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Abstract

Programmed cell death (PCD) mediated by mitochondrial processes has emerged as an

important mechanism for plant development and responses to abiotic and biotic stresses.

However, the role of translocation of cytochrome c from the mitochondria to the cytosol dur-

ing PCD remains unclear. Here, we demonstrate that the rice dynamin-related protein 1E

(OsDRP1E) negatively regulates PCD by controlling mitochondrial structure and cytochrome

c release. We used a map-based cloning strategy to isolate OsDRP1E from the lesion mimic

mutant dj-lm and confirmed that the E409V mutation in OsDRP1E causes spontaneous cell

death in rice. Pathogen inoculation showed that dj-lm significantly enhances resistance to

fungal and bacterial pathogens. Functional analysis of the E409V mutation showed that the

mutant protein impairs OsDRP1E self-association and formation of a higher-order complex;

this in turn reduces the GTPase activity of OsDRP1E. Furthermore, confocal microscopy

showed that the E409V mutation impairs localization of OsDRP1E to the mitochondria. The

E409V mutation significantly affects the morphogenesis of cristae in mitochondria and causes

the abnormal release of cytochrome c from mitochondria into cytoplasm. Taken together, our

results demonstrate that the mitochondria-localized protein OsDRP1E functions as a negative

regulator of cytochrome c release and PCD in plants.

Author Summary

Plants have developed a hypersensitive response (HR) that shows rapid programed cell

death (PCD) around the infection site, which in turn limits pathogen invasion and

restricts the spread of pathogens. Although many studies reported the characterization of

PCD in different pathosystems in the last decade, the molecular mechanisms on how PCD

is initiated and how it regulates host resistance are still unclear. Lesion mimic mutants

exhibit spontaneous HR-like cell death without pathogen invasion and are ideal genetic

materials for dissecting the PCD pathway. In this study, we characterized the lesion mimic
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gene OsDRP1E that negatively regulates plant PCD through the control of cytochrome c
release from mitochondria. Our results suggest that the E409V point mutation in the

dynamin-related protein OsDRP1E affects the morphogenesis of mitochondrial cristae

that leads to the cytochrome c release into cytoplasm. This study provides new insights

into the function of dynamin-related proteins in plant immunity.

Introduction

Programmed cell death (PCD) occurs in animals and plants, and the primary forms of PCD in

mammals include apoptosis, autophagy, and necrosis [1]. In plants, PCD occurs during nor-

mal growth, development, and responses to biotic and abiotic stresses [2]. In plant disease

resistance, PCD in the hypersensitive reaction (HR) is accompanied by the accumulation of

reactive oxygen species (ROS) [3] and is triggered by the activation of plant resistance proteins

after recognition of their corresponding effectors from the pathogen. The HR characteristically

involves spontaneous PCD around the infection sites, which limits pathogen invasion and

restricts the spread of pathogens [4].

Some mutant plants exhibit spontaneous HR-like cell death even without pathogen invasion.

Based on their cell death phenotypes, these mutants were designated lesion mimic or spotted

leaf mutants [5]. A number of lesion mimic and spotted leaf mutants have been described in

many plant species, including maize [6], Arabidopsis thaliana [7], barley [8], and rice [9,10]. To

date, more than 60 lesion mimic genes have been identified in plants [5]. These genes encode

proteins that play various regulatory roles in different pathways, such as sphingolipid and fatty

acid biosynthesis [11], chloroplast activity and photosynthesis [12], transcriptional regulation

[13], signal perception at the plasma membrane [14], Ca2+ signal transduction [15], and ubiqui-

tination-mediated protein degradation [10]. Therefore, various pathways regulate the complex

process of PCD in plants.

The mitochondrion, the bioenergy hub of the cell, plays central roles in biochemical path-

ways for energy production, signal transduction, and cellular metabolism [16,17]. In addition,

mitochondria play a major role in the regulation of apoptosis in animals [18]. Cytochrome c
plays an important part in this process, serving as one of the first markers of the molecular

events preceding apoptosis [19]. During apoptosis, cytochrome c, the sole water-soluble compo-

nent of the electron transfer chain, is released from the intermembrane space of the mitochon-

dria into the cytosol [20,21]. Cytosolic cytochrome c binds to Apaf-1 to promote the assembly

of apoptosomes and recruits procaspase-9 to these complexes, which subsequently initiates an

apoptotic protease cascade [22]. Several proteins, including BH3, Bim, and tBid, are involved in

the conformational changes to PCD-related proteins such as Bax and Bak, allowing them to

form oligomers on the mitochondria. Oligomerized Bax and Bak trigger apoptosis by causing

permeabilization of the mitochondrial outer membrane and activation of OMA1 [17].

Several lines of evidence demonstrated that mitochondria also participate in plant PCD

[23,24]. The induction of PCD in Arabidopsis cell cultures by ceramide, protoporphyrin IX, or

the avirulence factor AvrRpt2 leads to morphological changes in the mitochondria, as well as

the release of cytochrome c [25]. A work in Arabidopsis also detected changes in the dynamics

and morphology of mitochondria during the onset of cell death [26]. These findings suggest

that mitochondria play a role in regulating PCD in plants, but it is still not clear how mito-

chondrial proteins regulate plant PCD [27]. In recent years, several studies have observed the

release of cytochrome c from the mitochondria into the cytosol before plant cell death follow-

ing toxin protein and elicitor treatments [28–30]. However, the proteins that regulate cyto-

chrome c release during plant PCD are currently unknown.
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Dynamin-related proteins (DRPs) and dynamin-like proteins belong to the structurally

conserved yet functionally divergent dynamin superfamily. These proteins are commonly

found in prokaryotic and eukaryotic organisms including mammals, plants, fungi and bacteria

[31,32]. In general, classical dynamin family proteins have five distinct domains: the N-termi-

nal GTPase domain, which binds to guanosine triphosphate (GTP) and hydrolyzes GTP to

guanosine diphosphate; the “middle” domain, which is involved in the formation of homo-

polymers based on self-interaction; the pleckstrin homology domain, which is related to lipid

binding; the GTPase-effector domain, which interacts with the GTPase domain and regulates

GTPase activity; and the C-terminal proline-rich domain, which participates in protein–dyna-

min interactions [31,33,34]. The multi-domain DRPs self-assemble into complex higher-order

rings and helices and trigger the fusion or fission of organelles. Studies in Arabidopsis have

shown that DRPs play various roles in different pathways: clathrin-dependent endocytosis

(DRP1 subfamily) [35], induction of cell death (AtDRP1E during powdery mildew infection)

[36], pinching of the clathrin-coated vesicles (DRP2A) [37], vesicular trafficking through the

perception of PAMP-triggered immunity (PTI) signaling (DRP2B) [38], and regulated fission

of mitochondria and peroxisomes (DRP3) [39] and chloroplasts (DRP5) [40]. However, the

roles of rice DRPs remain poorly understood. To date, OsDRP2B is the only DRP that has

been shown to regulate cellulose biosynthesis in rice [41,42].

In this study, we characterized a spontaneous lesion mimic mutant, designated dj-lm (dongjin-
lesion mimic), which was found among plants of the japonica rice (Oryza sativa) cultivar Dongjin

(DJ) grown in our greenhouse. Using map-based cloning, we cloned the mutated gene and found

that the cell death phenotype of dj-lm resulted from a point mutation of the rice dynamin-related

gene OsDRP1E. This point mutation abolished the self-interaction of OsDRP1Es in yeast, dis-

rupted high-order complex formation in planta and reduced the protein’s intrinsic GTPase activ-

ity in vitro. Our results show that the E409 residue is required for the localization of OsDRP1E to

the mitochondria, and the point mutation affects the morphology of the mitochondrial cristae

and the release of cytochrome c into the cytoplasm, which leads to PCD in rice plants.

Results

Phenotypic characterization of the dj-lm mutant

Under green house or field conditions, the leaves of dj-lm mutants showed small, dark brown

lesions by 30 d to 45 d after germination (Fig 1A). The lesions increased in both quantity and

size with the maximum abundance reached at around 2.5 month. Then the cell death lesions

gradually covered the entire leaf area, aggravating from the tip to the whole leaf (S1 Fig). After

Trypan blue staining, the dj-lm leaves exhibited numerous dark blue spots (Fig 1B), indicating

the occurrence of extensive cell death. When we analyzed H2O2 accumulation using 3,30-dia-

minobenzidine (DAB) staining, many brownish spots appeared around the lesion sites on dj-
lm leaves, whereas almost no brown spots were detected on wild-type DJ leaves (Fig 1C). At

the heading stage, dj-lm plants also exhibited a typical senescence phenotype, with withering

leaves (Fig 1D). In addition to the cell death and senescence phenotypes, major agronomic

traits including plant height, seed setting rate, tiller number, flag leaf angle, 1000-grain weight,

and panicle length were affected in the dj-lm plants (S1 Table).

Enhanced resistance of the dj-lm mutant to rice blast and bacterial blight

pathogens

To determine whether the mutation in dj-lm led to enhanced resistance to pathogens, we first

inoculated six-week-old DJ and dj-lm plants when the dj-lm plants displayed lesions with the
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compatible Magnaporthe oryzae isolate RO1-1 using the punch inoculation method. The

lesions on dj-lm leaves were approximately one-quarter the size of those on DJ leaves (Fig 1E

and 1F). Moreover, the relative fungal biomass on dj-lm was approximately 13% of that on DJ

(Fig 1G). Additionally, we tested the disease response of six-week-old rice plants to the bacte-

rial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) and found that the disease lesions

on dj-lm were approximately one-sixth of the length of those on DJ after infection with the

Xoo isolate PXO99 (Fig 1H and 1I). These results clearly demonstrate that dj-lm plants have

significantly increased broad-spectrum resistance against both M. oryzae and Xoo.

ROS generation occurs as an early event in plant cell death [43]. In this study, we used lumi-

nol-based chemiluminescence to detect ROS generation in leaf disks from six-week-old plants

as reported previously [44]. In the water control as the mock treatment, ROS levels in dj-lm
were approximately twice those of DJ (Fig 2A), which was consistent with the DAB staining

results (Fig 1C). Following chitin treatment, the luminol count in dj-lm reached its highest val-

ues, roughly 4- to 4.5-fold more than that in DJ, at approximately 10 minutes after chitin

Fig 1. Phenotypic characterization of the dj-lm mutant. (A) Representative leaves of Dongjin (DJ) and dj-lm

plants. (B) Trypan blue staining of DJ and dj-lm leaves. (C) Diamiobenzidine (DAB) staining of DJ and dj-lm leaves.

(D) DJ and dj-lm plants grown in the field. (E) Disease phenotypes of DJ and dj-lm after inoculation with M. oryzae

isolate RO1-1. Similar results were obtained from three independent experiments. Bar = 1 cm. (F) Lesion length of

DJ and dj-lm after inoculation with RO1-1. Values are means ± standard errors of 10 replications. Significance was

determined at ***P<0.0001 with a Student’s t-test. (G) Relative fungal biomass of DJ and dj-lm after inoculation

with M. oryzae. Values are means ± standard errors of 10 replications. Significance was determined at *P<0.05

with a Student’s t-test. (H) Disease phenotypes of DJ and dj-lm after inoculation with Xoo strain PXO-99. Similar

results were obtained from three independent experiments. Bar = 1 cm. (I) Lesion length of DJ and dj-lm after

inoculation with PXO99. Values are means ± standard errors of 10 replications. Significance was determined at

***P<0.0001 with a Student’s t-test.

doi:10.1371/journal.ppat.1006157.g001

Dynamin Protein OsDRP1E in Plant Cell Death

PLOS Pathogens | DOI:10.1371/journal.ppat.1006157 January 12, 2017 4 / 25



Fig 2. ROS generation and defense-related gene expression in the dj-lm mutant. (A) ROS bursts of DJ

and dj-lm after chitin treatment. Values are means ± standard errors of three biological replications. Similar

results were obtained from three independent experiments. (B) ROS bursts of DJ and dj-lm after flg22

treatment. Values are means ± standard errors of three biological replications. Similar results were obtained

from three independent experiments. (C) Transcript levels of cell death-related and PR genes in DJ and dj-lm

plants. Values are means and standard errors of three biological replications. White and gray bars represent

the transcript levels of the genes tested in DJ and dj-lm, respectively. Significance was determined at

***P<0.0001 with a Student’s t-test.

doi:10.1371/journal.ppat.1006157.g002

Dynamin Protein OsDRP1E in Plant Cell Death

PLOS Pathogens | DOI:10.1371/journal.ppat.1006157 January 12, 2017 5 / 25



application (Fig 2A). However, we could not detect a difference in ROS burst between DJ and

dj-lm in plants challenged with flg22 (Fig 2B).

To determine whether the transcription of defense-related genes, such as senescence-asso-

ciated genes, cell death-related genes and pathogenesis-related (PR) genes, was affected in the

mutant, we analyzed the expression of these genes from six-week-old DJ and dj-lm plants

using quantitative RT-PCR. Consistent with the enhanced disease resistance of dj-lm, the tran-

scriptional levels of the senescence-associated gene OsI85, the cell death-related genes OskS4
and OsNAC4 and the PR genes PR1a, PR5, and AOS2 were significantly higher in the dj-lm
plants than in DJ (Fig 2C).

Map-based cloning of the mutant gene in dj-lm

To isolate the mutant gene that controls the cell death phenotype, we employed a map-based

cloning strategy. For the genetic analysis, we crossed dj-lm with wild-type DJ and the indica
cultivar 9311. The F1 progenies from the DJ × dj-lm and 9311 × dj-lm crosses did not have any

lesions on their leaves, but the F2 populations displayed segregation of the wild-type and lesion

mimic phenotypes. The segregation ratio was approximately 3:1 (x2<x2
0.05 = 3.84, P>0.05) in

both populations, suggesting that the phenotype of dj-lm is controlled by a single recessive gene

(S2 Table). A total of 3,400 F2 recessive individuals from the 9311 × dj-lm cross were used for

DNA marker and phenotype segregation analysis. The phenotypes and genotypes of recombinant

individuals were further confirmed in the F3 generation. For the initial mapping, 184 of the 920

pairs of SSR markers from Gramene (http://www.gramene.org) were well distributed on the 12

rice chromosomes and showed polymorphisms between dj-lm and 9311. Linkage analysis with

the molecular marker and lesion phenotype data in the 9311 × dj-lm F2 mapping populations

delimited the DJ-LM candidate gene to a 101-kb genomic region between the InDel marker ZQ14

and the telomere on the long arm of chromosome 9 (Fig 3A). There are 16 putative open reading

frames (ORFs) annotated in this genomic region according to the RGAP website (http://rice.

plantbiology.msu.edu/) (Fig 3B). Since ten of these ORFs were annotated as retrotransposons, we

focused on the six remaining genes (S3 Table). Because we did not detect any difference in the

transcript levels of these genes between DJ and dj-lm (S2 Fig), we further sequenced a 35-kb geno-

mic region spanning these genes and discovered only one A-to-T nucleotide substitution (Fig

3C). This single-nucleotide polymorphism corresponds to the 1226th nucleotide of the ORF within

the LOC_Os09g39960 locus (on the 12th exon), resulting in an amino acid change from E to V at

the 409th residue of the annotated protein, OsDRP1E, with a molecular weight of 70 kDa (Fig 3D).

To confirm whether this mutation is responsible for the lesion mimic phenotype, we cloned

an 11-kb genomic fragment of LOC_Os09g39960, including a 2,937 bp upstream promoter

region, a 4,806 bp coding region, and a 3,047 bp downstream region from DJ into the binary vec-

tor pCAMBIA1300. The resulting construct, designated 1300-OsDPR1E, was introduced into dj-
lm calli through Agrobacterium-mediated transformation. We generated 36 individually trans-

formed T0 lines and grew them in the greenhouse. None of these plants exhibited lesions, unlike

the lesion mimic control plants transformed with the empty vector (EV) (Fig 3E, left panel). To

verify that the recovery of the wild-type phenotype was indeed due to the reintroduction of 1300-

OsDPR1E into the mutant background, we sequenced the mutated OsDRP1E region in the two

complemented lines, 1300-OsDRP1E-2 and -7 (Fig 3E, right panel). The sequencing analysis con-

firmed that the introgression of the wild type OsDRP1E into the mutant background exists in the

two complemented lines (Fig 3E, right panel). In addition, we evaluated the disease resistance

phenotype and ROS burst in the wild-type DJ, an empty-vector transformed line and two com-

plemented lines. The complemented lines showed the same disease phenotype against M. oryzae

Dynamin Protein OsDRP1E in Plant Cell Death
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and Xoo and ROS burst after chitin treatment as the wild-type DJ (S3 Fig). These results clearly

demonstrate that the E409V point mutation causes the lesion mimic phenotype in dj-lm.

Molecular characterization of OsDRP1E

Bioinformatics analysis showed that the DJ-LM gene encodes a dynamin-related protein,

OsDRP1E, comprising three conserved domains: the N-terminal GTPase domain, the dyna-

min central region, and the dynamin GTPase effector domain (Fig 3D), as determined based

on the annotations at NCBI (http://www.ncbi.nlm.nih.gov/cdd). Transcription analysis using

Fig 3. Map-based cloning of OsDRP1E. (A) Fine physical map of the dj-lm candidate locus. The two thick black bars represent

PAC clones AP006162 and AP006450. Words above and below the bars indicate SSR markers, InDel markers and the physical

distance between the two markers, respectively. The numbers below the maps represent the number of recombination events. (B)

Predicted ORFs in the dj-lm mutant. The thick black bars represent PAC clone AP006450. Arrows indicate the order and orientation

of 16 ORFs within the PAC clone AP006450. ORFs in gray are retrotransposon genes. (C) Gene structure of OsDRP1E. The

schematic map shows the coding region (black boxes), the 5’ and 3’ untranslated regions (white boxes) and the intron region (lines).

Arrow indicates the mutated nucleotide. (D) OsDRP1E protein structure. The three boxes indicate the domains of OsDRP1E. The

numbers below the box indicate the size of the protein. Arrow represents the mutated amino acid residue. GED: Dynamin GTPase

effector domain. (E) Genetic complementation of OsDRP1E. Left panel: Leaves from transgenic lines (1300 (EV)-1/2) transformed

with the pCAMBIA1300 empty vector and their sequencing chromatograms at the OsDRP1E locus. Right panel: Leaves from

complemented lines (1300-OsDRP1E-2/7) transformed with the pCAMBIA1300-OsDPR1E construct and their sequencing

chromatograms at the OsDRP1E locus.

doi:10.1371/journal.ppat.1006157.g003
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RT-PCR revealed that OsDRP1E was universally expressed in all rice tissues tested, with rela-

tively high expression in roots and leaves (S4A Fig). As the rice plants grew older, the tran-

scription of OsDRP1E generally decreased, but the differences among the investigated growth

stages (week 4 to week 14) were not significant (S4B Fig). In addition, the expression level of

OsDRP1E was not affected by inoculation with the compatible M. oryzae isolate RO1-1 or the

incompatible rice isolate RB22 (S5 Fig).

Phylogenetic analysis of the DRPs from different eukaryotic organisms, including human,

yeast, Arabidopsis, and rice, revealed that OsDRP1E belongs to the plant DRP1 subgroup (S6A

Fig). Moreover, amino acid sequence alignment of the DRPs from various origins revealed

high sequence similarity in the DRP central domain, and it demonstrates that E409 in

OsDRP1E is one of the most highly conserved amino acid residues in the proteins analyzed

(S6B Fig). These results suggest that the residue E409 in OsDRP1E and other DRPs is structur-

ally and functionally important.

The E409V mutation in OsDRP1E disrupts its self-interaction and the

formation of higher-order complexes

DRPs can form higher-order complexes through self-interaction assembly and the formation

of higher-order complexes is a prerequisite for their roles in various cellular processes, such as

endocytosis and mitochondrial division [45]. Recent structural studies have revealed that the

dynamin central domain plays a vital role in the self-assembly of DRPs [46–48]. We reasoned

that the E409V mutation might affect the self-interaction of OsDRP1E based on the observa-

tions that the E409 site is located at the self-interaction region and is a highly conserved amino

acid residue. To test this hypothesis, we first analyzed the self-interaction of OsDRP1E in the

yeast two-hybrid system. As shown in Fig 4A, strong self-interaction was detected in wild-type

OsDRP1E, but the mutant OsDRP1E (hereafter referred to as E409V) failed to self-interact in

yeast. We then performed native PAGE to examine whether the E409V mutation affects the

ability of OsDRP1E to form a higher-order complex. The fusion proteins OsDRP1E-GFP and

E409V-GFP were transiently expressed in N. benthamiana through agro-infiltration. The

expression levels of OsDRP1E-GFP and E409V-GFP in planta remained similar when ana-

lyzed by SDS-PAGE followed by immunoblot detection of GFP (Fig 4B, bottom panel). By

contrast, the results of blue native PAGE (BN-PAGE) followed by immunoblot analysis to

detect GFP showed that high molecular weight complexes formed from wild-type OsDRP1E

in planta, while only dimers or tetramers formed from the E409V mutant protein (Fig 4B,

upper panel). These results indicate that the E409 residue of OsDRP1E is required for its self-

interaction to form higher-order protein complexes.

The E409V mutation decreases the GTPase activity of OsDRP1E

DRPs belong to a group of large GTPases with molecular weights above 70 kDa. In contrast to

small GTPases, dimerization or higher-order assembly of DPRs promotes the activity of large

GTPases and is required for their biological function [47,49]. To determine whether the E409V

mutation affects the GTPase activity of OsDRP1E, we examined the in vitro GTPase activity of

the purified maltose-binding protein (MBP) fusions MBP-OsDRP1E and MBP-E409V (S7A Fig)

using a GTPase colorimetric assay. As shown in Fig 5A, no obvious color change was observed

in control reactions with the purified MBP protein and H2O. Although both MBP-OsDRP1E

and MBP-E409V displayed catalytic activity towards the substrate GTP, the former had much

stronger activity (Fig 5A). The difference in the activity of these two proteins was confirmed in

dosage and time-course assays. Clearly, the levels of phosphates released by MBP-OsDRP1E
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were significantly higher in both a time-dependent (Fig 5B, S7B Fig) and dosage-dependent

manner compared to the E409V mutant (Fig 5C).

The E409V mutation disrupts the mitochondrial localization of OsDRP1E

Online subcellular localization prediction analysis using the program Euk-mPLoc2.0 specific for

plant protein [50] (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/) and RSLpred specific for

rice protein [51] (http://www.imtech.res.in/raghava/rslpred/) showed that OsDRP1E is a mito-

chondrial protein. To determine the subcellular localization of OsDRP1E, we agro-infiltrated

Fig 4. The E409V mutation affects the self-association of OsDRP1E. (A) Yeast two-hybrid assays using

the HIS3 reporter to detect the self-interaction of OsDRP1E. Yeast cells transformed with bait and prey

constructs as indicated were sequentially diluted 10-fold and plated on synthetic dextrose (SD) medium

without Trp, Leu and His amino acids (SD-LTH) and with 0 mM or 40 mM 3-amino-1,2,4,-triazole (3AT),

respectively. Yeast cells that either grew in the presence of 40 mM 3AT or were stained blue by X-gal indicate

an interaction. (B) Immunoblot detection of GFP-tagged OsDRP1E and E409V expressed in N. benthamiana

using Blue Native-PAGE (upper panel) and SDS-PAGE (bottom panel). Blue Native-PAGE followed by

immunoblot analysis was used to detect the oligomerization of OsDRP1E-GFP and E409V-GFP. SDS-PAGE

followed by immunoblot analysis was used to detect the expression levels of OsDRP1E-GFP and

E409V-GFP.

doi:10.1371/journal.ppat.1006157.g004
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OsDRP1E-YFP and E409V-YFP constructs (S8A Fig) into N. benthamiana leaves. Immunoblot

analysis using anti-YFP antibody showed similar protein levels of OsDRP1E-YFP and E409V-

YFP in agro-infiltrated N. benthamiana leaves (S8B Fig). Confocal microscopy showed spotty,

bright fluorescent signals when OsDRP1E-YFP was expressed in N. benthamiana, while the sig-

nal from E409V-YFP was distributed evenly in the cytoplasm, resembling the signal of the YFP

control (S9A Fig). To exclude the possibility that the C-terminal fusion of YFP might affect the

subcellular localization of OsDRP1E, we also investigated the fluorescence patterns of N-termi-

nal YFP-fused OsDRP1E and E409V in planta. As expected, the E409V point mutation abolished

the bright speckled signals (S9B Fig).

To verify the subcellular localization of OsDRP1E, we transfected rice protoplasts with the

GFP-tagged construct and stained the transfected protoplasts with MitoTracker CMXRos (a

mitochondria-specific dye). As shown in Fig 6A, the green fluorescent signals from OsDR-

P1E-GFP exactly over-lapped the red signals from MitoTracker CMXRos in rice protoplasts.

Also, uniform GFP signals were detected in whole cells transfected with E409V-GFP (Fig 6A).

We then co-expressed GFP-tagged OsDRP1E and DsRED-tagged COX4, which is a mitochon-

drial marker protein, in N. benthamiana, and confirmed that the loss of mitochondrial locali-

zation was due to the E409V mutation. Similar differences in GFP signals were observed in the

N. benthamiana cell that co-expressing OsDRP1E-GFP and E409V-GFP (Fig 6B). Taken

together, these results demonstrate that OsDRP1E localizes to the mitochondria and that the

E409 residue is essential for the mitochondria-specific localization of OsDRP1E.

Fig 5. GTPase activity assay of OsDRP1E and E409V. (A) GTPase colorimetric reaction of different

amounts of MBP-tagged OsDRP1E and E409V or MBP protein at 2, 5, and 10 min. Lanes 1, 4, and 7: MBP

protein. Lanes 2, 5, and 8: MBP-OsDRP1E. Lanes 3, 6, and 9: MBP-E409V. Lane 10: H2O. (B) Pi released in

GTP hydrolysis by 5 μg of MBP-tagged OsDRP1E and E409V at different time points, as indicated. Circles

represent MBP-OsDRP1E and triangles represent MBP-E409V. Similar results were obtained from two

independent experiments. (C) Pi released during GTP hydrolysis by 2, 5, and 10 μg of MBP-tagged OsDRP1E

and E409V at 5 min. Circles represent MBP-OsDRP1E, triangles represent MBP-E409V. Similar results were

obtained from two independent experiments.

doi:10.1371/journal.ppat.1006157.g005
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The E409V point mutation affects mitochondrial morphology and

increases the concentration of cytoplasmic cytochrome c

The discovery that the E409V point mutation abolished OsDRP1E retention in the mitochondria,

together with the finding that the mutated protein showed lower GTPase activity, prompted us to

investigate whether mitochondrial morphology was affected by the functional loss of OsDRP1E.

We observed the ultrastructure of the mitochondria in mesophyll cells (S10 Fig) from four or

eight-week-old DJ and dj-lm plant leaves by transmission electron microscopy. The dj-lm and DJ

plants had similar overall number and shapes of mitochondria. However, swelling cristae with

vesicle-like structures and reduced intermembrane content were observed in the dj-lm mesophyll

cells collected from the first and second leaves in four and eight-week-old plants. The ratio of ves-

icle-like to normal cristae was approximately from 9–14% in DJ compared to 75–79% in dj-lm in

Fig 6. Subcellular localization of OsDRP1E-GFP and E409V-GFP in planta. (A) Confocal images of OsDRP1E-GFP and

E409V-GFP transiently expressed in rice protoplasts. MitoTracker was used as the mitochondrial marker. Bar = 10 μm. (B)

Confocal images of OsDRP1E-GFP and E409V-GFP transiently expressed in N. benthamiana. Ds-RED-tagged COX4 was

used as the mitochondrial marker. Bar = 10 μm.

doi:10.1371/journal.ppat.1006157.g006
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different growth periods (Fig 7), and the vesicle-like structure of cristae is similar to those in pre-

vious reports [52,53].

Studies in animals have shown that the release of cytochrome c into the cytoplasm induces

caspase activity, ultimately leading to PCD [54]. To explore the association of the cytochrome c
levels and the cell death in rice plants, we isolated subcellular fractions from the plants and deter-

mined the cytochrome c levels in the cytoplasm and mitochondria using immunoblotting analy-

sis with anti-cytochrome c antibody (Fig 8). We found that the increase of the cytochrome c
levels in the cytoplasm as plants aged from four-week old to eight-week-old. Interestingly, the

cytosol cytochrome c levels were higher in dj-lm than in DJ no matter the mutant plants exhibited

cell death lesions or not and reached its maxim values in the dj-lm plants after lesion appeared

(Fig 8). On the contrary, the mitochondrial cytochrome c levels in dj-lm remained similar as

those in DJ when plants were eight-week-old. To further confirm that the OsDRP1E is indeed

required for the cytochrome c releasing, we compared the cytochrome c level from four-week-old

and eight-week-old plants of wild type DJ, empty vector transgenic control (EV) and comple-

mented lines (C2 and C7) (S11 Fig). Similar levels of cytochrome c were observed in the DJ and

the complemented lines whereas the empty vector control transgenic line (EV) displayed higher

protein level of the cytochrome c in 4-week or 8-week old plants. Taken together, these results

demonstrate that the E409V point mutation in OsDRP1E affects the morphology of the mito-

chondrial cristae and leads to increased release of cytochrome c into the cytoplasm, which may

represent the main trigger for the development of the lesion mimic phenotype in dj-lm plants.

Discussion

The role of OsDRP1E in mitochondria-mediated PCD

In this study, we found that the dj-lm mutant displayed a spontaneous cell death phenotype

and enhanced resistance to rice blast and bacterial blight pathogens. Using map-based cloning

and a genetic complementation approach, we demonstrated that the dynamin-related protein

OsDRP1E is a negative regulator of cell death and that the E409V point mutation in OsDRP1E

leads to a lesion mimic phenotype. In the past two decades, dynamin and DRPs have been

extensively studied in animal and yeast systems. Mutations in DRPs such as OPA1 [55], Mito-

fusin2 [56], Atlastin [57], and Drp1 [58] have been identified as the causes of many genetic dis-

orders in humans. For example, a lethal mutation (A395D) located at the central domain of

Drp1 causes neonatal death in humans [58]. As Drp1 participates in mitochondrial and perox-

isomal fission, a nonfunctional mutation of Drp1 leads to the formation of elongated mito-

chondria [58]. Likewise, mutations at the other conserved residues, G350 and G362, which are

also located in the central domain of Drp1, impair the retention of Drp1 on the mitochondria

and lead to the production of elongated mitochondria [45]. From a structural point of view,

these conserved amino acids, including E409 of OsDRP1E as well as G350, G362, and A395 of

Drp1, map to Interface 3, as recently revealed by resolving the crystal structure of the Dyna-

min-3 tetramer [59]. Interface 3, together with Interface 1, are required for the assembly of

tetramers from Dynamin-3 dimers. A series of single-site mutations within Interface 3 of

Dynamin-3 yields dimeric proteins, causing deficient liposome binding and reduced GTPase

activity. Similarly, our assays of the self-association of E409V-GFP in planta showed that the

majority of the mutant proteins are dimerized, with fewer tetramers compared to the higher-

order complexes formed by wild-type OsDRP1E-GFP. These results suggest that the E409V

mutation in OsDRP1E might weaken the polar interactions of the negatively charged amino

acid, thereby hampering the formation of higher-order complexes in planta. Because the for-

mation of the higher-order complexes promotes the hydrolysis activity of the GTPase domain
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of dynamin, the E409V mutation affects the GTPase activity of OsDRP1E, as demonstrated in

the present study.

Fig 7. Transmission electron microscopy (TEM) analysis of mitochondrial structure in DJ and dj-lm

plants. Y: Young leaves from four-week-old plants. O: Old leaves from eight-week-old plants. F and S

represent the first and the second leaf from the top. Arrow indicates bubble-like cristae. CP, chloroplast; M,

mitochondria; N, nucleus; P, peroxisome. Bar = 0.5 μm.

doi:10.1371/journal.ppat.1006157.g007
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In mammals, abnormal mitochondrial cristae are associated with the apoptosis process

[60], which in turn causes the release of cytochrome c from the mitochondria into the cyto-

plasm, followed by the induction of caspase-like activity in the cell, ultimately leading to cell

death [61]. Mitochondrial outer membrane permeabilization (MOMP) is a crucial event dur-

ing apoptosis that leads to the release of cytochrome c. Studies in HeLa cells have demonstrated

that Drp1 plays important roles in regulating MOMP and the morphology of mitochondria

[61]. In plants, abnormal mitochondrial cristae trigger changes in MOMP and the release of

cytochrome c from the mitochondria in early embryonic cells [62]. A previous study revealed

the presence of cytochrome c in the cytosolic compartment obtained by subcellular protein

fractionation followed by western blot analysis [63]. These events also occur during PCD in

plants under abiotic stress [64], and they may disrupt ATP biosynthesis, which is dependent

on the normal structure of mitochondria [65]. In the current study, we detected abnormal dis-

tribution of cytochrome c between the mitochondria and cytoplasm in dj-lm plants, thus estab-

lishing a link between the functional inactivation of OsDRP1E caused by the E409V mutation

and mitochondria-mediated cell death, presumably via the release of cytochrome c into the

cytoplasm. We hypothesis that vesicle-like cristae with increased spaces between the mem-

branes may allow cristae-localized cytochrome c to flow freely into the inter membrane space

and subsequently to cytosol to trigger cell death activation pathway. However, the exact mech-

anism of cell death caused by the dysfunction of OsDRP1E requires further investigation. Nev-

ertheless, plants harbor a known PCD pathway controlled by Type I meta-caspases such as

AtMC1 and AtMC2 [66]. Therefore, we speculate that a PCD pathway exists in plants that is

mediated by the mitochondria through a cytochrome c-caspase-like activation pathway (as in

animals) and that cytochrome c might act epistatically on the meta-caspases. To determine

whether cytochrome c induces cell death in plants, we infiltrated different concentrations of

cytochrome c into N. benthamiana leaves and observed phenotypes at different time points

after infiltration. We did not see any obvious cell death phenotype in the treated leaves. We

speculate that exogenous cytochrome c may be not able to cross the plasma membrane or be

inhibited in an inexplicit mechanism in plant cells to activate the caspase-like pathway as in

animal cells. Therefore, more research is needed to investigate the function of cytochrome c in

plant PCD.

Fig 8. Immunoblot detection of cytochrome c in cytosol and mitochondria from DJ and dj-lm plants. HSP90 and

VDAC1 served as the loading control for cytosolic and mitochondrial protein, respectively. Y: Young leaves from four-

week-old plants. O: Old leaves from eight-week-old plants. Numbers below the band in first panel represent the relative

cytochrome c levels in cytosol and mitochondria as compared to HSP90 and VDAC1, respectively, using the Image J

software.

doi:10.1371/journal.ppat.1006157.g008
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The role of OsDRP1E in mitochondrial membrane structure

In Arabidopsis, DRP3A and DRP3B are the closest homologs to human Drp1 and are function-

ally redundant during mitochondrial fission. The null mutants drp3a and drp3b-1 have mito-

chondria that are slightly longer than those of wild-type plants, while drp3a/drp3b-1double

mutant has mitochondria that form an extremely elongated, interconnected network structure

[67]. However, in this study, we did not obtain direct evidence that OsDRP1E is responsible

for mitochondrial fission, as no elongated mitochondria were found in dj-lm. This result

might be due to the functional redundancy between OsDRP1E and OsDRP1C or OsDRP1D,

as phylogenetic analysis revealed that these three DRPs belong to a close clade. Nevertheless,

the observation of an abnormally high percentage of bubble-like structures of mitochondrial

cristae in dj-lm plants, together with the loss of mitochondrial localization of the mutant pro-

tein OsDRP1E-E409V, strongly suggest that OsDRP1E participates in the maintenance of

mitochondrial membrane structures.

Subcellular localization of OsDRP1E

The functionally divergent DRPs can target various organelles in plants [36,66]. These studies

helped reveal the functional divergence of this group of multifaceted proteins. Using confocal

microscopy, we demonstrated that OsDRP1E is localized to mitochondria based on the follow-

ing observations. First, OsDRP1E tagged with YFP or GFP at either the N- or C-terminus pro-

duced similar speckled patterns in N. benthamiana, while YFP- and GFP-tagged E409V mutant

proteins did not produce these specific, speckled patterns. Second, when we used the mitochon-

dria-specific dye MitoTracker or the marker protein COX4 as an indicator, the florescent sig-

nals from OsDRP1E-GFP co-localized with these mitochondrial markers. The observation that

E409V leads to targeting of the protein to the cytosol might be due to the inability of OsDRP1E

to form polymers at the mitochondrial membrane. Finally, the differences in localization pat-

terns between OsDRP1E and E409V matched the functional consequences of the mutation, as

revealed by the changes in mitochondrial morphology observed by transmission electron

microscopy. However, it is currently unclear whether the targeting of OsDRP1E to the mito-

chondria occurs via recruitment by unknown adapter proteins or through direct association

with the mitochondrial membrane. Therefore, identifying and characterizing interacting pro-

teins of OsDRP1E will provide new insights into the OsDRP1E-mediated regulation of PCD in

rice.

Function of OsDRP1E in rice immunity

Apart from physical barriers, ROS burst is the first layer of defense in plant PTI signaling [68].

Mitochondria play an important role in mediating the balance of ROS levels in plant cells.

Because OsDRP1E may participate in the maintenance of mitochondrial membrane structures,

mutation of the gene might cause structure changes and elevated ROS levels. Indeed, we

detected higher ROS levels in dj-lm plants than in wild type, even in the absence of any treat-

ment, suggesting the existence of basal-level activation of the defense pathway in dj-lm. Inter-

estingly, the ROS levels were significantly higher in dj-lm plants after chitin treatment, while

there was no difference between the ROS bursts detected in DJ and dj-lm after flg22 treatment.

These results suggest that OsDRP1E-induced ROS generation is limited to the chitin-signaling

pathway.

Most lesion mimic mutants display enhanced disease resistance [23,69] and significant up

regulation of defense-related genes such as: PR1a and PR5, marker genes associated with

defense-related responses in rice [70,71]; OsKS4 and AOS2, encoding important biosynthetic

enzymes in the phytoalexin and jasmonic acid biosynthesis pathways, respectively [72,73];
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OsNAC4, encoding a protein that participates in the induction of HR cell death and may regu-

late the transcription of multiple genes, including OsHSP90 and IREN [74], and Osl85, a senes-

cence-associated gene that functions in fatty acid metabolism [75]. In summary, the higher

transcript levels of these defense-related genes and senescence-associated genes correlate well

with the enhanced resistance to rice blast and bacterial blight pathogens and the senescence

phenotypes observed in dj-lm plants.

Methods

Plant growth conditions and agronomic trait measurements

Rice cultivars DJ (Oryza sativa ssp. japonica) and 9311 (Oryza sativa ssp. indica) were used in

this study. Rice plants were cultured in a growth chamber at 26/22˚C under a 14 h light/10 h

dark cycle or in a paddy field on our experimental farm in June through October. Agronomic

traits of rice plants grown in the paddy field were measured, including plant height, seed set-

ting rate, tiller number, flag leaf angle, 1000-grain weight, and panicle length.

Trypan blue and DAB staining

Leaves from dj-lm plants containing lesions and leaves from DJ at the same growth stage

(eight-week-old) were submerged in lactic acid-phenol-Trypan blue solution (0.25% Trypan

blue, 25% lactic acid, 23% water-saturated phenol, and 25% glycerol) for staining, as previously

described [69]. Briefly, the leaf samples were incubated in a boiling water bath for 10 min,

cooled to room temperature and incubated in the Trypan blue staining solution supplemented

with chloral hydrate (0.25%) for 48 h.

DAB staining was used to detect H2O2 accumulation in the leaves as described previously

[76]. Briefly, the leaves of eight-week-old rice plants were submerged in DAB solution (0.1%,

pH3.8) at 26˚C for 8 h in the light. After draining off the DAB solution, the leaves were boiled

for 10 min in a water bath containing 95% ethanol for destaining, followed by incubation in

95% ethanol at room temperature.

Rice blast and bacterial blight inoculations

The leaves were subjected to punch inoculation to measure the rice blast resistance of DJ and

dj-lm plants using M. oryzae isolate RO1-1, as previously described [44]. Briefly, six to eight

week-old leaves were lightly wounded using a mouse ear puncher, and 7 μl of spore suspension

(5×105 spore�ml-1) was added to the wound site, which was then sealed in a small chamber

with transparent tape. The inoculated plants were incubated in the dark for 24 h in a growth

room at 28˚C with 100% relative humidity, and then moved to a growth chamber at 26/22˚C

under a 14 h light/10 h dark cycle with 80% relative humidity. Disease symptoms and fungal

biomass in the infected leaves were surveyed 7 d after inoculation. The fungal biomass in the

infected leaf tissue was quantified using the method was described in a previous study [44].

Briefly, the infected rice tissue about 3 × 1cm was cut for DNA extraction using the CTAB

method. After RNase A treatment, DNA- based qPCR was performed using Bio-Rad iQ2 PCR

system (Bio-Rad). The threshold cycle value (CT) of M. oryzae Pot2 gene against the CT of rice

Os-Ubq gene was used to calculate the relative fungal biomass in rice leaves. The CT of Os-Ubq
was subtracted from the CT of Pot2, and then, using the equation ECT (Os-UBQ)–CT (Mo-Pot2) that

represents the ratio of (Mo-Pot2/Os-Ubq) to calculate the relative fungal biomass, in which the

amplification efficiency, E, is 2 for the primer pairs designed for the respective genes.

The leaf-clipping method was used to measure the bacterial blight resistance of DJ and dj-
lm plants using the isolate PXO-99 in greenhouse-grown plants as described previously [77].
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Briefly, tips of the top-two fully expanded leaves of eight-week-old DJ and dj-lm which showed

lesion mimics were cut with scissors and inoculated with Xoo isolate PXO99 solution (OD595 =

0.5). The inoculated plants were moved to greenhouse at 28˚C, 12/12 h light/dark photoperiod.

The lesion length was measured at 14 d after inoculation.

Detection of ROS bursts

Leaf disks were excised from the fully expanded leaves (the second or third leaf from the top)

of six to eight-week-old plants using an ear-hole puncher and floated on sterile distilled water

overnight. Three leaf disks were placed in a 1.5 ml microcentrifuge tube containing 100 μl of

luminol (Bio-Rad Immun-star horseradish peroxidase substrate 170–5040), 1μl of horseradish

peroxidase (Jackson Immuno Research) and 100 nM flg22 or 8 nM hexa-N-acetyl-chitohex-

aose, with sterile distilled water for the control. The tube was immediately placed in a Glomax

20/20 luminometer (Promega) and the luminescence was recorded at 15 s intervals for 30 min.

Transcriptional analysis using RT-PCR

Total RNA was extracted with Trizol reagent (Invitrogen) according to the manufacturer’s

protocol. After DNaseI treatment, 2 μg of RNA was added to a 20 μl reaction system to synthe-

size first-strand cDNA using the Reverse Transcription System (Promega) according to the

manufacturer’s instructions. Using 1.0 μl of 1:10 diluted cDNA as template, PCR was per-

formed in a 20 μl reaction volume with Bio-Rod SYBRII Super-Mix buffer on a Bio-Rad iQ2

PCR system (Bio-Rad). The rice actin gene was used as the internal control. Gene-specific

primers for PCR are listed in S4 and S5 Tables.

Map-based cloning of OsDRP1E

Genetic analysis was performed using 133 individuals from the F2 population of the dj-lm × DJ

cross and 126 individuals from the F2 population of the dj-lm × 9311 cross. F2 recessive indi-

viduals from the dj-lm × 9311 cross were used for DNA marker and phenotype segregation

analyses. The phenotype and genotype of each recombinant individual was confirmed in the

F3 generation. For the initial mapping, SSR markers from Gramene (http://www.gramene.org)

were used for linkage analysis. For fine-mapping of the candidate dj-lm mutant gene, InDel

markers were developed based on the sequence differences between the japonica variety NPB

(http://rgp.dna.affrc.go.jp/) and the indica variety 9311 (http://rise2.genomics.org.cn/page/

rice/index.jsp). The primers used for fine mapping are listed in S4 Table. The PCR products

were separated by electrophoresis in 8% polyacrylamide gels or 3% agarose gels depending on

the amplicon size. For complementation tests, the wild-type DJ-LM genomic DNA fragment

was cloned into binary vector pCAMBIA1300. This derivative construct or the empty vector

was mobilized into Agrobacterium stain EHA105 by electroporation and used to transform

the dj-lm mutant. The transformants were grown in a growth chamber for phenotypic and

genotypic investigations.

Phylogenetic analysis

Alignment of the DRP amino acid sequences was performed using CLUSTAL W with DRP

amino acid sequences obtained from NCBI (blast.ncbi.nlm.nih.gov/Blast.cgi).The phylogenetic

trees were constructed by the neighbor joining method [78] using MEGA 6.06 software.
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Yeast two-hybrid assay

The ProQuest yeast two-hybrid system (Invitrogen) was used to screen the OsDRP1E-interact-

ing proteins according to the product manual. The coding sequence of OsDRP1E and

OsDRP1E (E409V)were cloned into bait vector pDBleu and prey vector pPC86, respectively.

The bait and prey vectors were co-transformed into yeast strain MAV203 and the transfor-

mants were selected on synthetic dextrose medium without Leu and Trp (SD-Leu-Trp). The

single transformed yeast was subjected to 10-fold serial dilutions and plated on SD-Leu-Trp-

His medium including 0 or 40 mM 3-amino-1, 2, 4-triazde (3AT, Sigma-Aldrich). Three inde-

pendent experiments were performed, and positive clones on the SD-Leu-Trp-His plates were

stained with 2.5 mM X-gal to detect β-galactosidase activity.

Agroinfiltration in N. benthamiana, protein preparation, and immunoblot

analysis

The fusion constructs of OsDRP1E and E409V with GFP or YFP were transformed into Agrobac-

terium strain EHA105 via electroporation. Six-week-old N. benthamiana leaves were infiltrated

with EHA105 transformants containing the appropriate constructs as described previously [44].

After infiltration for 48 h, the leaf samples were collected for confocal microscopy and immuno-

blot analysis. Confocal microscopy was performed using a Zeiss LSM710 confocal laser-scanning

microscope. For immunoblot analysis, 100 mg fresh N. benthamiana leaf samples were finely

ground in liquid nitrogen and combined with 100 μl 2 × loading buffer (10% glycerol, 50 mM

Tris-Cl [pH6.8], 2% β-mercaptoethanol, 0.02% bromophenol blue, 2% SDS). After boiling for 5

min in a water bath and centrifugation for 5 min at 13,000 rpm at room temperature, 15 μl of the

supernatant was loaded onto an SDS-PAGE gel for immunoblot analysis using anti-GFP and

anti-YFP antibody (1:5000 anti-GFP/anti-YFP dilution, Roche).

Blue native (BN) PAGE

Blue native PAGE was performed as described previously [64]. Briefly, 100 mg samples of

fresh of N. benthamiana leaves that transiently expressed the OsDRP1E-GFP or E409V-GFP

fusion proteins were ground in liquid nitrogen using a mortar and pestle. A Native PAGE

Sample Prep Kit (Invitrogen) was used to isolate the native tobacco proteins. The ground sam-

ples were combined with 400 μl 1 × Tris-buffered saline buffer (2% Triton X-100), vortexed,

and incubated on ice for 30 min. The homogenates were centrifuged twice at 17,000 g, 4˚C, 20

min per centrifugation. Then, 25 μl of the supernatant was transferred to a new tube, com-

bined with 3 μl of 5% Coomassie Brilliant Blue G250 and separated in a 4 to 16% native PAGE

gel (Invitrogen) according to the manual. Immunoblot analysis was performed using anti-GFP

antibody (1:5000). Chemiluminescence was detected using an Image Quant LAS 4000.

Fusion protein purification and GTPase activity assay

Fusion constructs of MBP-OsDRP1E and MBP-E409Vwere transformed into E. coli BL21

(DE3) for protein expression. BL21 was grown at 28˚C to OD600 of 0.6, and IPTG was added

to a final concentration of 2 mM, followed by incubation for 6–8 h at 28˚C. The cell pellets

were harvested by centrifugation for 15 min at 5000 g, 4˚C and resuspended in 1/10 volume

bacterial culture in 0.5 M Tris-HCl buffer (pH8.0) containing protease inhibitor cocktail

(Roche). After sonication, the lysates were centrifuged for 10 min at 15,000 g, 4˚C. Protein

purification was performed using an Amylose resin (NEB, E8021) column according to the

product manual. GTPase activity was determined using a GTPase Assay Kit (Innova Biosci-

ences, 602–0120). The enzyme activity was determined based on the amount of phosphate
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released during GTP hydrolysis, which was calculated according to a phosphate standard

curve prepared using the 0.1 mM phosphate stock included in the GTPase Assay Kit.

Rice protoplast isolation and transient expression

Rice protoplast isolation and transfection were performed as described previously [79]. Briefly,

1 μg of plasmid was transfected into rice protoplasts using the polyethylene glycol 4000 (PEG

4000)-mediated transfection method. MitoTracker staining was performed according to the

product manual. Briefly, the protoplasts were incubated in 200 nM MitoTracker CMXRos

(Invitrogen) in W5 buffer (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES, pH5.6) for

30 min at room temperature and washed three times in W5 buffer. Fluorescence images were

taken under a Zeiss LSM710 confocal laser-scanning microscope at 559 nm excitation and 560

nm emission.

Transmission electron microscopy

Four-week-old and eight-week-old rice leaves (same region in the first and second leaves from

the top and three biological leaf samples were taken) were cut into 1 mm2 sections and sub-

merged in 2.5% glutaraldehyde in sodium phosphate buffer (pH7.2) for 4 h at 4˚C. The samples

were prepared as previously described [24]. The images were observed under a transmission

electron microscope (H-7650B, Hitachi LTD). To quantify the abnormal mitochondria in the

mutant and WT plants, we counted approximate thirty mitochondria in each sample. A mito-

chondrion is considered abnormal when the ratio of vesicle-like to normal cristae is more than

50% and a mitochondrion is considered normal when the ratio of vesicle-like to normal cristae

is less than 50%.

Detection of cytochrome c contents in rice plants

The mitochondria were isolated using the plant mitochondrial extraction kit (Biohao Biotech-

nology Co. #P0045) according to the product manual. Briefly, 200 mg samples of fresh rice

leaves were ground in liquid nitrogen using a mortar and pestle. The ground samples were

combined with 1,000 μl of cold lysis buffer (0.5%β-mercaptoethanol), and vortexed. The

homogenates were centrifuged for 10 min at 1,000 g, 4˚C. The supernatant, containing cyto-

plasmic and mitochondrial proteins, was transferred to a new tube and centrifuged for 10 min

at 16,000 g at 4˚C. The supernatant was collected as the cytoplasmic protein fraction, and the

pellet was washed in 500 μl washing buffer and was centrifuged for 5 min at 1,000 g at 4˚C.

The supernatant from the washing buffer was centrifuged for 10 min at 16,000 g at 4˚C. The

mitochondrial protein fraction pellet was dissolved using 100 μl store buffer. The cytoplasmic

and mitochondrial protein fractions were mixed with the same volume of 2 × loading buffer,

respectively, and incubated in a boiling water bath for 5 min. The mixed samples were loaded

onto a SDS-PAGE gel for immunoblot analysis using the following antibodies at the appropri-

ate dilutions: 1:8000 anti-cytochrome c, 1:6000 anti-VDAC and 1:6000 anti-HSP90 (Agrisera).

Chemiluminescence was detected using an Image Quant LAS 4000 and the software Image J

was used to measure the relative protein levels.

Gene cloning and plasmid construction

The OsDRP1E/E409V-GFP, OsDRP1E/E409V-YFP and YFP-OsDRP1E/E409V fusion con-

structs were generated for the subcellular localization and BN-PAGE experiments. The full-

length cDNAs of OsDRP1E and OsDRP1E (E409V) containing an ORF without the stop codon

were amplified with primers 1-F/R including the SmaI and KpnI restriction sites, and the PCR
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product was inserted into pYBA-1132 (-GFP), pYBA-1155 (-YFP), and pYBA-1135 (YFP-),

respectively, after double digestion with SmaI and KpnI. For the yeast two-hybrid interaction

assay, the coding sequence of OsDRP1E and OsDRP1E (E409V), including the SmaI and SpeI
restriction sites, were amplified with primers 1-F/primer2-R. The PCR product was inserted into

bait vector pDBleu or prey vector pPC86, respectively, after double digestion with SmaI and

SpeI. For the GTPase activity assay, the coding sequence of OsDRP1E and OsDRP1E (E409V),

including the BamHI and SalI restriction sites, were amplified with primer3-F/R, and the PCR

product was inserted into vector pMalC2 after double digestion with BamHI and SalI. The fusion

plasmid was transformed into E. coli strain DE3 for the OsDRP1E protein GTPase activity assay.

For the complementation test, the 5’ terminal portion and 3’ terminal portion of the OsDRP1E
genomic fragments were amplified using primers BQ5-2R-kpnI/BQ4-1F and BQ4-3F/BQ3-

1F-SalI, respectively. The fragments with the correct sequences were sub cloned (via two steps)

into pCAMBIA1300 using a combination of KpnI/SalI and KpnI digestion. The primer informa-

tion is listed in S6 Table.

Accession numbers

Sequence data from this work can be found in the Rice Genome Annotation Project or GenBank

database under the following accession numbers and GI numbers: OsDRP1A (AK065908), OsDR

P1B (AK072230), OsDRP1C (AK061703), OsDRP1D (AK073186), OsDRP1E (AK069270), OsD

RP2A (AK102187), OsDRP2C (AK069134), OsDRP3A (AK073965), OsDRP3B (AK105435),

OsDRP3C (AK111167) from rice; AtDRP1A (NP_851120), AtDRP1B (NP_191735), AtDRP1C

(NP_172936), AtDRP1D (NP_850420), AtDRP1E (NP_567094) from Arabidopsis; Drp1

(NP_036193) from H. sapiens; Dlp2 (AAF51235) from D. melanogaster; Drp1 (AAL56621)

from Caenorhabditis elegans; Dlp (Q09748) from Schizosaccharomyces pombe; Dnm (AAA

99998) from Saccharomyces cerevisiae. PYBA-1132 (KF876796); pYBA-1135 (KF876799);

pYBA-1155 (KF876807).

Supporting Information

S1 Fig. Representative leaves of DJ and dj-lm plants grown in the field.

(TIF)

S2 Fig. Transcriptional analysis of six DJ-LM candidate genes between Dj and dj-lm.

(TIF)

S3 Fig. The resistance phenotypes and ROS burst of the wild type DJ, transgenic plants EV

(pCAMBIA1300 empty vector) and, C2/7 (pCAMBIA1300-OsDRP1E-2/7).

(TIF)

S4 Fig. Spatial and temporal transcription analysis of OsDRP1E.

(TIF)

S5 Fig. Time-course transcriptional analysis of OsDRP1E between compatible (inoculated

with isolate Ro1-1) and incompatible reaction (inoculated with isolate RB22) in DJ.

(TIF)

S6 Fig. Sequence analysis of DRP proteins from diverse organisms.

(TIF)

S7 Fig. GTPase activity assay of OsDRP1E and OsDRP1E (E409V).

(TIF)
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S8 Fig. Expression of YFP-tagged fusion protein OsDRP1E and E409V in N. benthamiana
leaves.

(TIF)

S9 Fig. Subcellular localization of OsDRP1E-GFP and E409V-GFP in planta.

(TIF)

S10 Fig. The cross section of rice leaves under TEM.

(TIF)

S11 Fig. Immunoblot detection of cytochrome c in cytosol and mitochondria from the wild

type DJ, transgenic plants EV (pCAMBIA1300 empty vector) and C2/7 (pCAMBIA1300-

OsDRP1E-2/7).

(TIF)

S1 Table. Agronomic traits of DJ and dj-lm.

(DOCX)

S2 Table. Genetic analysis of F2 populations.

(DOCX)

S3 Table. Information about candidate genes.

(DOCX)

S4 Table. Primers used for fine mapping.

(DOCX)

S5 Table. Primers used for transcriptional analysis.

(DOCX)

S6 Table. Primers used for functional analysis of OsDRP1E.

(DOCX)
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