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The complex development of psoralen-interstrand crosslink resistance in 1 
Escherichia coli requires AcrR inactivation, retention of a marbox sequence, and one 2 
of three MarA, SoxS, or Rob global regulators 3 
 4 

 5 
Abstract 6 
 Crosslinking agents, such as psoralen and UVA radiation, can be effectively used 7 
as antimicrobials and for treating several dysplastic conditions in humans, including some 8 
cancers. Yet, both cancer cells and bacteria can become resistant to these compounds, 9 
making it important to understand how resistance develops.  Recently, several mutants 10 
were isolated that developed high-levels of resistance to these compounds through 11 
upregulation of components of the AcrAB-TolC-efflux pump.  Here, we characterized 12 
these mutants and found that resistance specifically requires inactivating mutations of the 13 
acrR transcriptional repressor which also retain the marbox sequence found within this 14 
coding region. In addition, the presence of any one of three global regulators, MarA, 15 
SoxS, or Rob, is necessary and sufficient to bind to the marbox sequence and activate 16 
resistance. Notably, although psoralen is a substrate for the efflux pump, these regulators 17 
are not naturally responsive to this stress as neither psoralen, UVA, nor crosslink 18 
induction upregulates acrAB expression in the absence of mutation.  19 
 20 
Highlights  21 

• Psoralen crosslink resistance requires AcrR inactivation and MarA/SoxS/Rob activation 22 
• Psoralen crosslink resistance is mediated by upregulating the AcrAB-TolC efflux pump 23 
• AcrAB-TolC can utilize psoralen as a substrate but not upregulated by this stress 24 
• Acquiring resistance to DNA interstrand crosslinks requires mutation 25 

 26 
Keywords: DNA interstrand crosslinks, psoralen-UVA, antimicrobial, cancer therapeutic 27 
 28 
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1. Introduction 30 
 Psoralen in the presence of UVA irradiation forms DNA interstrand crosslinks 31 
and is used in the treatment of psoriasis and vitiligo, as well as in the treatment of 32 
cutaneous T-cell lymphoma [1, 2]. The potency of this treatment and similar therapeutics 33 
is attributed to its ability to form lethal lesions known as DNA interstrand crosslinks [3–34 
6]. In E. coli, a single DNA interstrand crosslink in the genome is sufficient to inactivate 35 
the cell [7, 8]. However, the use of psoralen-UVA and other crosslinking agents as 36 
antimicrobials and chemotherapeutics can be compromised by the emergence of cells 37 
resistant to these drugs [9, 10].  In Escherichia coli,several highly resistant mutants to 38 
psoralen-UVA interstrand crosslinks have been isolated whose resistance is driven by  39 
increased expression of the AcrAB-TolC efflux pump, which protects the DNA and 40 
effectively prevents these lethal lesions from forming when psoralen is present in the 41 
media [11].   42 
 AcrAB-TolC belongs to a highly conserved RND (Resistance-Nodulation-43 
Division) efflux pump family found in Gram-negative bacteria [12–16]. The efflux pump 44 
consists of a proton-driven transporter AcrB, a periplasmic adapter protein AcrA, and the 45 
TolC transmembrane channel [17–20]. AcrAB-TolC is capable of effluxing a wide 46 
variety of structurally dissimilar substrates, including many dyes, detergents, and 47 
antibiotics [21–25], making it a primary driver of multiple-antibiotic resistance [23].  48 

The highly resistant mutants were each found to have mutations in in the 49 
transcriptional regulator AcrR [11].  acrR encodes a TetR family transcriptional regulator 50 
that is located immediately upstream of acrAB and is divergently transcribed [26].  Based 51 
on lacZ-fusion and gel mobility shift assays, Ma et. al. demonstrated that AcrR functions 52 
as a repressor of acrAB that releases upon binding a recognized substrate [27]. Consistent 53 
with this, some substrates of the efflux pump, such as rhodamine, ethidium bromide, and 54 
proflavine, bind to AcrR [28, 29] and this correlates with a loss of DNA binding activity 55 
in vitro [30]. 56 

Surprisingly however, deletion of acrR’s coding region does not increase 57 
resistance to psoralen interstrand crosslinks, suggesting a more complex mechanism of 58 
regulation than a simple repressor function is involved [11].  We noted that the first 20 59 
nucleotides of acrR’s coding region contains a marbox-binding sequence for three closely 60 
related global stress regulators, MarA, SoxS and Rob [31]. These three regulators share 61 
approximately 50% sequence identity [32, 33] and regulate expression of approximately 62 
50 genes, including acrA and acrB, in response to various environmental stressors and 63 
toxins (Fig. 1 and [31–40].  Using a lacZ-reporter construct and gel mobility shift assays, 64 
several groups demonstrated that protein binding to the marbox upstream of acrAB 65 
correlated with its expression [27, 40].  This led to a general model that these global 66 
stress activators drive acrAB expression, with AcrR serving as a secondary repressive 67 
modulator.   68 

Given the importance of DNA interstrand crosslinks in antimicrobrial and 69 
chemotherapeutic therapies, here we sought to characterize the mechanism by which 70 
resistance was achieved in these mutants acquired their resistance.  We found that 71 
although the pump confers resistance to crosslinks, it is not naturally responsive or 72 
upregulated in their presence. Resistance relies on mutations that inactivate the AcrR 73 
repressor but retain the marbox sequence within the gene’s coding region.  The resistance 74 
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can then be activated by the presence of any one of the three global activators, MarA 75 
SoxS or Rob.  76 
 77 
2. Materials and Methods 78 
2.1 Bacterial Strains.  79 

All strains utilized in this study were derived from BW25113, which is the parent 80 
strain of the Keio collection [41], from which the marA, soxS, and rob deletion mutants 81 
were obtained. The acrR deletion mutant was originally obtained from the Keio 82 
collection but was reconstructed by P1 phage transduction into wild-type BW25113. The 83 
acrR(L34Q) mutant was constructed in our previous study [11]. The marA, soxS, and rob 84 
deletions were transduced into acrR(L34Q) using a standard PI phage transduction. The 85 
marAsoxSrob triple mutant was constructed by using FLP recombinase expression from 86 
the pCP20 plasmid to remove the kanR cassette from the marA deletion mutant, 87 
transducing the soxS deletion into the marA deletion mutant, and then repeating the above 88 
process to also delete rob. This process was repeated in the acrR(L34Q) mutant to 89 
generate the acrR(L34Q)marAsoxSrob quadruple mutant. The presence of all three 90 
deletions was confirmed using PCR. Strains CL5415 - CL5422 were constructed by 91 
transforming pBAD33, pBAD33-acrAB, pNN387, or pNN608 plasmids into 92 
electrocompetent JW5249, JW4023, JW4359. For the deletion of acrR past the marbox 93 
sequence, the KanR cassette was recombineered into BW25113 using primers 94 
5’AGAAGCGCAAGAAACGCGCCAACACATCCTCGATGTG 95 
GCTCTACGTCTTTATGATTCCGGGGATCCGTCGACC3’and 5’CAGG 96 
AAAAATCCTGGAGTCAGATTCAGGGTTATTCGTTAGTGGCAGGATT 97 
TGTAGGCTGGAGCTGCTTCG3’All strains used in this study are listed in Table 1.  98 
 99 
2.2 Psoralen-UVA (PUVA) survival.  100 

10-µL aliquots of 10-fold serial dilutions from overnight cultures were spotted 101 
onto LBthy plates containing 20 µg/mL 8-methoxypsoralen. Plates were then exposed to 102 
UVA irradiation at an incident dose of 6.5 J/m2/s for the indicated dose and incubated 103 
overnight at 37°C. Surviving colonies at each dose were then counted and compared to 104 
the non-exposed plates to calculate percent survival.  105 

For overexpression of acrAB from expression vectors, 5 mL LB subcultures were 106 
inoculated with 50 µL of overnight cultures containing the expression plasmid, pBAD33-107 
acrAB, or its parent vector, pBAD33, and grown in a 37°C shaking water bath to OD600 108 
of 0.4. 1 mM L-arabinose was added to subcultures for the last 30 minutes of incubation 109 
before proceeding with survival assays as described above. 110 
 111 
2.3 acrAB-lacZ expression.  112 
10-µL aliquots of 10-fold serial dilutions from overnight cultures containing pNN608 113 
(acrABp-lacZ) or pNN387 (empty vector) were spotted onto LBthy plates supplemented 114 
with 120 µg/mL 5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside (X-Gal) either with 115 
or without 20 µg/mL 8-methoxypsoralen. Two plates each of LB X-GaL and LB X-Gal + 116 
20 µg/mL 8-methoxypsoralen were then exposed to 3.8 kJ/m2 UVA radiation as 117 
described above for survival assays. Plates were then compared to unexposed plates and 118 
photographed.  119 
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 120 
3. Results 121 
3.1 Global Regulators MarA, SoxS, and Rob are required for full resistance to psoralen-122 
UVA.  123 
 In previous work, three mutations in the transcriptional repressor acrR were 124 
isolated and found to confer high-level resistance to psoralen-UVA through the 125 
upregulation of acrA and –B, encoding components of the AcrAB-TolC efflux pump 126 
(Fig. 2A and [11]). However, when we deleted the entire acrR coding region, we found 127 
that unlike the other acrR mutations, no resistance was conferred (Fig. 2A). The 128 
observation argues that the loss of the AcrR repressor is insufficient to confer resistance 129 
to psoralen interstrand crosslinks and a more complex mechanism is involved in the 130 
acquisition of resistance.  131 

Common to all three of the resistance-conferring acrR mutants that were islaoted 132 
is that they retain the initial third of acrR’s coding sequence but alter or remove the latter 133 
two-thirds of the protein.  The first third of the gene encodes the DNA-binding domain 134 
for the AcrR regulator. However, we also noted this region also encodes a MarA, SoxS, 135 
and Rob binding sequence, termed marbox, which has been reported to positively 136 
regulate the acrA -B operon [27, 31].  Thus, it is possible that the mutations confer 137 
psoralen resistance either through altering AcrR’s DNA binding properties or through 138 
activation of acrAB by MarA, SoxS, or Rob. 139 
 If the psoralen resistance is mediated through the marbox, then deletion of the 140 
marA, soxS, and rob genes would be expected to impair resistance in these strains. To test 141 
this possibility, we examined the ability of mutants deleted for these genes to survive 142 
psoralen-UVA treatment.  Ten-fold serial dilutions of an overnight culture were spotted 143 
on plates containing 20 μg/mL 8-methoxypsoralen and exposed to increasing doses of 144 
UVA. Following overnight incubation at 37°C, surviving colonies were counted and 145 
compared to the unexposed plate to determine percent survival. Figure 2B shows that 146 
deletion of either marA, soxS, or rob renders cells more sensitive than WT to psoralen-147 
UVA irradiation, indicating that all three of these genes are important for psoralen-UVA 148 
resistance. Notably, the contribution of each was not additive, as the absence of any 149 
single regulator resulted in hypersensitivity that was similar to the marA soxS rob triple 150 
mutant (Fig. 2C). Given that MarA, SoxS, and Rob all share a single marbox binding 151 
sequence within acrR, it is unexpected and remains unclear why deleting of any one of 152 
these three proteins renders cells hypersensitive.  However, the observation indicates that 153 
all three proteins are required to maintain resistance to psoralen-UVA interstrand 154 
crosslinks, despite sharing a single DNA binding sequence.  155 
 156 
3.2 MarA, SoxS, and Rob contribute to psoralen-UVA resistance primarily through 157 
upregulation of acrAB.  158 

MarA, SoxS, and Rob upregulate expression of approximately 50 genes in 159 
response to various cellular stresses [31]. Thus, although the results of Fig. 2 indicate that 160 
MarA, SoxS, and Rob are required for full resistance to psoralen, they do not establish if 161 
this contribution can be attributed directly to the upregulation of acrAB or if resistance is 162 
conferred by other marbox-regulated genes. To test this, we used an arabinose-inducible 163 
acrAB plasmid to overexpress acrAB in the marA, soxS, rob deletion mutants, which 164 
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would result in upregulation of acrAB, but not any other marbox-regulated genes. 165 
Actively growing cultures containing the plasmid were incubated with arabinose for 30 166 
minutes to induce acrAB expression prior to psoralen-UVA treatment. Figure 3 shows 167 
that plasmids containing the acrAB sequence increase resistance in marA, soxS, and rob 168 
mutants to near wild-type levels. By contrast, mutants containing an identical plasmid 169 
lacking the acrAB sequence remain hypersensitive to psoralen-UVA treatment.  The 170 
results indicate that MarA, SoxS, and Rob contribute to psoralen-UVA resistance 171 
primarily through upregulation of acrAB expression and that the idea that loss of this 172 
upregulation in the acrR deletion mutant could be responsible for its inability to confer 173 
resistance. 174 
 175 
3.3 MarA, SoxS, and Rob activation and AcrR de-repression contribute additively to 176 
psoralen interstrand crosslink resistance 177 

MarA, SoxS, and Rob-mediated upregulation of acrAB is required for full 178 
resistance to psoralen-UVA (Fig. 2 and 3). Since the highly resistant acrR(L34Q) mutant 179 
retains the marbox sequence, it is possible that the high level of resistance requires 180 
activation by MarA, SoxS, or Rob.  If true, we would expect that deletion of marA, soxS, 181 
or rob would significantly reduce psoralen-UVA resistance in the acrR(L34Q) strain. As 182 
shown in Fig. 4, acrR(L34Q) mutants remained resistant to psoralen-UVA, when either 183 
marA, soxS, or rob was deleted.  However, the loss of all three genes reduced the 184 
resistance of acrR(L34Q) mutants to levels similar to wild-type cells and the acrR 185 
deletion mutant. Taken together with the previous observations, the results support the 186 
idea that both de-repression by AcrR and activation by MarA, SoxS, or Rob are required 187 
to achieve resistance to psoralen interstrand crosslinks.  188 

To confirm these requirements directly, we used recombineering to generate a 189 
complete deletion of the acrR coding sequence with the exception of the first 21 190 
nucleotides encoding the marbox sequence. Figure 5 shows that the marbox sequence 191 
alone is sufficient to restore full resistance to acrR deletion mutants, mimicking the 192 
resistance seen in the acrR(L34Q) mutant.  193 
 194 
3.4 acrAB expression is not induced by psoralen, UVA, or psoralen-UVA irradiation.  195 

The results above demonstrate that the AcrR transcriptional regulator and 196 
activation by either MarA SoxS or Rob are required toupregulate acrAB and confer to 197 
crosslink resistance. However, how acrAB is regulated in wild-type cells during 198 
challenge with psoralen-UVA is unknown. Previous studies have shown that exposure to 199 
others stressors and agents- including ethidium bromide, cadaverine, ethanol, or high 200 
osmolarity, can induce expression of acrAB to increase resistance [27, 42].  To examine 201 
if acrAB expression is responsive to psoralen-UVA treatments, we used a plasmid that 202 
contained the acrAB promotor region fused to lacZ. The cloned promoter region contains 203 
both the AcrR binding site as well as the first 102 nucleotides of acrR coding sequence 204 
which contains the marbox binding site. To test if psoralen, UVA irradiation, or the 205 
presence of interstrand crosslinks can serve to induce acrAB expression, cultures 206 
containing the plasmid were spotted in 10-µL serial dilutions on X-Gal plates that were 207 
left untreated or exposed to either psoralen, UVA, or psoralen-UVA. As shown in Figure 208 
6A, in the presence of the acrABp-lacZ reporter, the parental strain detectably expressed 209 
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the acrAB genes as indicated by the partially blue colonies, relative to the control 210 
plasmid. As controls, we also examined the acrR(L34Q) resistant mutant and the 211 
sensitive marA soxS rob deletion mutant.  As expected, acrAB expression was elevated in 212 
acrR(L34Q) mutant as indicated by the intensely blue colonies, correlating with the 213 
increased expression of acrAB and resistance in this strain.  Similarly, colonies were 214 
noticeably less blue in the marA soxS rob deletion background which correlates with 215 
reduced acrAB expression and hypersensitivity. 216 

Notably however, expression did not increase in the presence of either psoralen, 217 
UVA, or psoralen plus UVA treatments.  The results imply that psoralen, UVA, or the 218 
combination do not generate substrates that activate acrAB and suggest these regulators 219 
are not normally responsive to this challenge, in the absence of mutation. 220 
 221 
4. Discussion 222 

The results demonstrate that all three of the related global regulators MarA, SoxS, 223 
and Rob have a significant role in psoralen-UVA resistance. However, regulation by 224 
these activators was found to be complex.  Deletion of any single global effector gene in 225 
wild-type cells had a similar impact on psoralen-UVA resistance as deleting all three 226 
genes.  This result is unexpected for several reasons. First, although rob is expressed 227 
constitutively, marA and soxS are expressed at relatively low levels until a specific 228 
stressor induces their expression [31, 32, 34, 35, 39, 43]. Additionally, the activity of Rob 229 
has been shown to be responsive to its recognition of various substrates  and its release 230 
from sites of sequestration in the cell [40, 44]. Yet despite these regulators responding to 231 
different stressors, Fig. 2 demonstrates that no single effector is responsible for initiating 232 
the stress response to psoralen-UVA irradiation. Second, given the high level of 233 
homology between MarA, SoxS, and Rob, and their ability to bind the same marbox sites 234 
across the genome, one might expect that loss of one regulator could be offset by the 235 
presence of the other two [31, 32, 34, 35, 39, 45]. Yet this is not observed in wild-type 236 
cells.  On the other hand, if no redundancy existed, one might expect that deleting marA, 237 
soxS, and rob would have an additive effect on psoralen-UVA sensitivity. This is also not 238 
observed (Fig. 2). Thus, the apparent any-and-all requirement for MarA, SoxS, and Rob 239 
could suggest that crosstalk between these activators is particularly important in psoralen-240 
UVA resistance. Alternatively, it is possible that the sensitivity of this assay to 241 
distinguish phenotypic differences decreases as the limits of detectability are approached.  242 

Irrespective of the crosstalk, the AcrAB-TolC transporter appears to be the causal 243 
target for MarA, SoxS, and Rob generating psoralen crosslink resistance, since the 244 
hypersensitive phenotype of these mutants can be suppressed by overexpression of 245 
AcrAB alone and does not require any of the other approximately 50 genes under their 246 
regulation [31–40]and Fig 3).  247 

The results may also suggest a more complex mechanism of regulation by AcrR 248 
than that of a simple repressor.  The acrR(L34Q) point mutation is resistant to psoralen-249 
UVA treatment and retains the marbox activation sequence, yet a deletion of the acrR 250 
open reading frame that deletes the marbox activation sequence renders cells sensitive.  If 251 
AcrR acts as a basic repressor, then the simplest model would be that acrR(L34Q) is a 252 
null mutation, and that upregulating acrAB expression enough to provide full resistance 253 
requires both removal of the AcrR repressor and activation by MarA, SoxS, and Rob. The 254 
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finding that removal of all three proteins renders the acrR(L34Q) mutant similar in 255 
resistance to the acrR deletion supports this model (Figure 4D). In contrast to what was 256 
seen in wild-type cells (Fig 2), deletion of marA, soxS, or rob individually was 257 
insufficient to noticeably reduce resistance in acrR(L34Q). As mentioned above, one 258 
possible explanation would be that the sensitivity of the survival assays used in this study 259 
are insufficient to distinguish small differences between hypersensitive strains, as their 260 
numbers approach the lower end of detectability. If true, increasing the background level 261 
of resistance through de-repression of acrAB expression as in Figure 4 could make the 262 
differences between individual marA, soxS, and rob deletion mutants and the 263 
marAsoxSrob triple mutant more detectable.  264 

The most prominent model for AcrR repressor function is that it releases upon 265 
binding a recognized substrate [27–29, 46, 47]. These initial studies used both LacZ 266 
reporter constructs and gel-shift binding assays to provide strong evidence that AcrR can 267 
repress expression of acrAB when bound to its promoter [27]. However, other aspects of 268 
this study also suggested more complexity in its function. Transcription of the acrR 269 
repressor was also induced by the same stressors that upregulated acrAB transporter 270 
expression, and acrAB upregulation during ethanol stress or growth phase occurred 271 
independently of MarA and SoxS, similar to what we observe in the presence of psoralen 272 
[27].  The repressor model of AcrR activity is based on its similarity to other TetR family 273 
transcriptional regulators.  It proposes that upon ligand binding, AcrR releases from DNA 274 
to allow transcription.  However the AcrAB-TolC transporter is active on a wide range of 275 
structurally divergent substrates [42, 47], making it unclear how the protein could 276 
effectively recognize this diverse range of toxic substrates. The few substrates which 277 
have been examined and shown to promote AcrR release from oligos in vitro have been 278 
DNA intercalators [28, 29, 46] which makes it difficult to determine if release is due to 279 
ligand binding or changes to the DNA structure of the oligos used. Further, studies 280 
looking for upregulation of AcrAB following treatments with known substrates of the 281 
pump have seen modest to no effect [42, 47].  Thus, the mechanism of regulation and 282 
natural substrate for induction of the efflux pump remains unclear. 283 
 This ambiguity of the regulatory mechanism also holds true for resistance to 284 
psoralen interstrand crosslinks. Although psoralen is clearly a substrate for the efflux 285 
pump [11], AcrR does not appear to be naturally responsive to this stress, as neither 286 
psoralen, UVA, nor crosslink induction upregulates acrAB expression.  This perhaps 287 
makes sense given that the cell must acquire mutations that disrupt AcrR repression of 288 
the efflux pump to achieve resistance.  Importantly, we show here that full resistance is 289 
only achieved when acrR null mutations preserve the marbox sequence (Figure 5), as in 290 
acrR(L34Q). This is particularly relevant to the emergence of multi-drug resistance in 291 
Gram-negative bacteria, as mutations in acrR are known to drive multi-drug resistance 292 
and are commonly found in clinical isolates [48–52]. Additionally, the original studies 293 
that characterized AcrR used insertion mutants that disrupted the protein after the 294 
marbox, while later studies used the complete deletion mutant of acrR from the Keio 295 
collection [26, 27, 41, 42, 47]. Our results demonstrate that it will be important in the 296 
future to consider the impact of acrR mutations on the marbox when assessing their 297 
phenotypic effects. Finally, it is also notable that the resistance to psoralen interstrand 298 
crosslinks is achieved by preventing this drug from forming this lesion.  No mutations 299 
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upregulating repair pathways or proteins were observed in the initial screen, consistent 300 
with previous studies that found cells lack effective repair mechanisms for this form of 301 
damage [6–8, 53].  302 
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Table 1. List of strains used in this study. 317 
Strain Relevant Genotype Source or Construction 

BW25113 lacIq rrnBT14 ΔlacZWJ16 hsdR514 
ΔaraBADAH33 ΔrhaBADLD78 

[54] 

JW0453 acrR::FRT-minikan [41] 
JW5249 marA::FRT-minikan [41] 
JW4023 soxS::FRT-minikan [41] 
JW4359 rob::FRT-minikan [41] 
CL5312 marA::FRT pCP20-mediated [55] removal of 

minikan from JW5249 
CL5317 marA::FRT soxS::FRT-minikan P1 transduction of soxS::FRT-minikan 

from JW4023 into CL5312 
CL5322 marA::FRT soxS::FRT pCP20-mediated [55] removal of 

minikan from CL5317 
CL5414 marA::FRT soxS::FRT rob::FRT-minikan P1 transduction of rob::FRT-minikan 

from JW4359 into CL5322 
CL5230 acrR(L34Q) [11] 
CL5323 acrR(L34Q) soxS::FRT-minikan P1 transduction of soxS::FRT-minikan 

from JW4023 into CL5230 
CL5324 acrR(L34Q) marA::FRT-minikan P1 transduction of marA::FRT-minikan 

from JW5249 into CL5230 
CL5325 acrR(L34Q) rob::FRT-minikan P1 transduction of rob::FRT-minikan 

from JW4359 into CL5230 
CL5433 acrR(L34Q) marA::FRT pCP20-mediated [55] removal of 

minikan from CL5324 
CL5436 acrR(L34Q) marA::FRT soxS::FRT-

minikan 
P1 transduction of soxS::FRT-minikan 

from JW4023 into CL5433 
CL5438 acrR(L34Q) marA::FRT soxS::FRT pCP20-mediated [55] removal of 

minikan from CL5436 
CL5440 acrR(L34Q) marA::FRT soxS::FRT 

rob::FRT-minikan 
P1 transduction of rob::FRT-minikan 

from JW4359 into CL5438 
CL5442 acrR (aa 7 – 215)::FRT-minikan Recombineering to replace amino 

acids 7 – 215 of acrR in BW25113 
with FRT-minikan 

CL5333 pBAD33 [11] 
CL5334 pBAD33-acrAB [11] 
CL5415 marA::FRT-minikan pBAD33 Transformation of pBAD33 [56] into 

JW5249 
CL5416 marA::FRT-minikan pBAD33-acrAB Transformation of pBAD33-acrAB 

[56] into JW5249 
CL5417 soxS::FRT-minikan pBAD33 Transformation of pBAD33 [56] into 

JW4023 
CL5418 soxS::FRT-minikan pBAD33-acrAB Transformation of pBAD33-acrAB 

[56] into JW4023 
CL5419 rob::FRT-minikan pBAD33 Transformation of pBAD33 [56] into 

JW4359 
CL5420 rob::FRT-minikan pBAD33-acrAB Transformation of pBAD33-acrAB 

[56] into JW4359 
DH7169 pNN387 [57] 
CR6000 pNN608 [27] 
CL5402 BW25113 + pNN387 Transformation of pNN387 [57] into 

BW25113 
CL5403 BW25113 + pNN608 Transformation of pNN608 [27] into 
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BW25113 
CL5421 acrR(L34Q) + pNN387 Transformation of pNN387 [57] into 

CL5230 
CL5422 acrR(L34Q) + pNN608 Transformation of pNN608 [27] into 

CL5230 
CL5530 marA::FRT soxS::FRT rob::FRT-minikan + 

pNN387 
Transformation of pNN387 [57] into 

CL5414 
CL5531 marA::FRT soxS::FRT rob::FRT-minikan + 

pNN608 
Transformation of pNN608 [27] into 

CL5414 
CL5532 acrR(L34Q) marA::FRT soxS::FRT 

rob::FRT-minikan +pNN387 
Transformation of pNN387 [57] into 

CL5440 
CL5533 acrR(L34Q) marA::FRT soxS::FRT 

rob::FRT-minikan +pNN608 
Transformation of pNN608 [27] into 

CL5440 
 318 
References 319 
 320 
 321 
 322 
FIGURE LEGENDS 323 
Figure 1. Current model of MarA, SoxS, and Rob global gene regulation. Green, MarA; 324 
blue, SoxS; purple, Rob; red, AcrR; yellow, DNA binding sites; orange, Mar/Sox/Rob 325 
binding site (marbox). Arrows indicate activation, while interruption of the end of a line 326 
indicates repression (derived from models and data presented in [26, 31, 33, 36, 37, 45]).  327 
 328 
Figure 2. acrR(L34Q), but not deletion of acrR, confers resistance to psoralen–UVA, 329 
while deletion of marA, soxS, or rob renders cells hypersensitive. A) The survival of 330 
wild-type cells (filled squares); ΔacrR (filled circles), and acrR(L34Q) mutants (open 331 
circles), B) ΔmarA (filled triangles), ΔsoxS mutant (filled inverted triangles), Δrob 332 
mutants (filled diamonds) and C) ΔmarA ΔsoxS Δrob mutants (open diamonds) is plotted 333 
following UVA irradiation at the indicated doses in the presence of 20 µg/mL 8-334 
methoxypsoralen. Plots represent the average of at least two independent experiments. 335 
Error bars represent the standard error of the mean. Wild type is replotted in each graph 336 
for comparison. 337 
 338 
Figure 3. Overexpression of AcrAB alone is sufficient to restore psoralen-UVA 339 
resistance in ΔmarA, ΔsoxS, and Δrob mutants. The survival of wild type (squares), 340 
ΔmarA (triangles), ΔsoxS (inverted triangles), and Δrob (diamonds) containing either an 341 
empty pBAD33 expression vector (filled symbols) or an AcrAB expression vector (open 342 
symbols) is plotted following UVA irradiation at the indicated doses in the presence of 20 343 
µg/mL 8-methoxypsoralen. Plots represent the average of at least two independent 344 
experiments. Error bars represent the standard error of the mean. Wild type is replotted in 345 
each graph for comparison. 346 
 347 
Figure 4. acrR(L34Q) psoralen-UVA resistance requires MarA, SoxS, and Rob 348 
activation. The survival of wild-type cells (filled squares), acrR(L34Q) (open circles), 349 
ΔmarA (closed triangles), acrR(L34Q) ΔmarA (open triangles); (B) ΔsoxS (filled inverted 350 
triangles), acrR(L34Q) ΔsoxS (open inverted triangles); (C) Δrob (filled diamonds), and 351 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.12.03.626702doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.03.626702
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

acrR(L34Q) Δrob (open diamonds); (D) ΔmarA ΔsoxS Δrob mutants (open squares), 352 
acrR(L34Q) ΔmarAΔsoxSΔrob (filled circles) in the presence of 20 µg/mL 8-353 
methoxypsoralen at the indicated UVA doses is plotted. Plots represent the average of at 354 
least two independent experiments. Error bars represent the standard error of the mean. 355 
Wild type is replotted in each graph for comparison. 356 
 357 
Figure 5. The marbox sequence is necessary and sufficient to induce resistance to 358 
psoralen interstrand crosslinks in the absence of the AcrR repressor. The survival of wild-359 
type cells (filled squares), ΔacrR (filled circles), acrR(L34Q) (open circles), and ΔacrR 360 
(aa7-215) (filled triangles) in the presence of 20 µg/mL 8-methoxypsoralen at the 361 
indicated UVA doses is plotted. Plots represent the average of at least two independent 362 
experiments. Error bars represent the standard error of the mean. 363 
 364 
Figure 6. acrAB expression is not upregulated by psoralen, UVA, or psoralen-UVA. 10 365 
µL spots of 104 cells of  wild type, acrR(L34Q), or ΔmarA ΔsoxS Δrob, mutants 366 
containing a LacZ reporter plasmid fused with the acrAB promoter region (p-acrAB-lacZ) 367 
or no promoter region (empty vector) were plated on LB plates containing X-Gal. Plates 368 
contained 20 µg/mL 8-methoxypsoralen and were UVA irradiated with 3.8 kJ/m2 as 369 
indicated. LacZ expression from the plasmids is indicated by blue color in colonies. 370 
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Figure 1. Current model of MarA, SoxS, and Rob global gene regulation. Green, MarA; blue, 
SoxS; purple, Rob; red, AcrR; yellow, DNA binding sites; orange, Mar/Sox/Rob binding site 
(marbox). Arrows indicate activation, while interruption of the end of a line indicates 
repression (derived from models and data presented in {Ma et al., 1995; Martin et al., 2000; 
Martin and Rosner, 2002; Skarstad et al., 1993; Greenberg et al., 1990; Nunoshiba, 1996). 
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Figure 3. Overexpression of AcrAB alone is sufficient to restore psoralen-UVA resistance 
in ΔmarA, ΔsoxS, and Δrob mutants. The survival of wild type (squares), ΔmarA 
(triangles), ΔsoxS (inverted triangles), and Δrob (diamonds) containing either an empty 
pBAD33 expression vector (filled symbols) or an AcrAB expression vector (open 
symbols) is plotted following UVA irradiation at the indicated doses in the presence of 20 
µg/mL 8-methoxypsoralen. Plots represent the average of at least two independent 
experiments. Error bars represent the standard error of the mean. Wild type is replotted in 
each graph for comparison.
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Figure 4. acrR(L34Q) is dependent on MarA, SoxS, and Rob for full confers psoralen-UVA resistance.  independent of MarA, SoxS, and Rob 
activation. The survival of wild-type cells (filled squares), acrR(L34Q) (open circles), ΔmarA (closed triangles), acrR(L34Q) ΔmarA (open 
triangles); (B) ΔsoxS (filled inverted triangles), acrR(L34Q) ΔsoxS (open inverted triangles); (C) Δrob (filled diamonds), and acrR(L34Q) Δrob 
(open diamonds); (D) ΔmarA ΔsoxS Δrob mutants (open squares), acrR(L34Q)ΔmarAΔsoxSΔrob (filled circles)  in the presence of 20 µg/mL 8-
methoxypsoralen at the indicated UVA doses is plotted. Plots represent the average of at least two independent experiments. Error bars represent the 
standard error of the mean. Wild type is replotted in each graph for comparison.
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Figure 5. Only acrR null mutations that preserve the marbox, like 
acrR(L34Q), confer resistance to psoralen-UVA. The survival of 
wild-type cells (filled squares), ΔacrR (filled circles), acrR(L34Q) 
(open circles), and ΔacrR (aa7-215) (open triangles) in the 
presence of 20 µg/mL 8-methoxypsoralen at the indicated UVA 
doses is plotted. Plots represent the average of at least two 
independent experiments. Error bars represent the standard error of 
the mean.
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Figure 6. acrAB expression is not upregulated by psoralen, UVA, or psoralen-UVA. 10 µL spots 

of 104 cells of wild type, acrR(L34Q),  and ΔmarA ΔsoxS Δrob, mutants containing a LacZ 
reporter plasmid fused with the acrAB promoter region (p-acrAB-lacZ) or no promoter region 
(empty vector) were plated on LB plates containing X-Gal. Plates contained 20 µg/mL 8-
methoxypsoralen and were UVA irradiated with 3.8 kJ/m2 as indicated. LacZ expression from 
the plasmids is indicated by blue color in colonies.
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