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Abstract: (1) Background: The binding sites of melatonin, as a multifunctional molecule, have been
identified in human, porcine, and bovine samples. However, the binding sites and mechanisms of
melatonin have not been reported in sheep; (2) Methods: Cumulus–oocyte complexes (COCs) were
cultured in TCM-199 supplemented with melatonin at concentrations of 0, 10−3, 10−5, 10−7, 10−9, and
10−11 M. Melatonin receptors (MT1 and MT2) were evaluated via immunofluorescence and Western
blot. The effects of melatonin on cumulus cell expansion, nuclear maturation, embryo development,
and related gene (GDF9, DNMT1, PTX3, HAS2, and EGFR) expression were investigated. The level
of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were
evaluated in oocytes and cumulus, respectively; (3) Results: Both MT1 and MT2 were expressed in
oocytes, cumulus cells, and granulosa cells. Melatonin with a concentration of 10−7 M significantly
enhanced the rates of nuclear maturation, cumulus cells expansion, cleavage, and blastocyst.
Melatonin enhanced the expression of BMP15 in oocytes and of PTX3, HAS2, and EGFR in cumulus
cells. Melatonin decreased the cAMP level of oocytes but enhanced the cGMP level in oocytes and
cumulus cells; (4) Conclusion: The higher presence of MT1 in GV cumulus cells and the beneficial
effects of melatonin indicated that its roles in regulating sheep oocyte maturation may be mediated
mainly by the MT1 receptor.
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1. Introduction

Compared to in-vivo-derived embryos, the efficiency of in vitro embryo development is still
low [1], which is mainly because the in vitro handling and culture conditions are far from perfect when
oocytes and embryos are exposed to in vivo conditions. To solve this problem, many efforts have
been made. Recently, the focus has been on melatonin, which is a potent antioxidant and free radical
scavenger [2,3] due to its beneficial effects on oocytes maturation and embryo development [4–14].
Melatonin is well known for its physiological functions in seasonal reproduction, energy metabolism,
and thermo-regulation in mammals [15]. Melatonin and its receptors are present in reproductive
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organs [16] in which both of them play roles in the functions of testes and ovaries [17], and are able to
modify the morphology and steroidogenesis capacity [18–21]. Melatonin stimulates ovarian activity
and promotes estrous cyclicity and gonadal atrophy depending on photoperiodic conditions [22].
Melatonin also regulates folliculogenesis and ovulation [23] by acute suppression of luteinizing
hormone secretion [24]. Additionally, it was reported that melatonin affects the axis by directly binding
to granulosa cells in the ovary [25]. Melatonin binding sites have been identified not only in granulosa
cells of human preovulatory follicles [25,26] but also in porcine cumulus and granulosa cells [3], bovine
oocytes, and cumulus cells [9]. However, the exact mechanisms of melatonin on the IVM (in vitro
maturation) of sheep oocytes and in vitro embryonic development is still elusive.

The resumption of oocyte meiotic maturation and germ vesicle breakdown (GVBD) after
gonadotropin stimulation is mediated mainly through increasing intracellular cyclic adenosine
monophosphate (cAMP) level in the cumulus cells [27]. Elevated cAMP in cumulus cells rather
than in the oocytes is also known to stimulate MAPK activation [28–30]. It has been reported that the
supplementation of the cAMP promotor in IVM medium inhibited the oocyte meiotic mitosis of mice
and humans [31,32], but only temporarily inhibited the oocyte meiotic mitosis of cows [33,34]. Many
studies have demonstrated that supplementation of cAMP mediator improved the development of
oocytes [32,34,35].

Based on the evidence mentioned above, melatonin exhibited its specific effects upon sheep
oocyte maturation either via its direct antioxidant activity or mediated by its receptor activation. The
specific objectives of the current study were (i) to determine whether MT1 and MT2 are expressed
in sheep oocytes, cumulus cells, and granulosa cells; (ii) to investigate what the optimal melatonin
concentration is to promote in vitro oocyte maturation and embryo development; and (iii) to assess
the effect of melatonin on the expression of embryo development-related genes in cumulus cells and
oocytes; (iv) to investigate the effect of the antagonist of melatonin and the effect of melatonin on
cAMP and cGMP (cyclic guanosine monophosphate) in oocytes and cumulus cells.

2. Results

2.1. Melatonin Receptors in Sheep Oocytes, Cumulus Cells, and Granulosa Cells

The expression of MT1 and MT2 receptor was confirmed by using immunofluorescence and
Western blot analysis with specific antibodies in GV (germinal vesicle) and MII (metaphase II) oocytes,
and GV and MII cumulus cells in the granulosa cells. The expression level of MT1 receptors was
significantly higher in GV cumulus cells and granulosa cells compared to that in three other cell
types, while the expression level of the MT2 receptor in MII oocytes was highest among all cell types
(Figures 1 and 2).
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Figure 1. Assayed the melatonin receptor with immunofluorescence. The cellular localizations of 
MT1/MT2 were identified by confocal analysis. Sheep COCs were incubated with the MT1/MT2 
antibody (red) followed by Alexa-488-conjugated donkey anti-goat IgG (green). (A) images of MT1 
receptor; (B) images of MT2 receptor. GV: germinal vesicle stage, MII: metaphase II stage. Scale bar = 
50 µm. 

 

Figure 2. The expression of MT1 and MT2 identified with Western blot method. 1. Oocyte in GV 
stage; 2. Oocyte in MII stage; 3. Granulosa cells; 4. Cumulus cells in GV stage; 5. Cumulus cells in MII 
stage. The superscript different letters (a–c) represent a significant difference in the same column (p < 
0.05). 

2.2. The Effect of Melatonin on Cumulus Expansion and Nuclear Maturation of Oocytes 

A significant increase in the percentage of oocytes at MII stage was observed in cumulus-oocyte 
complexes (COCs) supplemented with 10−5~10−9 M melatonin. The most efficient concentration of 
melatonin for this purpose is 10−7 M (Figure 3). The result agreed with the cumulus expansion at the 
same melatonin concentration (10−7 M) (85.3% ± 1.01% vs. 75.3% ± 1.45%, p < 0.05). In contrast, the 
adverse effects of the extremely high concentration of melatonin (10−3 M) were observed (Figure 3). 

Figure 1. Assayed the melatonin receptor with immunofluorescence. The cellular localizations of
MT1/MT2 were identified by confocal analysis. Sheep COCs were incubated with the MT1/MT2
antibody (red) followed by Alexa-488-conjugated donkey anti-goat IgG (green). (A) images of MT1
receptor; (B) images of MT2 receptor. GV: germinal vesicle stage, MII: metaphase II stage. Scale
bar = 50 µm.
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The superscript different letters (a–c) represent a significant difference in the same column (p < 0.05).

2.2. The Effect of Melatonin on Cumulus Expansion and Nuclear Maturation of Oocytes

A significant increase in the percentage of oocytes at MII stage was observed in cumulus-oocyte
complexes (COCs) supplemented with 10−5~10−9 M melatonin. The most efficient concentration of
melatonin for this purpose is 10−7 M (Figure 3). The result agreed with the cumulus expansion at the
same melatonin concentration (10−7 M) (85.3% ± 1.01% vs. 75.3% ± 1.45%, p < 0.05). In contrast, the
adverse effects of the extremely high concentration of melatonin (10−3 M) were observed (Figure 3).
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Figure 3. Effects of melatonin on cumulus cell expansion and oocyte nuclear maturation. Maturation 
rate of oocytes treated with melatonin (0, 10−3, 10−5, 10−7, 10−9, and 10−11 M) for 24 h, cumulus cell 
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Partial expansion percentage; (C) Complete expansion percentage; (D) Polar extrusion percentage. 
Data are expressed as percentage ± SEM from six independent experiments (>30 oocytes per 
treatment per experiment). Bars with different letters (a–c) represent significantly different (p < 0.05). 
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vs. 4.5% ± 0.94% in control, p < 0.05) than those of the oocytes in the control groups. Oocytes 
recovered from 10−5~10−11 M melatonin-treated group developed into blastocysts, which had higher 
total cell number than that in the control group and in the 10−3 M melatonin-treated group (Figure 4). 

 

Figure 4. Effect of melatonin on the development of parthenogenetic activation sheep oocytes. 
Embryos were acquired by parthenogenetic activation oocytes that were cultured in the maturation 
medium contained different concentrations of melatonin. (A) cleavage rate and blastocyst rate; (B) 
cell number/blastocyst. The superscript different letters (a–d) represent a significant difference in the 
same column (p < 0.05). 
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Figure 3. Effects of melatonin on cumulus cell expansion and oocyte nuclear maturation. Maturation
rate of oocytes treated with melatonin (0, 10−3, 10−5, 10−7, 10−9, and 10−11 M) for 24 h, cumulus
cell expansion, and polar body extrusion were analyzed, respectively. (A) No expansion percentage;
(B) Partial expansion percentage; (C) Complete expansion percentage; (D) Polar extrusion percentage.
Data are expressed as percentage ± SEM from six independent experiments (>30 oocytes per treatment
per experiment). Bars with different letters (a–c) represent significantly different (p < 0.05).

2.3. The Effect of Melatonin on Embryo Development

The cleavage rate of oocytes at 48 h after parthenogenetic activation and the blastocyst rate at
Day 8 of incubation were recorded. Oocytes treated with 10−7 M melatonin had a significantly higher
cleavage rate (83.6%± 1.75% vs. 59.5%± 2.25% in control, p < 0.05) and blastocyst rate (15.0% ± 1.45%
vs. 4.5%± 0.94% in control, p < 0.05) than those of the oocytes in the control groups. Oocytes recovered
from 10−5~10−11 M melatonin-treated group developed into blastocysts, which had higher total cell
number than that in the control group and in the 10−3 M melatonin-treated group (Figure 4).
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Figure 4. Effect of melatonin on the development of parthenogenetic activation sheep oocytes.
Embryos were acquired by parthenogenetic activation oocytes that were cultured in the maturation
medium contained different concentrations of melatonin. (A) cleavage rate and blastocyst rate; (B) cell
number/blastocyst. The superscript different letters (a–d) represent a significant difference in the same
column (p < 0.05).
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2.4. The Effect of Melatonin on the Embryo Development-Related Genes Expression in Oocytes and
Cumulus Cells

After IVM for 8 h in the absence or presence of 10−7 M melatonin, oocytes and cumulus cells
were collected, respectively, for measuring the expression of the embryo-development-related genes.
The results showed that melatonin treatment had a limited effect on these gene expressions (mRNAs),
including GDF9 (growth differentiation factor) and DNMT1 (DNA methyltransferase 1) in oocytes,
but increased the expression of BMP15 when compared with the control group (p < 0.05) (Figure 5).
Gene expressions of PTX3 (pentraxin 3), HAS2 (hyaluronan synthase 2), and EGFR (epidermal growth
factor receptor) in cumulus cell expansion were upregulated by melatonin treatment (p < 0.05), while
melatonin had no significant effects on the expressions of FSHR (follicle stimulating hormone receptor)
or LHR (luteinizing hormone receptor) (Figure 6).

Int. J. Mol. Sci. 2017, 18, 834 5 of 14 

genes. The results showed that melatonin treatment had a limited effect on these gene expressions 
(mRNAs), including GDF9 (growth differentiation factor) and DNMT1 (DNA methyltransferase 1) in 
oocytes, but increased the expression of BMP15 when compared with the control group (p < 0.05) 
(Figure 5). Gene expressions of PTX3 (pentraxin 3), HAS2 (hyaluronan synthase 2), and EGFR 
(epidermal growth factor receptor) in cumulus cell expansion were upregulated by melatonin 
treatment (p < 0.05), while melatonin had no significant effects on the expressions of FSHR (follicle 
stimulating hormone receptor) or LHR (luteinizing hormone receptor) (Figure 6). 

 

Figure 5. Effects of 10−7 M melatonin on the gene expression in sheep oocytes. The genes include the 
oocyte-secreted factors (GDF9 and BMP15) and DNA methyltransferase 1 (DNMT1). The letters a 
and b identify statistically significant differences (p < 0.05). 

 

Figure 6. Effects of 10−7 M melatonin on the gene expression of cumulus cells expansion. The genes 
include PTX3, HAS2, LHR, FSHR, and EGFR. The letters (a,b) identify statistically significant 
differences (p < 0.05). 

2.5. MT Promoted Maturation of Sheep Oocytes through Melatonin Receptors 

A total of 1276 oocytes were used in six replicates to identify the potential associations of 
melatonin receptor activation and sheep oocyte maturation. The results showed that the rates of 
polar body, cleavage, blastocyst, and hatched blastocyst were significantly higher in the 
melatonin-treated group than that in the group treated with melatonin plus luzindole (10−6 M). 
However, the polar body rate and cleavage rate of the MT group was not significantly different from 
the luzindole group or the control group (Figure 7). 

Figure 5. Effects of 10−7 M melatonin on the gene expression in sheep oocytes. The genes include the
oocyte-secreted factors (GDF9 and BMP15) and DNA methyltransferase 1 (DNMT1). The letters a and
b identify statistically significant differences (p < 0.05).

Int. J. Mol. Sci. 2017, 18, 834 5 of 14 

genes. The results showed that melatonin treatment had a limited effect on these gene expressions 
(mRNAs), including GDF9 (growth differentiation factor) and DNMT1 (DNA methyltransferase 1) in 
oocytes, but increased the expression of BMP15 when compared with the control group (p < 0.05) 
(Figure 5). Gene expressions of PTX3 (pentraxin 3), HAS2 (hyaluronan synthase 2), and EGFR 
(epidermal growth factor receptor) in cumulus cell expansion were upregulated by melatonin 
treatment (p < 0.05), while melatonin had no significant effects on the expressions of FSHR (follicle 
stimulating hormone receptor) or LHR (luteinizing hormone receptor) (Figure 6). 

 

Figure 5. Effects of 10−7 M melatonin on the gene expression in sheep oocytes. The genes include the 
oocyte-secreted factors (GDF9 and BMP15) and DNA methyltransferase 1 (DNMT1). The letters a 
and b identify statistically significant differences (p < 0.05). 

 

Figure 6. Effects of 10−7 M melatonin on the gene expression of cumulus cells expansion. The genes 
include PTX3, HAS2, LHR, FSHR, and EGFR. The letters (a,b) identify statistically significant 
differences (p < 0.05). 

2.5. MT Promoted Maturation of Sheep Oocytes through Melatonin Receptors 

A total of 1276 oocytes were used in six replicates to identify the potential associations of 
melatonin receptor activation and sheep oocyte maturation. The results showed that the rates of 
polar body, cleavage, blastocyst, and hatched blastocyst were significantly higher in the 
melatonin-treated group than that in the group treated with melatonin plus luzindole (10−6 M). 
However, the polar body rate and cleavage rate of the MT group was not significantly different from 
the luzindole group or the control group (Figure 7). 
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2.5. MT Promoted Maturation of Sheep Oocytes through Melatonin Receptors

A total of 1276 oocytes were used in six replicates to identify the potential associations of melatonin
receptor activation and sheep oocyte maturation. The results showed that the rates of polar body,
cleavage, blastocyst, and hatched blastocyst were significantly higher in the melatonin-treated group
than that in the group treated with melatonin plus luzindole (10−6 M). However, the polar body rate
and cleavage rate of the MT group was not significantly different from the luzindole group or the
control group (Figure 7).
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sheep oocytes. (A) PB1 extrusion rate and cleavage rate; (B) Blastocyst rate; (C) Hatched blastocyst rate;
(D) Cell number/blastocyst. The numbers of cultured oocytes for each group varied from 200 to 250,
respectively. Different superscript letters (a,b) in each column identify statistical significant differences
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2.6. The Effect of Melatonin on cAMP and cGMP Concentration in Oocytes and Cumulus Cells

This experiment was designed to investigate the effect of 10−7 M melatonin and 10−6 M
melatonin receptor antagonist luzindole on cAMP and cGMP concentration in oocytes and cumulus
cells. The results showed that the concentration of cAMP in oocytes with melatonin treatment was
significantly lower than that in other groups including the groups treated with luzindole and melatonin
plus luzindole, respectively, and the control group; however, there were no differences in cAMP in the
cumulus cells. The concentration of cGMP in both oocytes and cumulus cells with melatonin treatment
was higher than that in the other groups (Figure 8).
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3. Discussion

This study for the first time identified that the specific melatonin receptor (MT1 and MT2) were
not only expressed in sheep granulosa cells, but also in cumulus cells and oocytes in GV and MII
stages (Figures 1 and 2). The Western blot results showed that there was a high expression of MT1 in
cumulus cells, while the expression of MT2 was quite low. Based on the observations, we speculated
that some effects of melatonin on sheep COCs were likely to be mediated by melatonin receptors. The
identification of MT1 and MT2 in granulosa cells, cumulus cells, and oocytes in sheep were accordance
with the observations of El-Raey et al. found in cows [9], and it confirmed previous reports that
melatonin was important for the regulation of reproduction in animals [36]. The expression levels of
melatonin receptors in granulosa cells, cumulus cells, and oocytes varied at different stages, which
implied that the receptor activation has its unique functions at different stages of embryo development.

Mammalian cumulus cells play a very important role during oocyte growth and maturation.
Cumulus cells expansion is considered as an important marker for oocyte maturation [37,38] and thus
is essential for fertilization, subsequent cleavage, and blastocyst development [39]. They are known
to supply nutrients [40–42] and messenger molecules for oocyte development [43], and to mediate
the effects of steroid hormones on oocytes [44]. It was confirmed that melatonin supplementation to
IVM medium had a significant effect on sheep cumulus cells expansion and polar body extrusion;
melatonin at a concentration of 10−7 M was particularly optimal for nuclear maturation and oocyte
quality maintenance (Figures 3 and 4). The results were consistent with our previous report on bovine
oocytes [14]. The similar beneficial effects of melatonin on cumulus cells expansion were also reported
in porcine oocytes [45]. As an antioxidant, melatonin protected cumulus cells against apoptosis [45–47]
and enhanced their expansion [45]; moreover, we found that these effects of melatonin can also be
mediated by its receptor activation.

GDF9 and BMP15 are members of the transforming growth factor β-superfamily, which are
secreted from oocytes during folliculogenesis. Oocytes regulates cumulus cell proliferation, apoptosis,
metabolism, and expansion by secreting these two paracrine factors [48]. In mammals, BMP15 is
predominantly produced by oocytes and exerts important regulatory functions within the ovary, such
as promoting early folliculogenesis, preventing premature luteinization, and enhancing cumulus cell
expansion. It was reported that BMP-15 could inhibit precocious oocyte maturation in zebrafish, and
this action reduced oocyte quality and subsequent ovulation and fertilization [49]. A high level of
GDF9 in the follicular fluid is correlated with oocyte nuclear maturation and embryo quality [50].
The current study demonstrated that melatonin in a maturation medium had limited effect on the
expression of GDF9 and DNMT1 in oocytes, but enhanced the expression of BMP15 in oocytes and
PTX3, HAS2, and EGFR in cumulus cells (Figures 5 and 6). This was conflict with previous report in
which the expression of GDF9 and DNMT1 in oocyte was increased with melatonin treatment [14].
It is found that MT's binding of the receptors has a more notable effect in cumulus cells than in
oocytes, so the alterations of gene expression caused by melatonin mainly occurred in the cumulus
cells. Taken together, it is possible that MT may improve in vitro COCs maturation in sheep mainly
via the MT1 receptor.

Melatonin has been the agent of choice for improving oocyte quality in women who failed
pregnancy due to poor oocyte quality [51]. Increased melatonin concentration in the follicular fluid
was reported to reduce the level of lipid peroxidation, which caused DNA damage in oocytes [51,52].
Melatonin was reported to enhance meiotic maturation of porcine [3], buffalo [52], and mouse
oocytes in in vitro conditions [53]. Moreover, melatonin supplementation to IVM medium rescued
mouse oocytes from meiotic arrest induced by dbcAMP or hypoxanthine treatment, regardless of
the concentration of oxygen [53], suggesting its role in meiotic resumption. Our results showed,
for the first time, that melatonin and its receptor inhibitor, luzindole, supplemented into IVM
medium greatly affected oocyte cAMP. It was reported that melatonin inhibited adenylate cyclase
activity via membrane-bound G protein-coupled MT1 and MT2 receptor [54]. In this study, we
observed that melatonin treatment increased the level of cAMP in COCs, which is similar to the
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previous report [55], which indicated that melatonin could temporarily inhibit the oocyte meiotic
mitosis by prolonging cAMP modulated oocyte maturation, and thus increased oocyte cumulus cells
gap-junctional communication and subsequently improved the embryo quality and its development. In
addition, melatonin-treated COCs had higher levels of cGMP in oocytes and cumulus cells. A high level
of cGMP in cumulus cells affects phosphodiesterase (PDE), which is a regulator of cAMP production
in oocytes and granulosa [33]. PDE is also an inhibitor of PDE3/4 and the inhibition of PDE3/4
improves the embryo development of the bovine IVM oocytes. Therefore, melatonin treatment delays
the GVBD of oocytes and prolongs the communication time of oocytes and granulosa cells during
the period of meiosis. Both facilitate the exchange of regulatory molecules and metabolic substances
between oocytes and granulosa cells, thereby improving the quality of oocytes. In other words, via
its MT1 receptor activation, melatonin increases the concentrations of cAMP in oocytes and cGMP
in cumulus cells and promotes the cytoplasmic maturation and the ability of oocyte development.
A signal transduction pathway for melatonin promoting oocytes maturation is summarized in Figure 9.
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The level of cAMP in oocyte is crucial for the maintenance of meiotic arrest. Inhibition of oocyte
cAMP-phosphodiesterase (PDE3A) activity results in sustaining elevated cAMP level [56]. Cyclic GMP
in cumulus cells will diffuse into the oocyte via gap junctions and it inhibits PED3A activity and cAMP
hydrolysis. These events lead to meiotic arrest [57,58]. MT also upregulates the expression of PTX3,
HAS2, and EGFR in cumulus cells to promote cumulus cells expansion as well as the expression of
BMP15, GDF9, DNMT1, and MAF1 in oocytes to advance oocyte maturation.

4. Materials and Methods

4.1. Chemicals

All chemicals and media, except otherwise specified, were purchased from Sigma Chemical Co.
(St. Louis, MO, USA) and Gibco (Grand Island, NY, USA).
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4.2. Animal Studies

The study was carried out in strict accordance with the protocol approved by the Animal Welfare
Committee of China Agricultural University (Permission Number: SYXK(Beijing)2015002; The period
of valid days: 22 September 2015–22 September 2020).

4.3. Ovary Collection and Cumulus–Oocyte Complex Aspiration

Sheep ovaries were collected from local abattoir and transported to the laboratory in sterile saline
solution supplemented with penicillin (100 IU/mL) and streptomycin (100 IU/mL) at 25–30 ◦C within
3 h after slaughter, and they were washed in a sterile saline solution immediately after arrival. COCs
were recovered from the ovary with a blade in a culture dish with a 90 mm diameter. Hepes-buffered
tissue culture medium-199 (HTCM-199) supplemented with 0.1% polyvinyl pyrrolidine alcohol (PVA),
25 IU/mL heparin, and penicillin, as well as streptomycin, was used for handling oocytes. Only
aspirated COCs with compact and intact cumulus and homogeneous cytoplasm were selected under a
stereomicroscope for experiments.

4.4. In Vitro Maturation of Oocytes

The tissue culture medium-199 (TCM-199) supplemented with Napyruvate (2.5 mM), L-glutamine
(1.0 mM), penicillin (100 IU/mL), streptomycin (100 IU/mL), 10% fetal bovine serum, and cysteamine
(0.1 mM) was used as the basal culture medium. Maturation medium was modified from basal culture
medium by adding 100 ng/mL EGF, 10 µg/mL FSH, 10 µg/mL LH, and 1 µg/mL estradiol-17β.
Melatonin and luzindole (an antagonist of melatonin receptors) were dissolved in DMSO at
concentrations of 1 and 0.1 M separately and then stored at −20 ◦C as stock solutions. The stock
solutions were diluted in TCM-199 to their final concentrations (melatonin: 10−3, 10−5, 10−7, 10−9,
10−11 M; luzindole: 10−6 M) immediately before use. COCs were cultured in groups of 90 in 700 µL
droplets in maturation medium in 4-well plates at 38.5 ◦C with 5% CO2 in humidified air for 24 h.

4.5. Parthenogenetic Activation

Parthenogenetic activation (PA) of sheep oocytes was performed according to Hosseini et al. [59]
with modification. Ovine oocytes were denuded after 24 h of culturing, and the oocytes with a
polar body were then chosen for PA. Oocytes were first exposed to 5 mM ionomycin in HTCM-199
containing 0.1% PVA for 5 min. They were then carefully washed in HTCM-199 containing 0.1% PVA
and incubated with 2 mM 6-dimethyl amino purine for 4 h. Oocytes were then washed in modified
synthetic oviduct fluid (mSOF) and cultured in group of 20 oocytes in 60 µL droplets of mSOF without
serum and glucose for 2 days. These were further treated with 10% fetal serum (10%) and glucose
(1.5 mM) for 6 days (sequential mSOF). The cleavage rate was determined on the 2nd day and the
blastocyst rate on the 8th day after PA.

4.6. Detection of Melatonin Receptors in COCs by Immunofluorescence

COCs were fixed with 4% paraformaldehyde for 45 min, washed thrice in dulbecco's phosphate
buffered saline (DPBS) containing 0.1% PVA (10 min per wash), and finally incubated with blocking
reagent (DPBS containing 1% BSA) at 4 ◦C overnight. The blocked oocytes were washed thrice
in 0.1% PVA-DPBS (20 min per wash) and incubated with a primary antibody (MT1: SC-13186,
1:200 dilution, Santa Cruz Bio Inc., Santa Cruz, CA, USA; MT2: SC-13177, 1:200 dilution, Santa Cruz
Bio Inc., Santa Cruz, CA, USA) at 37 ◦C for 2 h in the dark, washed thrice in DPBS containing 0.1%
PVA (20 min per wash), and then incubated with a secondary antibody (Alexa Fluor 594 Molecular
Probes, 1:1000 dilution, Life Technologies, Carlsbad, MA, USA) at 37 ◦C for 1 h in the dark. Finally,
the samples were washed thrice in DPBS containing 0.1% PVA, stained with PI, and examined with
confocal laser microscopy (Olympus FV1000, Tokyo, Japan).
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4.7. Detection of Melatonin Receptors by Western Blotting

Granulosa cells, GV oocytes, and GV cumulus cells were collected immediately after the COCs
were aspirated, and after maturing for 24 h, MII oocytes and cumulus cells were collected. All
collected samples were washed thrice with PBS and frozen at −80 ◦C until use. Proteins were
subjected to SDS-PAGE with 12% polyacrylamide gel and then transferred to a nitrocellulose membrane
(BioTraceNT, Pall Corporation, Ann Arbor, MI, USA) for 2.5 h under a 300 mA electric current. After
blocking the membrane with 5% skimmed milk overnight at 4 ◦C, the membrane was incubated
with a primary antibody (MT1: SC-13186, 1:300 dilution, Santa Cruz Bio Inc., Santa Cruz, CA, USA;
MT2: SC-13177, 1:150, dilution, Santa Cruz Bio Inc., Santa Cruz, CA, USA; actin: AC-15, 1:1000,
ab6276, Amyjet Scientific Inc., Abcam, Cambridge, UK). To visualize the protein-bound antibodies,
we used horseradish peroxidase (HRP)-conjugated anti-goat IgG (1:1000 dilution, Santa Cruz Bio Inc.,
Santa Cruz, CA, USA), followed by a detection procedure using an ECL detection kit (Amersham,
Buckinghamshire, UK) according to the manufacture’s instructions.

4.8. Assessment of Cumulus Cells Expansion and Polar Body Extrusion

The degree of cumulus cells expansion was assessed under a stereomicroscope after 24 h of
maturation subjectively as not expanded, partially expanded (the outer layer of cells was loosened), or
fully expanded (all cumulus cells were loosened). After assessing the cumulus cells expansion, the
COCs were denuded and the polar bodies were counted.

4.9. Assessment of Embryo Quality

The quality of blastocysts was assessed by Hoechst 33342 staining for 10 min. After rinsing
in DPBS containing 0.1% PVA medium, blastocysts were mounted on a clean glass slide, covered
with a coverslip, and examined under an inverted microscope (Nikon Corp., Tokyo, Japan) equipped
with epifluorescence.

4.10. RNA Isolation and Quantitative RT-PCR

Sheep COCs maturated in vitro for 8 h, and the cumulus cells and oocytes of a melatonin group
and a control group were then collected, respectively. The cumulus cells and oocytes were washed
thrice with DPBS containing 0.1% PVA solution and stored at −80 ◦C until the RNA was extracted.
The total RNA was extracted using a TRizol reagent, quantified by measuring the absorbance at
260 nm and stored at −80 ◦C until use. The levels of relevant mRNAs, including the oocyte related
genes (GDF9, BMP15, and DMNT1), cumulus cells related genes (PTX3, FSHR, LHR, EGFR, and
HAS2) were determined by quantitative RT-PCR using a One Step SYBR PrimeScript RT-PCR Kit
(TaKaRa Bio., Inc., Tokyo, Japan) in a Light Cycler instrument (Roche Applied Science, Mannheim,
Germany). The levels of accumulated fluorescence were analyzed using the second-derivative method
after the melting-curve analysis was completed, and the expression levels of the target genes were
then normalized to the expression level of β-actin in each sample. The primer pairs for the analyzed
mRNAs are listed in Table 1.

Table 1. Primers used in this study.

Gene Name Primer Sequence (5′–3′) Fragment Size (bp) Reference Sequence Accession Number

LHR
TCTGCTCACCCAAGACACTCC

247 XM_005686598.1GAGGCAATGAGTAGCAGGTAGAG

FSHR
CTTCCAGAACCTTCCCAACC

201 NM_001285636.1TCCCATTCTTACTCAGCCATAC

PTX3
TCTGCGATGGTGTTCTCAGCA

206 XM_005675400.1CTCTCTCCTTCAACTGGCGTATG

EGFR
CACTCATGCTCTATGACCCTACCAC

176 XM_005695500.1GTGGACACCATCTTCCTCTACCTC
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Table 1. Cont.

Gene Name Primer Sequence (5′–3′) Fragment Size (bp) Reference Sequence Accession Number

GDF9
AAGGTTCTGTATGATGGGCACG

149 NM_001285708.1AGCCGAACAGTGTTGTAGAGGTG

BMP15
CTTCACCTAACTCATTCCCACCTC

248 JQ350891.1TGCCACCAGAACTCAAGAACCT

DMNT1
GGACATAATCGGAGATGCTTTGA

206 XM_005688873.1AACAGGCTTTGGATGATGAGGT

HAS2
CTTCTCCTGATTCTACGCTTCCT

223 XM_005688874.1AACAGGCTTTGGATGATGAGGT

GAPDH GTGTCTGTTGTGGATCTGACCTG 162 NM_001190390.1

4.11. Determination of Intracellular Concentrations of cAMP and cGMP

Intracellular cAMP and cGMP content in oocytes and cumulus cells were determined by a
competitive enzyme immunoassay kit (Sigma Chemical Co., St Louis, MO, USA) with an acetylation
protocol for the highest test sensitivity according to the manufacturer’s instructions. Briefly, COCs
were removed from the culture, denuded, and washed thrice in H-M199 containing 0.2 mM
isobutylmethylxanthine (a nonspecific phosphodiesterase inhibitor). The cumulus cells (200 µL
0.1% HCl) and oocytes (1 µL 0.1% HCl/oocyte) were finally collected using 2 mL freezing tubes,
snap-frozen in liquid nitrogen for a minimum of 10 min, and stored at −80 ◦C until assayed. Lysed
oocytes and the peroxidase-labeled cAMP or cGMP standards were acetylated using a mixture of
triethylamine and acetic anhydride (2:1 v/v) for 5 min before initiation of the competitive reaction
against the anti-cAMP or cGMP antiserum. At the end of the procedure, concentrations of cAMP or
cGMP were calculated by measuring the optical density of samples in a plate reader at 405 nm within
30 min. There were 3 samples in each group at least.

4.12. Statistical Analysis

In all of the experiments, the data were from at least 3 independent repeats. The data about
cumulus expansion, oocyte nuclear maturation, cleavage, and blastocyst rates were converted
to percentages. All data were then analyzed in Statistical Product and Service Solutions (SPSS)
(version 20.0, SPSS, Inc., Chicago, IL, USA) using a one-way ANOVA with randomized block analysis
(linear mixed model) followed by a Tukey test to determine the differences between the treatments.
Differences of p < 0.05 were considered significant.

5. Conclusions

In conclusion, melatonin at the concentration of 10−7 M promoted sheep COCs cumulus cells
expanding, and increased the cleavage and blastocyst rates of parthenogenetic embryos. MT1 activation
in oocytes results in decreased level of cAMP, which inhibits oocyte meiotic mitosis and therefore
increases the time of oocyte-cumulus cell gap–junctional communication. The results identified a
potentially important role of melatonin in the regulation of sheep oocyte maturation may be primarily
mediated by the MT1 receptor.
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