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Abstract

structural levels decreases.

to the SCOP classification hierarchy.

Background: Random forest, an ensemble based supervised machine learning algorithm, is used to predict the
SCOP structural classification for a target structure, based on the similarity of its structural descriptors to those of a
template structure with an equal number of secondary structure elements (SSEs). An initial assessment of random
forest is carried out for domains consisting of three SSEs. The usability of random forest in classifying larger
domains is demonstrated by applying it to domains consisting of four, five and six SSEs.

Results: Random forest, trained on SCOP version 1.69, achieves a predictive accuracy of up to 94% on an
independent and non-overlapping test set derived from SCOP version 1.73. For classification to the SCOP Class,
Fold, Super-family or Family levels, the predictive quality of the model in terms of Matthew's correlation coefficient
(MCQ) ranged from 061 to 0.83. As the number of constituent SSEs increases the MCC for classification to different

Conclusions: The utility of random forest in classifying domains from the place-holder classes of SCOP to the true
Class, Fold, Super-family or Family levels is demonstrated. Issues such as introduction of a new structural level in
SCOP and the merger of singleton levels can also be addressed using random forest. A real-world scenario is
mimicked by predicting the classification for those protein structures from the PDB, which are yet to be assigned

Background

In the foreseeable future, current practices of cataloging
protein structures will need to cope with a rapid
increase in the number of unclassified structures. As of
February 2010, approximately 64% of the 58,824 pro-
teins deposited in the Protein Data Bank (PDB) [1] are
structurally classified. The number of structurally
resolved proteins is expected to continue to rise; about
1150 structures have been deposited in the PDB within
the first two months of 2010. Moreover, about 29,000 of
40,000 representative proteins selected by the world-
wide protein structure initiative (PSI) are at various
stages of experimental structure determination. Classifi-
cation of structures contributes significantly to the study
of their evolutionary relatedness [2,3] and functional
diversity. Structure Classification of Proteins (SCOP) [4]
is the most established and popular scheme for classifi-
cation. However, classification to SCOP has been largely
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manual, until a recent upgrade to its classification
strategy when semi-automation was implemented; and
full automation will eventually be needed [5,6]. Clearly,
an automated and reliable classification technique would
assist the expert human classifiers and speed up their
job. It would be an added advantage if such a technique
could predict plausible classifications and identify where
rearrangements are needed in the existing classification
hierarchy.

Efforts to automate structural classification have been
ongoing for over a decade using supervised machine
learning (ML) algorithms, such as neural networks
[7-12] and support vector machines (SVMs) [13-17]. In
general, in these studies, input to the ML algorithms is
a one dimensional representation of the tertiary struc-
ture, in the form of various physicochemical and struc-
tural properties derived from the primary and secondary
structure. Using a previously published data set [8],
Shen and Chou [18] assigned proteins to one of the 27
most populated folds selected from SCOP. They pro-
posed a weighted voting scheme, which combined SVM
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based classifiers trained independently on features such
as pseudo amino acid composition [19], secondary
structure state, hydrophobicity, polarity, polarizability
and normalised van der Waals volume. The classifica-
tion accuracy of 62.1% was higher than other studies
[8,9]. Zhao et al. have applied ensemble learning to pro-
tein structure classification [20]. Such approaches have
improved the classification accuracy to 75% [21]. A deci-
sion tree based ensemble classifier was proposed by
Camoglu et al. [22], assigning proteins to existing
families, super-families and folds with accuracies of 83%,
45% and 31%, respectively. All these efforts attempt bin-
ary classification limited to the most populated SCOP
levels. Binary classification is possibly not sufficient for
the less populated structural levels or for a hierarchical
classification scheme. Multiple lineages may be found
for multi-domain proteins. This complicates the classifi-
cation further. Recently, random forest, a decision tree
based ensemble learner, was used in predicting glycosy-
lation sites [23], protein-protein interaction sites
[24-26], DNA-binding residues [27], disordered regions
[28] and enzyme discrimination [29]. These investiga-
tions suggest that the random forest is a robust and
scalable classifier. In comparison to SVMs and neural
networks, relatively few applications of random forest
have been reported in structural bioinformatics.
Previously [30] we examined 15 supervised machine
learning algorithms, including some, such as decision
trees and rule learners, which had not been used before
for structure classification. We introduced a one dimen-
sional representation of protein domains, comprising
structure and sequence based descriptors characterising
the constituent secondary structure elements (SSEs).
These features were distance, relative orientation, sol-
vent accessibility, length, type of the SSEs and the level
of sequence identity. For all of the structurally equiva-
lent pairs of SSEs these features were calculated using
DSSP [44] assignments. Structurally equivalent pairs of
SSEs are defined as follows. Consider two domains,
A and B, each comprising three SSEs: A;A,A3 and
B1B,B3;, where Al is the SSE located at the N-terminus
of A and so on. The structurally equivalent pairs are
{AA,, BBy}, {A1A3, B1Bs} and {A,A3, B,B3}. The
domains being compared should have the same number
of SSEs. Using such a representation, we exploited the
similarity among the structurally equivalent pairs of
SSEs of the two domains and assessed the predictive
performance of the 15 algorithms. The random forest
[31] outperformed contemporary supervised ML algo-
rithms [30], such as neural networks and SVMs, for
hierarchical SCOP structure classification. In contrast to
SVMs, the performance of random forest remained
unaffected by the imbalance in the dataset and the clas-
sification was an order of magnitude faster. On a dataset
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of domains containing three SSEs, a cross-validated
accuracy of 97.0% and F-measures of 0.97, 0.85, 0.93
and 0.98 were observed for classification to the Class,
Fold, Super-Family and Family level, respectively.

Random forest is an ensemble of decision trees, where
every tree learns the classification on a random subset
of the domain pairs. For every tree, at each splitting or
decision node, the most discriminating descriptor is
chosen from a randomly selected subset of m descrip-
tors, where m is much smaller than the total number of
descriptors. Decision nodes are added to each of the
trees without pruning, until classification for every
instance is obtained. This divide and conquer strategy
[32,33] combined with the randomised attribute selec-
tion strategy automatically weights the domain pairs
based on the probability that they share a particular
structural level. The prediction probability and its use
for the classification are further explained in the Meth-
ods section. Finally, for every domain pair, a majority
voting algorithm collects the classification decision from
each of the trees to make the final prediction.

Here, we treat structure classification as a typical data
mining problem and investigate a real-world scenario
where random forest can be used to automate SCOP
structure classification. As described in an earlier study
[30], we consider four structural levels: Class (CL), Fold
(FO), Super-family (SF) and Family (FA). These defini-
tions are given elsewhere [4,6,34]. We use the same
representation for a pair of domains in terms of
sequence and structure based descriptors as described
above and used in a previous study [30]. One of the
domains serves as the template (with known SCOP clas-
sification) and the other as the target (for which classifi-
cation is sought). A high similarity between the pairs of
SSEs of the target and template, in terms of descriptors,
implies they share a deep level in the classification hier-
archy. A pair is termed a CL-, FO-, SF- or FA-pair, if
the domains belong to the same Class, Fold, Super-
family or Family, respectively. Pairs not sharing any of
these four structure levels are termed NA-pairs.

Extending our previous work [30], in this paper we
study different aspects of structural classification. For
this we have designed four strategies utilising datasets
from two consecutive versions of the SCOP database.
The ability to differentiate types of pairs and the correct
prediction of the shared structural level is reported in
terms of precision, recall and Matthew’s correlation
coefficient (MCC). We address issues such as introduc-
tion of a new structural level in SCOP and the merger
of singleton levels. Four of the 11 classes defined in
SCOP are “Not a True Class” and serve as place-holders
for structures awaiting a verified classification. For most
of the NA-pairs, one of the domains in the pair belongs
to a place-holder class of SCOP. Therefore, we focus on
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classification of domains from place-holder classes to
true structural levels. We comprehensively assess the
random forest for classifying small domains consisting
of three SSEs, and we show that larger domains consist-
ing of four, five and six SSEs are also classified success-
fully. In addition, we make blind predictions for the
structures deposited in the PDB after the release of
SCOP version 1.73, which obviously are not yet assigned
to the SCOP hierarchy. The quality of the predicted
structural levels is demonstrated by the structural simi-
larity among the target and the template domains.

Result

The performance of random forest has been evaluated
using four different strategies to carry out blind predic-
tions (Table 1). Strategies 1, 2 and 4 train random forest
on a dataset derived from SCOP version 1.69 and test
the model on the non-overlapping dataset derived from
SCOP version 1.73. In strategy 3, both the training and
test datasets are derived from SCOP version 1.69. How-
ever, the prediction has been attempted for those pairs
which do not share any of the SCOP structural levels.
The prediction accuracies for strategies 1 and 2 are
reported in Table 2. As expected, the overall accuracy is
higher in strategy 2 than in strategy 1. Both the preci-
sion and recall for the CL-pairs are higher; for the other

Table 1 Training and test sets used in the four
evaluation strategies

Strategy Training set Test set Training (Test) set size
1 DS1.69 DS1.730nig 6929 (6606)
2 DS1.690 - wa DS1.73unique - No - wa 4071 (4114)
3 DS1.690 - na DS1.694 4071 (2858)
4 DS1.696 - na DS1.73unigue - na 4071 (4653)

DS1.69, set of domain pairs from SCOP version 1.69, DS1.73,q, set of domain
pairs exclusive of SCOP version 1.73. DS1.69n, - na @and DS1.73ypique - no - Nar
are the respective DS1.69 and DS1.73,;, sets but without NA-pairs. DS1.69y4
and DS1.73ynigue - nas are sets of only NA-pairs from DS1.69 and DS1.73ypiq
respectively.

Table 2 SCOP inter-version blind prediction using
random forest

Shared SCOP Level

Evaluation Strategies (Accuracy)
Strategy 1 (85%) Strategy 2 (93%)

Pre Rec McCC Pre Rec MCC
Class 089 084 0.73 094 099 0.81
Fold 086 045 061 093 041 061
Super-family 080 055 0.69 075 055 063
Family 082 087 083 084 085 0.83
None 0.81 091 0.76 n/a n/a n/a

The prediction accuracies and the class-wise performance of the random
forest in strategies 1 and 2. Percent accuracy is the percentage of correctly
classified domain pairs from all of the shared SCOP levels. Pre = Precision, Rec
= Recall and MCC = Matthew’s correlation coefficient.
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types of pairs the difference is not significant. The
confusion matrices for the two strategies are given in
Table 3. In strategies 3 and 4, about 98% of the NA-pairs
were predicted to share a class. The remaining 2% of the
NA-pairs were predicted to share a fold or a family. The
NA-pairs predicted to share a super-family were negligi-
ble in proportion. The pairs predicted to share a particu-
lar structural level were divided into four categories
based on their prediction probabilities (p) (Table 4). In
both of the strategies, no pair was predicted to be a
SF-pair with p > 0.5. Therefore, the following section will

Table 3 Confusion matrices for strategies 1 and 2

Strategy 1
Predicted
CL FO SF FA NA
Actual CL 2813 10 0 12 51
FO 92 125 1 30 30
SF 21 2 56 23 0
FA 30 5 13 336 4
NA 216 3 0 9 2264
Strategy 2
Predicted
CL FO SF FA NA
Actual CL 3327 4 1 14 -
FO 134 115 6 23 -
SF 21 1 56 24 -
FA 44 3 12 329 -

The confusion matrices used for classification of domain pairs according to
their shared structural level following strategies 1 and 2. CL = shared Class,
FO = shared Fold, SF = shared Super-family, FA = shared Family and NA = no
shared structural level.

Table 4 Classification of NA-pairs in strategies 3 and 4
according to the probability estimates

Predicted Shared Total p p= 0.5 <p p=
Level <0.5 0.5 <0.9 0.9
Strategy 3
Class 2806 14 130 1235 1427
Fold 29 0 6 9 14
Super-family 2 2 0 0 0
Family 21 0 8 12 1
Strategy 4
Class 4558 37 162 1917 2442
Fold 55 0 5 37 13
Super-family 3 3 0 0 0
Family 37 0 9 20 8

Following strategies 3 and 4, NA-pairs can be classified as sharing one of the
top four SCOP structural levels. A large fraction of NA-pairs are classified to
share the same Class in both the strategies. However, further distribution of
such pairs according to the probability reflects the classification confidence.
The high probability reflects more confidence in the predicted classification.
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discuss a few of the NA pairs classified as a FO or
FA-pairs. In such pairs, the domain that belongs to a
“True class” is considered as a template and the one
belonging to “Not a true class” as a target. This exemplifies
the use of the random forest to classify domains from the
place-holder classes of SCOP. The pairs misclassified with
p = 0.9 are confident predictions, which may indicate a
change is required in the classification. A shared level pre-
dicted lower in the hierarchy than the actual level in the
SCOP may suggest a possible merger of the levels. For
example, if domains d; and d, belonging to different folds
FO; and FO,, are predicted to be a FO-pair then the folds
FO; and FO, may be considered for a possible merger.
Similarly, a pair actually sharing a deeper level, but
predicted to share the level above in the hierarchy, may
indicate that there should be a new element at the deeper
level. We attempted to verify the predicted structural
levels of the NA-pairs by reference to the next official
SCOP release (pre-SCOP) as well as to the recently
released current version 1.75. However, no change in the
status of the NA-pairs was found.

Classification of larger domains

In order to classify a target domain following the pro-
posed approach, a template domain with an equal num-
ber of SSEs should exist in SCOP. The approach has
been validated in detail using domains consisting of
three SSEs. Its application to classifying domains con-
sisting of four, five and six SSEs shows its extensibility
(Additional File 1, Table 1). The ten-fold stratified
cross-validation accuracy obtained on these domains is
given in Table 5 and the corresponding confusion
matrices are listed in Table 2 in Additional file 1. The
high classification accuracy and the class-wise values of
MCC indicate the applicability of the approach to larger
domains. The MCC and precision and recall values
decrease as the number of SSEs in the domains
increases. While the proportion of different types of

Table 5 Classification performance of the random forest
on domains consisting of four, five and six SSEs in
ten-fold cross-validation.

Shared SCOP 4SSEs 5SSEs 6SSEs
Level

Accuracy = Accuracy = Accuracy =

98% 98% 97%

Pre Rec MCC Pre Rec MCC Pre Rec MCC
Class 099 099 092 098 100 089 097 100 085
Fold 096 083 089 100 069 082 095 051 070
Super-family 088 069 078 098 065 079 095 057 074
Family 098 092 095 098 092 094 098 084 090

Classification performance of the random forest on domains consisting of
four, five and six SSEs in ten-fold cross-validation. Pre = Precision, Rec = Recall
and MCC = Matthew’s correlation coefficient.
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pairs was almost the same in these larger domain
datasets, FO- and SF-pairs were clearly minority classes
(on average 2.5% of the total pairs). Nevertheless, random
forest seemed to be efficient at classifying such an
imbalanced set.

Structurally unclassified proteins from the PDB

For every target-template test pair, the random forest
assigns a probability that it is a particular type of pair.
The pair type associated with the highest probability is
predicted for the pair. For three out of 21 domains,
representing nine proteins containing three SSEs, family
level predictions were made with a probability of 0.5 or
above. A few of the predicted classifications for the nine
target proteins are given in Table 6 (see also Additional
files 2 and 3). The predicted classifications are the
SCOP titles for the respective template’s structural level,
determined by the predicted pair type. For example, for
a predicted FO-pair, the target will be assigned to the
same fold as that of the template. In general, a target is
predicted to have the same structure level as all of the
templates in that classification lineage(s) if they are in
the test set (see the discussion of the triangle equality).
However, sometimes the target pair with some other
template(s) from the same lineage is predicted to a dee-
per, more specific level in the hierarchy. In such cases,
the deeper level is selected to classify the target. In an
alternative scenario, although the same structure level is
predicted for the target and the template from a lineage,
for some target-template pairs the prediction probabil-
ities for the shared level are less than 0.8. If this is the
case for multiple target-template pairs and the predic-
tion probability for the level deeper in the hierarchy is
greater than 0.2, the deeper level is used to suggest the
classification of the target. Applying these methods,
multiple folds (2]JZ6, 2K2 D and 2K5]) and independent
lineages (2ZM6 and 3BPJ) are identified as the potential
classification for the target. Prediction of multiple folds
is mainly due to the multi-domain nature of some of
the target proteins.

In the case of proteins with larger domains, predicted
classifications can be verified on the basis of structural
overlap and similarity. For nine of the 32 proteins con-
taining domains consisting of four SSEs, the random
forest predicted a structural family with a probability of
0.5 or above. For 11 out of 51 proteins containing
domains consisting of five SSEs, and for six proteins out
of 62 proteins with six SSEs a structural family was pre-
dicted with a probability of 0.5 or above. We believe
that these predictions are correct, as suggested by the
near perfect overlap of the target and template struc-
tures (Figure 1). The structural similarity of those
target-template pairs which were predicted to be FO- or
SF-pairs is shown in Figure 2, 3, respectively.
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Table 6 Classification for the selected unclassified target domains

Target PDB Id PDB Title Predicted Classification (sunid) Template

2)76 50S ribosomal protein 128 Scop_cf DNA/RNA-binding 3-helical bundle (46688) 1SAN, THOM
scop_cf Spectrin repeat-like (46965) 1CUN, 1U4Q

2K2D  C-terminal domain of human pirh2 scop_cf Cupredoxin-like (49502) 1V54, 10CR, 2DYS, 10CC
scop_cf Rubredoxin-like (57769) 2EIM, 2DYS, 10CZ
scop_cf Glucocorticoid receptor-like 1B8T
(DNA-binding domain) alpha+beta metal(zinc)-bound fold (57715)

2K5) Protein yiiF Uncharacterised protein scop_cf DNA/RNA binding 3 helical bundle (46688) 1FJL, TMBJ, 2DS5
scop_sf “Winged helix” DNA binding domain (46785) 2GZW
scop_cf Albumin binding domain like (46996) 1GJS(T), 1J78, TMA9

2RPJ Fn 14 Cystein Rich Domain (CRD) scop_sf t-snare proteins (47661) 1594, 1EZ3, 1BRO
scop_cf Spectrin repeat-like (46965) 1E2A, 2E2A

2ZM6 30 S ribosomal subunit Different scop_fa covering 22 lineages of various THNW, 2UU9, 11BL
Ribosomal protein S(2-20) families* 2F4V, TXNQ, 2HGP, 2HGI

3BPJ Human translation initiation factor 3 scop_cf Long alpha hairpin fold (46556)** 20TJ, 1YHQ, 1VOK
scop_cf Tetracyclin repressor-like (48497) 1ZK8

3H3M  Flagellar protein FIiT scop_fa Voltage-gated potassium channels (81323) 2HVK, 1JVM, 1R3J 1K4D
scop_cf Spectrin repeat-like (46965) 1G73, 1FEW
scop_fa MIT domain (116847) 1YXR

3ERM  Conserved protein with unknown function  scop_fa Myb/SANT domain (46739) 1IDY, TMSE, TMBJ
scop_cf alpha-alpha superhelix (48370) THFS8, THG5, THFA
scop_fo Spectrin repeat-like (46965) 1E2A, 2E2A

3GI7 Secreted protein of unknown function scop_cf DNA/RNA-binding 3-helical bundle (46688) 1P71, 2HDD, 1DUO, 1FTT

Predicted classification for the selected unclassified target domains based on the classified domains (Template). Scop_cf= SCOP Fold, scop_sf = SCOP
super-family and scop_fa = SCOP family.* Additional file 2 (2ZM6),** Additional file 3 (3BPJ).

Discussion

We compared the predicted classification to that defined
in SCOP. Structural diversity within a FO, SF and FA
level is a major source of difference between classifica-
tion based on various structure similarity scores and
expert knowledge [35-39]. Another contributing factor
is the “triangle equality” that cannot be captured by a
similarity score alone and requires expert knowledge [3].
A triangle relationship (equality) is the transitivity that
is expected from an unbiased automated classification
method e.g., if domains d; and d; are classified as a
FO-pair and if domains d; and d; make a FO-pair, d;
and d; should be predicted as a FO-pair. Irrespective of
the agreement between the predicted and actual classifi-
cation, the random forest was able to detect triangle
relationships.

The overall accuracies reported in strategies 1 and 2
are encouraging (Table 2). Due to the larger number of
CL-, FA- and NA-pairs compared to the number of FO-
and SF- pairs, we have reported the class-wise precision,
recall and MCC for such pairs. The high precision indi-
cates that the random forest can selectively identify a
given type of pair, although this is at the expense of not
identifying all of the pairs of that type (i.e., low recall).
MCQC reflects the balance in correct and incorrect classi-
fication when the classes are of unequal size and

therefore is an indicator of a predictor’s quality [40].
Based on these measures, the performance of random
forest is better in predicting CL and FA-pairs than pre-
dicting FO and SF-pairs. Following strategy 3, some
interesting predictions have been made. For example,
the domain dlhcia does not share any structural level
with d1lj2a and d1lj2b in SCOP version 1.73, but these
pairs were predicted to be FO-pairs (Figure 4). Similarly,
in SCOP version 1.69, the domain dlibkr does not share
any structural level with domains d1n32r and dlj5er,
despite high structural similarity to one of the building
blocks of the ribosomal complex (Figure 5a) from the
same species (Thermus thermophilus). The former is a
low resolution ribosomal complex and all of its 20
chains have been classified in SCOP’s Low resolution
protein structures class, “Not a true class”. The random
forest, however, predicted (p = 0.9) these domains to be
members of the Ribosomal protein S18 (sunid = 46912)
family. Although in the latest SCOP version 1.75 the
classification for dlibkr is same, our method predicts
that in a future version it will move to a true structural
class and perhaps to the same lineage to which d1j5er
and d1n32r belong (a.7.6.1). Other examples are shown
in Figure 5b. Similar observations are made from predic-
tions following strategy 4. For example, the random for-
est classifies three domains dlibmt (cyan), d1pnxt
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(b) 2K28 - 1PFB, 1AP0 (¢) 3DM1 - 3FDT, 3F2U, 1KNA, 1PDQ

(g) 2KIR - 1AWO0, 1KVI (h) 3BOM - 1JEB, 1RVW, 1FHJ (i) 3BZQ - IHWUA

Figure 1 Structural overlap of domains predicted to share the same SCOP Family. Structural overlap of some of the selected
target-template pairs may confirm the correctness of predicted shared Family level. Rows one, two and three show the overlap of domains
consisting of four, five and six SSEs, respectively. The PDB identifier for the target is on the left-hand side of the sub-figure caption and for the
template domain(s) it is on the right-hand side.
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(a) 2ZM6 - 1FJG, 1G1X, 1FKA, 1194

right-hand side.

(d) 1C90

(f) 2KGR - 1FI6

Figure 2 Structural overlap of domains predicted to share the same SCOP Super-family. Structural similarity of some of the selected
target-template pairs. The target domains on the left were predicted to share the same super-family as the respective template domains on the

(b) 3CE7 - 1LOH

(e) 1HZ9

(magenta) and d1lpnst (yellow) as belonging to a common
family with the domain d2uuctl (Ribosomal protein S20,
sunid = 46993) (Figure 5c¢). The high structural similarity
among the domains in all of these cases confirms the pre-
dictions. To exemplify the application of the approach to
unclassified structures, we have classified proteins not yet

assigned to the SCOP hierarchy (Table 6). For proteins
with domains consisting of three, four, five and six SSEs,
classification up to at least fold level was obtained. For a
few cases, a family level classification could be suggested
and was confirmed by the structural similarity (Figure 1).
However, for the fold level prediction, instead of high
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(f) 2KGR - 1FI6

Figure 3 Structural overlap of domains predicted to share the same SCOP Fold. Structural similarity of some of the selected target-template
pairs. The target domains on the left were predicted to share the same fold as the respective template domains on the right-hand side.
A\

(b) 3CE7 - 1LOH

(e) 1HZ9

structural similarity, topological similarity was observed
(Figure 3 and Figure 6).

Generally, domain pairs which can bind to similar
ligands or constitute the same cellular organelle, such as
ribosomal and transcription initiation complexes or
those responsible for cytoskeletal structure, were pre-
dicted as FO-pairs. For example, 2K2 D possesses a
zinc-binding fold and we found hits to proteins

belonging to different lineages, namely cuperodoxin-like
(b.6.1.2) and ruberodoxin-like (g.41.5.3) copper-and
zinc-binding folds, respectively. These folds are charac-
teristic of cytochrome c oxidases. 2JZ6 possesses two
different folds which we assume (this protein is still
unclassified) to be predicted correctly. Further, these
two folds (sunid 46688 and 46965) have dedicated
super-families to classify only those domains, which
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(c) (d) (e)
Figure 4 Structural similarity among NA-pairs predicted to share the same SCOP Fold. The domain d1lj2a (a) is predicted to share the same
fold as d1hcia3 (b)(Spectrin repeat-like, sunid = 46965). The other domains d1fewa (c), d1g73a (d) and d1s35a (e) are also from the same fold and

with them the overlapping domains in Figure 5c (d1libmt (cyan), d1pnxt (magenta) and d1pnst (yellow)) are also predicted to share the FO level.
- J

Figure 5 Structural overlap of NA-pairs predicted to be FA-pairs. (a) The domain dlibkr (magenta) is currently classified such that it does
not share any structural level with domains d1j5er (cyan) and d1n32r (green). However, we predict them to be FA-pairs. Similarly in (b) domains
dlibmt (cyan), d1pnxt (magenta) and d1pnst (yellow) do not currently share any structure level with the domain d2uuctl (green, a SCOP 1.73
only domain). However, following strategy 4, the pairs of dlibmt, d1pnxt and d1pnst with d2uuct1 are predicted to be FA-pairs sharing the
Ribosomal protein S20 (sunid = 46993) family. (c) The domain d1d5qa (yellow) is a member of singleton family Mini-protein reproducing the core
of the CD4 surface (sunid = 58922) under the not a true SCOP class Designed proteins. It and d2ptaa (magenta) are predicted to be a FA-pair
belonging to the Short-chain scorpion toxins, (sunid = 57116) family.
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Figure 6 Structural similarity of the two domains d3h3ma
(green) and d1yxr (cyan), predicted to share the same family
MIT domain (suind = 116847)

belong to the ribosomal complexes and perhaps provide
a DNA/RNA binding site on ribosomes. The identifica-
tion of folds in such cases could guide manual assign-
ment of a super-family or family. The prediction of
multiple folds having a related super-family, as in the
case of 2JZ6 and 2ZM6, may reflect the capability of the
random forest to identify classification networks. Simi-
larly, 3BPJ, a human translation initiation factor is clas-
sified correctly to the singleton fold Tetracyclin
repressor-like, C-terminal domain (sunid = 48497) and
thereby to the family identified with the same name
(sunid = 48499). In this case, the template domains used
by the predictor were the Transcriptional regulator pro-
tein (1ZK8) from bacteria Bacillus cereus and also the
other domains constituting the ribosomal complexes in
different organisms (Table 6). Figure 6 shows the struc-
ture similarity between domains d3h3ma (from structu-
rally unclassified protein 3H3 M, a agellar protein) and
dlyxra (1YXR), thus supporting the predicted common
family (p = 0.5, MIT domain, suind = 116847). In addi-
tion, d3h3ma is predicted to share the same fold (Spec-
trin repeat-like, sunid = 46965) as d1fewa and d1g73a
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(Figure 4c and Figure 4d, respectively), to which
domains from various other cytoskeletal proteins in var-
ious families, including the MIT domain family, belong.
We show that the proposed approach is extensible to
larger domains. However, the number of SSEs in the
target domain should be equal to the number of SSEs in
template domains. We checked that this does not limit
the approach in predicting only those structural levels
which are either solely populated by domains consisting
of a specific number of SSEs or are over-represented by
such domains. Datasets of domains consisting of three,
four, five and six SSEs, as used in this study, represent
1,144 of 3,464 families, 810 of 1,777 super-families, 518
of 1,086 folds and 11 of 11 classes as defined in SCOP
version 1.73. The overlap among these datasets has been
studied (Figure 7). Obviously, the assignment of SCOP
levels is independent of the number of SSEs in the
domains. However, the evolutionary constraints used to
define the SCOP families and super-families and to
some extent structural relatedness defining upper levels
in the SCOP hierarchy can in some cases constrain clas-
sification of domains consisting of a defined number of
SSEs to specific levels. The Venn diagram in Figure 7
shows that only about 5% of families, 8% of super-
families and 13% of the folds are represented by all of
the four datasets. Comparatively, a large proportion of
SCOP levels was found to be populated by domains
consisting of a fixed number of SSEs (Figure 7). Never-
theless, classification of domains with unequal number
of SSEs will avoid using multiple classification models
specific to a given number of constituent SSEs. It would
also be advantageous for the classification of multi-
domain proteins for which domain boundaries are yet to
be defined.

Conclusions
Determination of protein function based on structure
has prompted the need for a repertoire of representative
protein structures. Human expertise is key to the reli-
able classification of such a repertoire. Therefore, we do
not propose that the current approach should replace
expert knowledge, rather it may assist current manual
and semi-automatic practices. Nevertheless, the accuracy
of up to 94% is promising and highlights the potential
of automated structure classification. Random forest can
learn the triangle equality of two pairs with a common
domain, thereby predicting the same classification for
both the pairs. In the case of difficult targets (proteins
with less than 25% sequence similarity), the predicted
classification can minimise the number of probable
levels for further consideration. Subsequent manual
inspection of fewer levels would require less time.

We have analysed mis-classified structures instead of
making a detailed comparison with other strategies for
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the automation of SCOP classification. This is mainly
due to the difference in the dataset that we have used,
which is not biased to proteins or domains from the
most populated folds or families or from the true SCOP
classes only. In contrast to the four-level hierarchical
classification addressed by our work, other methods are
restricted to classification to one or two structural levels.
Our intention was also to identify hidden patterns of
mis-prediction, which may be suggestive of new struc-
tural levels and/or rearrangement in the existing SCOP
hierarchy. We have found such patterns and proposed
classification of structures from place-holder classes to
the true structural classes, although further work may
be needed to prove that the mis-classification could
guide the merger of a few singleton families, super-
families and even folds. These observations are impor-
tant in light of the foreseeable refinements in the SCOP
hierarchy [34] and the rearrangements which occur with

every major SCOP release [6]. Moreover, our method is
capable of identifying different lineages for a protein
with multiple domains. This is attractive, as interacting
proteins often share domains and have similar domain
architectures [41]. Probably, multi-domain proteins
belonging to the same lineage can be studied further to
identify interacting pairs. Lastly, we apply random forest
to those proteins which are yet to be classified structu-
rally and have extended it to domains consisting of up
to six SSEs.

We, therefore, conclude that utilisation of a supervised
ML algorithm such as random forest in the structure
classification pipeline would accelerate the process. In
future work, we will include a sub-structure search
algorithm to compare domains consisting of unequal
number of SSEs. Such an algorithm will be able to iden-
tify common cores, as well as the structural drift [42]
among super-families and folds.
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Methods

Datasets

Non-overlapping pairs of domains from two different
versions of SCOP were used as the training and test
sets. ASTRAL compendium [43] mappings for the two
releases of the SCOP database, versions 1.69 and 1.73,
were used to filter 1,394 and 1,988 domains, respec-
tively, consisting of three SSEs (Additional files 4 and 5,
respectively). The SSEs were assigned by DSSP [44]. A
helix comprises a minimum of four residues and a
strand a minimum of three. Only those pairs of these
domains with a sequence identity below 35% were
retained. This generated two sets (DS1.69 and DS1.73)
of 6,929 and 12,115 domain pairs, respectively. These
domain pairs represented six Classes, seven Folds, eight
Super-families and 24 Families from the SCOP hierar-
chy. Every domain was represented by structural
descriptors characterising the constituent SSEs. For
every possible pair of the SSEs, the distance between
their geometric centre of mass and the relative orienta-
tion in terms of the angle between the axes that pass
through the terminal C, atoms were calculated using C,
coordinates. For every SSE, the solvent accessibility,
length and secondary structure state (binary, 0 if o-
helix, 1 otherwise) were also used as structural descrip-
tors. Finally, the representation of the two paired
domains also includes the root mean square difference
(RMSD) for the distance, orientation, solvent accessibil-
ity and length descriptors along with the sequence iden-
tity of the paired domains [30]. Thus, the number of
features defining a pair of domains each with N SSEs is
N(N-1

22Ny 43N+ 1)+ 6.

Random forest was also tested for classification of
larger domains consisting of four, five and six SSEs
from SCOP version 1.69. These domains are listed in
Additional files 6, 7 and 8 respectively. Pairs of these
domains with less than 35% sequence identity were used
in a ten-fold cross-validation trial. Table 7 lists the com-
position of these datasets in terms of the number of dif-
ferent types of pairs

Sets of structurally unclassified proteins

Single and multi-domain proteins deposited after the
release of SCOP version 1.73 were obtained. Since these
proteins are not yet classified by SCOP, no domain
boundaries are available and we considered every chain
as a test domain. In the case of homomeric proteins, only
the first chain was considered. Such domains or chains,
consisting of three, four, five and six SSEs were filtered as
individual sets. We name these sets as UnClassified
Domains (UCD) datasets followed by the number of SSEs
in domains constituting the set, that is, UCD3, UCD4,
UCD5 and UCD6, respectively. UCD datasets were
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subjected to a BLAST search [45] (e-value threshold =
100) against a local database of SCOP domains consisting
of the same number of SSEs as in the UCD dataset. The
total number of BLAST hits obtained for the UCD3,
UCD4, UCD5 and UCD6 datasets was 1,001, 1,060, 1,768
and 1,728, respectively. Pairs of database domains and
UCD domains were obtained from these hits for subse-
quent use as the corresponding UCD test set. The selec-
tion of hits ignored sequence identity in order to
maximise the number of pairs. The UCD3, UCD4, UCD5
and UCDS test sets contained pairs for nine, 32, 51 and 62
unclassified proteins, respectively. Table 1 in Additional
file 1 lists these proteins. The respective training sets were
generated from SCOP version 1.69.

Evaluation of random forest

The random forest algorithm, as implemented in Weka
[46] developer version 3.5.7, without any model selection,
was evaluated through four strategies (Table 1). The
number of trees to construct the forest was left at the
default, that is 10, and the number of features to define
each of the nodes in a tree was also left at the default
value of logy(M + I) features. M is the number of features
defining each of the pairs. Four evaluation strategies
(Table 1) were adopted. In strategies 1, 2 and 4, domain
pairs from DS1.69 and DS1.73 were used to generate the
training and test sets, respectively. In strategy 3, the
training and test sets both were derived from DS1.69.
Strategy 1 takes into account all of the domain pairs
from DS1.69 for training; only those pairs from DS1.73
which are not in DS1.69 are the test set (DS1.73;,;,). To
accommodate new targets in the latest release of SCOP,
new structural levels can be introduced with or without
rearrangements in the classification hierarchy. This may
also alter the classification of previously classified struc-
tures. Therefore, using an inter-version test set, it is pos-
sible to check if random forest can detect novel
relationships that it was not explicitly trained on.

In SCOP, four out of 11 classes are regarded as “Not a
true class” and are used as place-holders for domains
until further information is available. However, in
practice, predicting a structure to any of the “Not a true”
class, fold, super-family or family level should be avoided.

Table 7 Datasets of domains composed of four, five and
six SSEs

Domain Pair Type

Number of SSEs

Four Five Six
CL-Pairs 5154 7494 8845
FO-Pairs 221 232 135
SF-Pairs 66 120 154
FA-Pairs 290 462 456

Number of different pairs in the datasets of domains composed of four, five
and six SSEs.
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A predictor should be trained only on those structural
levels to which domains have been classified in accor-
dance with experimental, structural, sequence or knowl-
edge-based evidence. Such levels are the “True” SCOP
levels. Thus, removing NA-pairs (for most of which, one
of the domains belongs to one of the place-holder
classes) from training, as in strategy 2, would be more
realistic. We expect some improvement in the classifica-
tion accuracy, as most probably some of the NA-pairs
share some structural features with other types of pairs i.
e., CL-pairs or FO-pairs. In such cases, classification of
an NA-pair to another type of pair will appear to be an
incorrect prediction. To classify domains from place-
holder classes, we evaluated the random forest, using
DS1.69 with the NA-pairs removed as the training set
and the NA-pairs removed from DS1.69 as the test set
(strategy 3). With the same aim, in strategy 4, predictions
were obtained for NA-pairs that only appear in DS1.73.

For strategies 1 and 2, the overall classification perfor-
mance of the random forest is given in terms of percent
accuracy, representing the fraction of correctly predicted
domain pairs. This overall accuracy is a limited statistic,
especially when classification is sought for four (strate-
gies 2, 3 and 4) or five (strategy 1) types of pairs. The
classification performance, therefore, has been measured
independently for every type of pair. Thus, various mea-
sures of the multi-class classification performance are
used, including precision (Pre = TP/(TP + FP)), recall
(Rec = TP/(TP + FN)) and Matthew’s correlation coeffi-
cient (MCC) (Equ. 1), where TP is the total number of
true positives (instances correctly classified as belonging
to a type of pairs), TN is the total number of true nega-
tives, FP is the total number of false positives (instances
incorrectly classified as belonging to a type of pairs) and
FN is the total number of false negatives (instances
incorrectly classified as not belonging to a type of pairs).
MCC ranges from -1 to +1, and is a good measure of
the quality of the predictor for a given a class. A perfect
predictor will have an MCC of 1, whereas for a random
predictor, the MCC will be zero.

MCC = (TPXTN)—(FPXEN) .
~ J(TP+FN)(TP+FP)(TN+EN)(TN+FP) @

Measures used in strategies 1 and 2 are not applicable
to strategies 3 and 4, which predict one of the top four
structural levels for the classification of the NA-pairs.
Thus, in strategies 3 and 4 the assessment was based on
the prediction probabilities that random forest uses to
classify each of the domain pairs. For a domain pair, the
prediction probability is the average of the probabilities
for classification to a particular structural level from all
of the trees (in our case 10) in the forest. In every tree,
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the classification for every domain pair is given by the
leaf node specific to a structural level. The leaf node
assigns a probability, which is the ratio of instances
belonging to a level to all of the instances that reach the
leaf. In strategies 3 and 4, the NA-pairs which were pre-
dicted to one of the four levels with a prediction probabil-
ity above 0.5 were considered as being predicted correctly.
The correctness of the predicted level is checked by visual
inspection. We have also checked the triangular equality
of the predicted levels. Where possible, either a merger of
the two SCOP levels or the addition of a new structural
level to accommodate the NA-pairs is suggested based on
a probability of 0.9 or above, which is indicative of a
greater confidence in the prediction.

Additional material

Additional file 1: Unclassified domains consisting of four, five and
six SSEs. This file lists the PDB identifiers for the unclassified proteins
deposited in PDB after the release of SCOP 1.73 and the confusion
matrices used to classify such proteins.

Additional file 2: Predicted classification for unclassified protein
2ZMé6. This file lists all of the classification hierarchies to which the
protein 2HGP is classified in the SCOP version 1.73. These classification
hierarchies can be manually checked to classify 2ZM6 that is predicted to
share the same Family as 2HGP.

Additional file 3: Predicted classification for unclassified protein
3BPJ. This file lists all of the classification hierarchies to which the
protein 20TJ is classified in the SCOP version 1.73. These classification
hierarchies can be manually checked to classify 3BPJ that is predicted to
share the same Fold as 20TJ.

Additional file 4: Domains consisting of 3SSEs from SCOP version
1.69. This file lists the identifiers for the 3SSEs containing domains from
SCOP version 1.69.

Additional file 5: Domains consisting of 3SSEs from SCOP version
1.73. This file lists the identifiers for the 3SSEs containing domains from
SCOP version 1.73.

Additional file 6: Domains consisting of 4SSEs from SCOP version
1.69. This file lists the identifiers for the 4SSEs containing domains from
SCOP version 1.69.

Additional file 7: Domains consisting of 5SSEs from SCOP version
1.69. This file lists the identifiers for the 5SSEs containing domains from
SCOP version 1.69.

Additional file 8: Domains consisting of 6SSEs from SCOP version
1.69. This file lists the identifiers for the 6SSEs containing domains from
SCOP version 1.69.
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