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Abstract

Sitobion avenae is a major agricultural pest of wheat in China. Using microsatellite markers, we studied the potential gene
flow, genetic diversity, genetic differentiation, and genetic structure of seven S. avenae populations from different regions of
China (Beijing, Hebei, Henan, Hubei, Jiangsu, Shandong, and Shanxi provinces). The populations from Henan, Shandong,
and Jiangsu showed high levels of genic and genotypic diversity. By contrast, the genic diversity in the Beijing and Hebei
populations was much lower. Despite this low genic diversity, the genotypic diversity of the Beijing population was higher
than that of all of the other populations, except those from Jiangsu and Shandong. Overall, the genetic divergence among
the seven S. avenae populations tested was high, though there was almost no differentiation between the Shandong and
Henan populations. We observed significant negative correlation between the strength of gene flow and the geographic
distances among populations. Based on genetic analysis, the seven S. avenae populations studied can be divided into four
distinct clusters; (i) Hubei, (ii) Shanxi, (iii) Beijing and Hebei, and (iv) Shandong, Henan, and Jiangsu. The present results
provide a basis for potentially optimizing integrated pest management (IPM) programs in China, through adapting control
methods that target biological traits shared by various populations of the same genotype.
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Introduction

Several wheat aphid species are major agricultural pests in

China, notably Sitobion avenae, Rhopalosiphum padi (L.),

Schizaphis graminum (Rondani), and Acyrthosiphon dirhodum
Walker [1]. Of these, S. avenae is the most dominant and

destructive wheat aphid in China [2,3]; it affects about 13 million

hm2 per year, and yield losses can be up to 40% [4]. Wheat aphids

infest cereal crops and cause direct economic losses through

sucking sap, and indirect losses by vectoring plant viruses [5].

Wheat aphids have complex life cycles that are known to be

highly affected by climate [6]. Some aphid species exhibit great

flexibility in the selection of their reproductive mode [7–9]. All

lifecycle types reproduce parthenogenetically for most of the year;

some species have an annual sexual phase [10]. The lifecycle of

cyclic parthenogenic species have a sexual reproduction phase

once a year, and overwinter as asexually produced eggs; this is a

more reliable strategy when winters are harsh [11–16]. Cyclic

parthenogenesis is the dominant mode of reproduction, especially

in the regions with harsh winters [15,17]. However, if the climatic

conditions allow, some clones are obligate parthenogenic, they do

not respond to autumnal cues and have no sexual phase. There are

also intermediate types which employ both sexual and partheno-

genetic reproduction [6,9,15,18]. A study showed that the asexual

genotypes of Rhopalosiphum padi had higher genetic variation in

fitness compared to the sexual genotypes [19], indicating that the

reproductive mode greatly impacts the fitness of wheat aphids.

S. avenae can survive on numerous plant species, including all

of the cereals, many other monocots, and certain dicots [20].

Divergent selection on different host plants greatly influences the

diversification of the aphids, and imposes considerable selective

pressure on aphids’ evolution [21]. Host-transfer experiments for

clones of S. avenae collected from oat and barley showed that their

fitness traits differed significantly, indicating a genetic basis for

their differentiation [22].

Aphids have complex lifecycles and adaption to diverse hosts;

this means that any given geographical population of aphids will

not be homogeneous [23]. If the migration scale is large enough,

the population genetic structure and evolutionary trajectory will be

influenced [24]. As different kinds of aphids have different abilities

to fly and face different pressures leading to migration, they act out

different migration behaviors [25]. The flight ability of winged

aphids is very weak [26,27], and they migrate for long distances by

largely depending on wind forces [28].

Clonal selection is very important in the study of population

genetic structures of wheat aphids. Ecological adaption may occur

quickly because of the rapid propagation of asexual offspring [29].

There are many factors influencing clonal selection. These include
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climatic, host plant, microclimates, crop density, natural enemy

pressure, and resistance to pesticides [15,30,31].

It is difficult to understand the ecology of wheat aphids, as they

tend to migrate with the wind [32]. Additionally, wheat aphids are

small and have short life spans and large population sizes.

Populations can be diluted rapidly in the air and migrate

frequently [26]. Therefore, it is difficult to monitor the migration

of wheat aphids using ecological approaches. Currently, polymor-

phic genetic markers have been widely used in the studies of

population ecology [25].

In the past 20 years, many studies addressing the flying behavior

and genetic structure of aphids populations have been conducted

using microsatellite markers [15,26,27,33,34]. As noted, wheat

aphids have different lifecycles based on the climate conditions of

various geographic regions; the most suitable clone lineages for a

given area are selected. Due to lifecycle strategy and clonal

selection, studies of the aphids in the same region, but in different

years, may also present different population genetic structures

[15,35]. However, the gene flow among different geographical

populations can also be reflected in population genetic differen-

tiation and population structure [34–36]. The management

methods used to control wheat aphids can lead to new phenotypes

emerging to overcome strong pressures such as pesticide applica-

tions, so quantification of the genetic diversity of populations is

very important for the management of wheat aphids [37].

In the present study, we used five microsatellite loci (Sm10,

Sm11, Sm12, Sm17, and Sag4), which had been used previously

[15,25,38,39,40], to characterize the potential gene flow, genetic

diversity, genetic differentiation, and genetic structure of seven S.
avenae populations from seven different geographic regions in

China. To interpret the population structure and dynamics of S.
avenae, we need to better understand the importance of migration

and clonal selection, which may have relevance in forecasting

aphid outbreaks. Our results also provide a foundation for

optimizing integrated pest management (IPM) programs through

adapting control methods according to biological traits shared by

various populations of the same genotype.

Materials and Methods

Aphid Sample Collection
Wingless adults of S. avenae were collected from seven sites

across six provinces (Hebei, Shandong, Henan, Shanxi, Jiangsu,

and Hubei province) and the Beijing municipality of China. These

are the main wheat producing provinces of China. The site

locations are presented in Figure 1. The fields, where the S.
avenae collected from, are agricultural experiment fields belong to

plant protection research stations at Cangxian (Hebei province,

China), Liaocheng (Shandong province, China), Xihua (Henan

province, China), the Yanhu distriction of Yuncheng (Shanxi

province, China), Dongtai (Jiangsu province, China), Zaoyang

(Hubei province, China) and the Agricultural Experiment Station

of China Agricultural University (Beijing, China), respectively.

30,40 individuals were collected from each site, and each aphid

was taken from a different field in order to minimize resampling of

the same clone. Samples that were collected from the same region

were considered as one ‘population’. The collected specimens were

taken back to the laboratory in 100% ethanol.

DNA Extraction and PCR of Microsatellite Loci
Genomic DNA was extracted from wingless adult aphid

individuals using DNAVzol (Vigorous Biotechnology Beijing

Co., Ltd.), according to the manufacturer’s instructions.

Two hundred forty six aphids were examined at five microsat-

ellite loci (Sm10, Sm11, Sm12, Sm17, and Sag4). The microsat-

ellite loci of Sm10, and Sm11, Sm12, Sm17 were isolated from S.
miscanthi [38], and Sag4 was isolated from S. avenae. Sm11 is x-

linked, and the other three loci are autosomal [40]. The SaS4

Figure 1. S. avenae sampling sites in China.
doi:10.1371/journal.pone.0109349.g001
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locus is also autosomal [15]. The primer sequences of 4

microsatellite loci (Sm10: 59-TCTGCTGCATTACTGTTGGC-

39, 59 -TCGTCTACTTCGCCGTCA-39; Sm11: 59-TCTGCT-

GCATTACTGTTGGC-39, 59 -TCGTCTACTTCGCCGTCA-

39; Sm17: 59-TCTGCTGCATTACTGTTGGC-39, 59 -TCGTC-

TACTTCGCCGTCA-39; Sag4: 59-TCTGCTGCATTACTG-

TTGGC-39, 59 -TCGTCTACTTCGCCGTCA-39) were report-

ed by Simon et al. (1999) [15]. The primer sequences of locus

Sm12 (59-CACCATCGCGTTTCATCTTA-39; 59-ACTCC-

CAACCTCTGATGAGC-39) were reported by Llewellyn et al.
(2003) [25]. They have verified before application.

The PCR conditions were the same as those of Simon et al.
(1999) [15]. PCR reactions were performed in a 20 mL reaction

volume. Each reaction mixture contained 0.2 mL of 5 U/mL rTaq

polymerase, 2.0 mL of each 2.5 umol dNTP and 2.0 mL of 610

buffer (TaKaRa Biotechnology (Dalian) Co.,Ltd.), 1 mL of 10 mM

of each primer (SANGON), and 1 mL of DNA template

(approximately 10 ng). The PCR products were examined using

an ABI3730*1 instrument and the allele sizes were analyzed using

Genemapper 3.0 software (Applied Biosystems).

Data Analysis
The genotype data is presented in File S1. Departure from

Hardy-Weinberg equilibrium (HWE) was tested under the hypoth-

esis of heterogeneity deficit and excess using Genepop [41,42]. The

score test (U test) was used. Linkage disequilibrium among the

microsatellite loci were also tested using Genepop [41,42]. The null

hypothesis was ‘‘genotypes at one loci are independent from

genotypes at the other loci’’, and the default test statistic was the log

likelihood ratio statistic (G-test). During the processes of identifica-

tion and isolation of microsatellite sequences using primers and

amplification by PCR, the following errors can occur: 1. One or

more alleles fail to amplify during PCR (null alleles); 2. Slight

changes occur in the allele sizes during PCR (stuttering); 3. Large

alleles do not amplify as efficiently as small alleles. We detected these

errors using Micro-Checker v2.2.3 [43]. This application calculates

the frequency of any null alleles detected, using the methods

described by Chakraborty et al. (1992) [44] and Brookfield (1996)

[45]. The indices of genetic diversity including the number of alleles

(Na), the richness of alleles (Ar), the observed heterozygosity (HO),

the expected heterozygosity (HE), gene diversity (HS), and the

inbreeding index (FIS) for each population were calculated using

FSTAT v2.9.3 [46]. Na is the mean number of alleles in each

sample. It can be calculated according to the following equation:

Na~
Xr

j~1

Nj

r

Nj is the number of alleles at microsatellite loci j in one sample. r
is the number of all loci. The richness of alleles (Ar) is the mean of

Rs (allelic richness per locus and population) across all microsat-

ellite loci. Rs is a measure of the number of alleles and is

independent of sample size, hence allowing one to compare Rs

between different sample sizes. However, the observed number of

alleles in a sample is highly dependent on sample size. To bypass

this problem, El Mousadik and Petit (1996) [47] suggested the

adaption of the rarefaction index of Hurlbert (1971) [48] to

population genetics. The principle is to estimate the expected

number of alleles in a sub-sample of 2n genes, given that 2N genes

have been sampled (N$n). In FSTAT, n is fixed as the smallest

number of individuals typed for a locus in a sample. Allelic

Richness is then calculated according to the following equation:
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Rs~
Xni

i:1

1{

2N{Ni

2n

� �

2 N

2 n

� �
2
6664

3
7775

Where Ni is the number of alleles of type i among the 2N genes.

Note that each term under the sum corresponds to the probability

of sampling allele i at least once in a sample of size 2n. In FSTAT,

estimates of gene diversity per locus and sample use an unbiased

estimator [49]:

Hs~
n

n{1
1{

X
p2

i {
H0

2n

� �

Where n is the size of a sample. pi is the frequency of allele Ai in

a sample. Ho is the observed proportion of heterozygotes in a

sample. The multilocus genotypes (MLG) were classified based on

the length of alleles, using software that we developed in house.

The genotype diversity (K) of each population was calculated as

follows: K = G/N, where G is equal to the number of MLGs, and

N is the number of samples [25].

F-statistics (FIT, FIS, and FST) and pairwise FST [50], were

estimated using FASTAT v2.9.3 [46]. Nei’s standard genetic

distance (DS) [51] and Nei’s genetic distance (DA) [52] were

calculated using the Dispan program [53]. An indirect estimate of

gene flow was calculated as Nm~ 1{FsTð Þ=4FsT [54]. To analyze

the relationship between FST and geographic distance, a Mantel

test was carried out. The matrices of pairwise FST and the

geographic distance between two populations was transformed by

Genepop (the geographic distances were transformed to the

natural logarithm (Ln) of geographic distances in kilometers), and

a regression was performed using SPSS 17.0.

To identify the population structure, two clustering methods

were used. First, we constructed phylogenetic trees (dendrograms)

using the unweighted pair group-method with arithmetic mean

(UPGMA) [55], based on Nei’s genetic distance (DA) using the

Dispan program. Second, factorial correspondence analysis (FCA)

was implemented in Genetix v4.04 [56], to examine the three-

dimensional spatial distribution of genetic variation for each

individual.

An analysis of molecular variance (AMOVA) was implemented

in Arlequin v3.0 [57], to confirm population clusters and to

examine the component variance of genetic differentiation among

populations.

Results

Genetic Diversity
We screened 246 aphids collected from six provinces and the

Bejing municipality of China for five microsatellite loci. There was

no large allele dropout or stuttering observed in the result. Of the

35 tests, there were 6 tests in which null alleles were found to exist;

they appeared at the Sm11 and Sm17 microsatellite loci.

However, no particular microsatellite loci had null alleles in all

of the populations. The frequencies of the null alleles were not

more than 0.08 (Table 1). In the 70 linkage disequilibrium tests,

there were 12 tests with significant linkage (Table 1). However, no

fixed combination of any two microsatellite loci showed significant

linkage in all of the populations, and the 5 microsatellite loci

selected here can estimate genetic mutation independently. Five

populations deviated from HWE significantly because of hetero-

zygote deficit; both Beijing and Shanxi populations were the

exception to this. The Shanxi population deviated from HWE

because of heterozygote excess (Table 1). The FIS values of

Table 3. Pairwise FST value among the seven S. avenae populations of China.

Beijing Hubei Hebei Henan Jiangsu Shandong

Hubei 0.4186

Hebei 0.1055 0.3626

Henan 0.2604 0.2137 0.2015

Jiangsu 0.3547 0.3182 0.2852 0.1611

Shandong 0.2589 0.2253 0.1911 0.0383 0.1012

Shanxi 0.3836 0.3320 0.2648 0.1654 0.2724 0.1858

FST#0.05, indicates little differentiation among populations; 0.05,FST#0.15, middling differentiation; (iii). 0.15,FST#0.25, high differentiation; FST.0.25, significant
divergence. The seven S. avenae populations were named by their sampled locations, Beijing, Hubei, Hebei, Henan, Jiangsu, Shandong, and Shanxi, respectively.
doi:10.1371/journal.pone.0109349.t003

Table 4. The composition of variation (average over 5 loci).

Source of variation Sum of squares Variance components (Vi) Percentage variation Fixation Indices

Among population 176.279 0.49323Va 25.47 FST = 0.2547

Among individuals within populations 272.715 20.09396Vb 24.85 FIS = 20.0651

Within individuals 319.500 1.53724Vc 79.38 FIT = 0.2062

Total 768.494 1.93651

Va, the variance among populations; Vb, the variance whin population; Vc: the variance within individuals. FST, the average of genetic differentiation among
populations; FIS, the average of inbreeding coefficient among individuals within populations; FIT, the average of total inbreeding coefficient.
doi:10.1371/journal.pone.0109349.t004
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populations were positive, except for the Beijing and Shanxi

populations. The FIS of the Shanxi population was the most

negative (Table 2).

Our results suggested that S. avenae in China have a high level

of genetic diversity. The indices of genetic diversity of the seven

populations are listed in Table 2. The results show that the

populations of Henan, Shandong, and Jiangsu have relatively high

levels of genic and genotypic diversity. The values of Na, Ar, and

HS present in the Henan population (15.2, 8.36, and 0.74,

respectively) were higher than the values for the other populations.

The genic diversity level of the Beijing population was the lowest;

the values of Na, Ar, and HS of the Beijing population were 6,

3.65, and 0.39, respectively. However, the genotypic diversity of

Beijing population was higher (K = 0.925) than all of the other

populations, except for the Jiangsu and Shandong populations.

We observed 215 multilocus genotypes from the 246 aphids

tested. The same genotypes were observed within the Hubei,

Henan, Shanxi, Hebei, and Beijing populations, but the same

genotype was not found within the Jiangsu and Shandong

populations. However, one individual in 31 aphids from Shandong

was found to share the same genotype with one individual from

Jiangsu province. There were not any genotypes shared among the

other five populations.

Genetic Differentiation
Population differentiation was analyzed using pairwise FST

values (Table 3). The pairwise FST values between the Beijing and

the other populations, except for Hubei, were generally high

(0.2589,0.4186); high levels of differentiation were also detected

between Hubei and the other populations (0.2137,0.3626). The

pairwise FST value between the Shandong and Jiangsu populations

(FST = 0.1012) was close to the value between the Beijing and

Hebei populations (FST = 0.1055), which were lower than the

values for the other populations, with the exception of the value

between the Henan and Shandong populations (FST = 0.0383).

According to an analysis of molecular variance (AMOVA), the

S. avenae populations sampled had high levels of genetic

differentiation (FST = 0.2547) (Table 4). Genetic variation between

populations accounted for 25.47% of the total genetic variation.

The migration number among different geographical popula-

tions has been proposed to be represented as gene flow (Nm) [54].

There is little divergence if Nm.1. However, if Nm,1, it means

that gene flow could not counteract the divergence caused by

genetic drift [58]. In the present study, the level of genetic

differentiation among the seven S. avenae populations was

Nm = 0.899 (Table 5), and the gene flow was not large enough

to offset the genetic drift. The biggest gene flow (Nm = 6.277) was

observed between the Henan and Shandong populations

(Table 6). The values of Nm between Beijing and the other

populations were less than 1, except for the Hebei population. The

gene flow between the Hubei population and the other popula-

tions was also low (Nm,1).

Overall, the genetic divergence of the populations had

significant positive correlation (r2 = 0.401, p = 0.002) with geo-

graphic distance, according to the results of the Mantel test.

Population Structure
We used two methods for clustering analysis, and a small

divergence appeared between the two sets of results.

First, we classified the seven geographical populations into three

clusters using the UPGMA method (Figure 2): (i) Hubei, (ii)

Shanxi, Beijing and Hebei, and (iii) Shandong, Henan, and

Jiangsu.

Table 5. Summary of the F-statistics at five microsatellite loci.

FIT FIS FST Nm

Sm10 0.012 20.086 0.090 2.528

Sm11 0.502 0.082 0.457 0.297

Sm12 0.033 20.183 0.182 1.124

Sm17 0.282 0.021 0.267 0.686

Sag4 0.126 0.038 0.092 2.467

Mean 0.191 20.026 0.218 0.899

FIT: the average of total inbreeding coefficient; FIS: the average of inbreeding coefficient among populations; FST: the average of genetic differentiation; Nm: gene flow,
Nm~ ‘ FsTð Þ=4FsT .
doi:10.1371/journal.pone.0109349.t005

Table 6. The number of individuals that migrated among differential regions.

Nm Beijing Hubei Hebei Henan Jiangsu Shandong

Hubei 0.3472

Hebei 2.1197 0.4395

Henan 0.7101 0.9199 0.9907

Jiangsu 0.4548 0.5357 0.6266 1.3018

Shandong 0.7156 0.8596 1.0582 6.2774 2.2204

Shanxi 0.4017 0.5030 0.6941 1.2615 0.6678 1.0955

Nm, gene flow, Nm~ 1{FsTð Þ=4FsT .
doi:10.1371/journal.pone.0109349.t006
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Second, the FCA results divided the seven populations into four

groups (Figure 3); (i) Hubei, (ii) Shanxi, (iii) Beijing and Hebei, and

(iv) Shandong, Henan, and Jiangsu. The only differentiation

between results of the two clustering methods was that the Shanxi

population formed its own cluster in the results of the FCA

method.

However, the two kinds of genetic distance (DS and DA)

(Table 7) between the Shanxi and Beijing populations were larger

than between Shanxi and the other populations, except for Hubei.

Therefore, the Shanxi and Beijing populations cannot be classified

into a single group.

We classified the seven populations into 4 groups (i. Hubei; ii.

Shanxi; iii. Beijing and Hebei; iv. Shandong, Henan, and

Jiangsu.), and conducted AMOVA to detect the variance

components. The results showed that the variances among groups

and among populations within groups accounted for 18.34% and

9.53% of the total variance, respectively (Table 8), and that the

variance between groups was significantly larger than the variance

among populations within a particular group (FCT = 0.18399).

This result indicates that gene flow among the four groups was

strictly restricted. The AMOVA results thus confirmed the

conclusions of the clustering analysis.

Discussion

S. avenae is a migratory pest insect that is widely distributed

throughout the wheat growing regions of China [59]. In the

present study, we analyzed the population genetic diversity,

population genetic differentiation, and genetic structure of seven

different S. avenae geographical populations in China using

microsatellite marker technology. These research results provide a

basis for efforts to optimize integrated pest management (IPM)

programs through adapting control methods which target the

biological traits shared by various populations from the same

genotype.

High Level of Genetic Diversity
The genetic diversity of aphids is influenced by many factors

such as climate, host plants, topography, and physiognomy [60].

Wheat aphid populations frequently exhibit high levels of genetic

variation [61]. In the present study, a high level of genetic diversity

was detected at all of the five microsatellite loci. There were 32,

41, 35, 60, and 13 alleles at the Sm10, Sm11, Sm12, Sm17, and

Sag4 loci, respectively. The genetic diversity level in our study

(average = 36.2 alleles/locus) was much higher than that detected

by Guo et al. (2005) (average = 9.6 alleles/locus) [61]. In

particular, the genic diversity of the Henan and Shandong

populations was higher than the diversity of the other populations.

Figure 2. UPMGA Phylogenetic tree of seven different S. avenae geographic populations in China.
doi:10.1371/journal.pone.0109349.g002

Figure 3. Three-dimensional factorial correspondence analysis (FCA) of S. avenae sampled in 2012. The circles indicate populations that
cluster according to geography.
doi:10.1371/journal.pone.0109349.g003
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This may be due to the fact that their geographic location had

more gene flow with the surrounding wheat production regions. In

our results, genotypic diversity was also quite high. Two hundred

fifteen multilocus genotypes were distinguished in the 246

individual samples. A given genotype was rarely present in the

different geographic populations, which may result from a

prevalence of sexual reproduction.

Many factors can affect the heterozygosity of populations. The

expected heterozygosity (HE) of the Hebei, Henan, and Shandong

populations was lower than their observed heterozygosity (HO).

According to previous aphid genetic studies, factors like inbreed-

ing, the Wahlund effect, and the presence of null alleles and/or

clonal selection have been implicated in the generation of

heterozygote deficits [39,62]. As S. avenae has the ability for

long-range dispersal, and their host plants are common and

widespread, strong inbreeding and the Wahlund effect might not

occur in this aphid [39,63]. There are also many reasons for

heterozygote excess, including rarely migrating between locations,

asexual lineage expansion, and/or the accumulation of heterozy-

gosity by mutation in longer-term parthenogenesis [64]. In our

results, the greatest heterozygosity excess was present in the Shanxi

population, and the FIS value of the Shanxi population was

extremely negative. This might be associated with the geography

of Yuncheng of Shanxi. Shanxi province is mountainous, which

might restrict aphid migration.

Genetic Differentiation and Genetic Structure
The genetic structure of populations reflects the interaction of

genetic drift, mutation, gene flow, migration, and natural selection

[25]. There is absolutely no genetic differentiation among

populations when FST = 0, and when the FST = 1, the populations

can be recognized to have differentiated completely. The threshold

of FST value can be divided into 4 levels: (i). FST#0.05, indicates

little differentiation among populations; (ii). 0.05,FST#0.15,

middling differentiation; (iii). 0.15,FST#0.25, high differentia-

tion; (iv). FST.0.25, significant divergence [65].

In the present study, there was a high level of genetic

differentiation (FST = 0.2547) present in the S. avenae populations

of China. Various factors might affect the divergence of S. avenae
populations in different sites, including reproductive mode, clonal

selection, migration, and so on. Additionally, genetic differentia-

tion might be accelerated by the high level of variation in S.
avenae population size [66].

A study showed that the aphid clones on the winter host plant

did not significantly contribute to the spring/summer population

build-up in the cereal fields over short distances, but that the

density of sources for early migrants, on a regional scale, is

important for the establishment of the population [67]. Therefore,

the migration of aphids plays an important role in genetic

structure. Aphids can become suspended in the air, and thus fly for

long distances with the wind [10,68]. This flight phenomenon can

overcome the combination of the forces of selection, genetic drift,

and mutation, if the scale of the migration of S. avenae is large

enough [25]. The time we collected the wheat aphids samples was

the peak time of their breeding. It is known that when the

population density of S. avenae is high enough and if the host

plant cannot supply adequate nutrition, winged aphids will be

produced, and a large scale migration can occur. In our results,

there was little differentiation between the Henan and Shandong

populations (FST = 0.0383), which might be attributed to large

scale migration and/or the local pest management strategies. The

Mantel test showed that the genetic divergence of the populations

had a significant positive correlation with the geographic distances

between the populations. This means that the gene flow between
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populations was significantly associated with the distance among

the locations, and that the gene exchange among the different

geographic populations could be affected by geographical isola-

tion. For example, the genetic divergence between Beijing (the

most northern site in our study) and Hubei (the most southern site

in our study) populations was the highest as compared to the

others.

However, geographical distance didn’t explain the study results

completely. According to the results published by Huang et al.
(2013) [69], some vital life-history traits (the developmental time of

the instars of nymphs, postreproductive timing, and total lifespan

of adults, and so on) were different for aphid populations living

North or South of the Qinling Mountains. The divergence and

gene flow among S. avenae populations might be impacted by the

barrier of the Qinling Mountains. In the present study, the Qinling

mountains and Dabie Mountains separate Zaoyang city of Hubei

from the other 6 sites. There was great genetic differentiation

between Hubei and the other populations, which might result

from a limited dispersal of aphids. Similar phenomena of genetic

isolation resulting from by geographical barriers were also found in

Eriosoma lanigerum [70], two tansy-feeding aphids (Macrosipho-
niella tanacetaria and Metopeurum fuscoviride) [33], and Diur-
aphis noxia [34].

Populations of S. avenae in China might be classified into 4

clusters based on our research results. The population from Shanxi

had less communication with other populations because of

Taihang mountain, which may have obstructed the migration of

the wheat aphids. However, the geographic location of Shanxi is

adjacent to Henan, Hebei, and Shandong, and the location of

sample collection for Shanxi was Yuncheng, which is at the

southern limit of the Taihang mountain range, so gene flow was

affected relatively little and there was overlap between Shanxi,

Henan, and Shandong in the FCA analysis (Figure 3).

Conclusions

In the present study, we analyzed the population genetics and

predicted the gene flow among the seven different S. avenae

geographical populations in China using microsatellite marker

technology. The genetic diversity of the Henan and Shandong

populations was higher than the others populations. The genic

diversity of the Hebei and Beijing populations were the lowest. For

genetic differentiation, there was high or significant differentiation

among the Hubei population and the others. The genetic

differentiation between Beijing and Hebei, and Henan and

Shandong were both at very low levels, indicating that the gene

flow occurs frequently between these populations. Finally, the 7 S.
avenae geographic populations can be divided into 4 clusters: (i)

Hubei, (ii) Shanxi, (iii) Beijing and Hebei, and (iv) Shandong,

Henan, and Jiangsu. The present results provide a basis for efforts

to optimize Integrated Pest Management programs through

adapting control methods which target the biological traits shared

by various populations from the same genotype.

Supporting Information

File S1 Microsatellite genotypes of the seven Sitobion avenae
populations in China. ‘‘individual ID’’, the tag of each tested aphid

individual. ‘‘sampling location’’, the corresponding location where

each aphid individual was collected. The other ten columns were

the corresponding allele sizes of each aphid individual at each

microsatellite loci.
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