrix M is defined as M = [a0 a1 b1 a2 b2 · · · a11 b11]
T.

The matrix Emea is defined as Emea = [∆θ
20
1 ∆θ

20
2 ∆θ

20
3 · · ·∆θ

20
22 ∆θ

20
23]

T
.

The matrix A is defined as

A =



1 sinθ1 cosθ1 sin 2θ1 cos 2θ1 · · · sin 11θ1 cos 11θ1

1 sinθ2 cosθ2 sin 2θ2 cos 2θ2 · · · sin 11θ2 cos 11θ2

1 sinθ3 cosθ3 sin 2θ3 cos 2θ3 · · · sin 11θ3 cos 11θ3
...

...
...

...
...

...
...

1 sinθ22 cosθ22 sin 2θ22 cos 2θ22 · · · sin 11θ22 cos 11θ22

1 sinθ23 cosθ23 sin 2θ23 cos 2θ23 · · · sin 11θ23 cos 11θ23


. Where θi,

i = 1, 2, · · · , 23 is the angular position of rotary encoder.

The matrix M is calculated by the following equation: M =
(
ATA

)−1
ATEmea. The parameters

a0, ai, bi, i = 1, · · ·, 11 are calculated.
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