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A B S T R A C T

A better understanding of the neural network properties that support cognitive recovery after a brain lesion is
important for our understanding of human neuroplasticity and may have valuable clinical implications. In fifteen
individuals with chronic, acquired written language deficits subsequent to left-hemisphere stroke, we used task-
based functional connectivity to evaluate the relationship between the graph-theoretic measures (modularity,
participation coefficient and within-module degree z-score) and written language production accuracy before and
after behavioral treatment. A reference modular structure and local and global hubs identified from healthy
controls formed the basis of the analyses. Overall, the investigation revealed that less modular networks with
greater global and lower local integration were associated with greater deficit severity and lower response to
treatment. Furthermore, we found treatment-induced increases in modularity and local integration measures. In
particular, local integration within intact ventral occipital-temporal regions of the spelling network showed the
greatest increase in local integration following treatment. This investigation significantly extends previous re-
search by using task-based (rather than resting-state) functional connectivity to examine a larger set of network
characteristics in the evaluation of treatment-induced recovery and by including comparisons with control
participants. The findings demonstrate the relevance of network modularity for understanding the neuroplas-
ticity supporting functional neural reorganization.

1. Introduction

The human brain, like most complex biological and social systems,
can be analyzed and understood in terms of the functions of its basic
elements and the connections between them. The development of
graph-theoretic analytic approaches (e.g., Watts and Strogatz, 1998;
Albert and Barabási, 2002; Bullmore and Sporns, 2009; Sporns, 2013)
and widely available computational tools for their application to human
neuroimaging data (Rubinov and Sporns, 2010) have played a key role
in the rapidly increasing interest and research efforts directed at un-
derstanding both functional and structural aspects of brain con-
nectivity. Empirical support for the relevance of these approaches
comes from the numerous findings that properties of brain networks are
associated with various aspects of cognitive performance in healthy
individuals (e.g., Bassett et al., 2011; Kitzbichler et al., 2011; Gallen
et al., 2015; Yue et al., 2017). Here, we specifically investigate the
application of these approaches to understanding functional network
properties that may support behavioral recovery in post-stroke

impairments affecting written language processes.
Research on the neural changes supporting recovery of language

functions has overwhelmingly considered the neurotopography of the
mean BOLD signal, investigating neural differences between individuals
with post-stroke language deficits and healthy controls either by com-
paring time-points earlier vs. later in the course of recovery (e.g., Cao
et al., 1999; Heiss et al., 1999; Saur et al., 2006; Jarso et al., 2013;
Sebastian et al., 2016) or more directly by comparing pre- vs. post-
treatment time-points (e.g., Fridriksson, 2010; Fridriksson et al., 2012;
Thompson et al., 2010; Marcotte et al., 2012; Abel et al., 2015). More
recently, although there has been some work evaluating recovery-re-
lated changes in resting-state as well as task-based functional con-
nectivity (e.g., Warren et al., 2009; Van Hees et al., 2014; Zhu et al.,
2014; Sandberg et al., 2015; Siegel et al., 2016), very few studies have
used graph-theoretic approaches to investigate this issue (although see
Duncan and Small, 2016; Siegel et al., 2018). In this investigation, we
examine the impact of intensive language intervention on functional
networks identified via task-based fMRI, in individuals with acquired
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written language deficits subsequent to left hemisphere stroke. Greater
knowledge of the neural changes that support recovery is important
both for its clinical applications (e.g., identifying neurostimulation
targets) and for its contribution to our understanding of the basic plastic
capacities of the human brain.

1.1. Network properties

Analyses of the network properties of the brain have highlighted
that, as with other complex systems, brain organization involves a
balance between the forces of segregation and integration, operating
at local and global scales (e.g., Hagmann et al., 2008; Bullmore and
Sporns, 2009, 2012; Sporns, 2013). For example, high levels of local
integration of elements (nodes) via strongly correlated activity (i.e.,
dense connectivity) results in segregation of nodes into sub-networks,
referred to as modules, clusters or communities (Fig. 1). Segregated,
modular structures of the brain are well-suited for carrying out spe-
cialized and automatized cognitive operations (Dosenbach et al., 2007;
Bertolero et al., 2015; Yeo et al., 2014) and when systems with modular
organization are damaged, the consequences can be relatively local and
contained, without necessarily impacting the system at large (Achard
et al., 2006; He et al., 2007; Honey and Sporns, 2008; Nomura et al.,
2010). In addition to the local integration that supports modular or-
ganization, integration that takes place at a larger scale allows com-
munication across modules (Fig. 1). Cross-module communication al-
lows for, among other things, the flexible deployment and coordination
of multiple processes to solve complex or novel problems (Cole et al.,
2013; Braun et al., 2015a; Bertolero et al., 2015). A balance between
segregation and global integration is clearly necessary for optimal use
of available neural resources in support of the human brain's capacity
for specialized cognitive operations as well as complex and flexible ones
(Bullmore and Sporns, 2012; Sporns, 2013; Wig, 2017). A deeper un-
derstanding of the computational roles of various network properties
can be achieved by investigating the relationship between network
properties and different cognitive tasks and task demands (e.g.,
Kitzbichler et al., 2011; Braun et al., 2015a; Yue et al., 2017), aging
(e.g., Meunier et al., 2009a), disruption caused by various neurological
disorders (e.g., Buckner et al., 2009; Stam et al., 2006; Bassett et al.,
2008; Lynall et al., 2010; Fornito et al., 2015; Siegel et al., 2018) as well
as healthy learning (e.g., Bassett et al., 2011; Gallen et al., 2015) and re-
learning in the lesioned brain (Duncan and Small, 2016).

Graph-theoretic, network science approaches are based on the
analysis of vertices and edges which, in the context of functional neu-
roimaging data, correspond to nodes (neural regions) and the connec-
tions (activation correlation) between pairs of nodes. These approaches
have provided a large number of metrics for characterizing network
properties (see Rubinov and Sporns (2010) for a review). In this

investigation, we focus on the following three: modularity1 (i.e., New-
man's Q measure. Newman and Girvan, 2004; Newman, 2006), parti-
cipation coefficient (PC) and within-module degree z-score (WD) (Guimera
and Amaral, 2005).

Newman's Q is a widely used measure for quantifying, with a single
value, the global (whole brain) modularity of a brain network (e.g.,
Bassett et al., 2011; Kitzbichler et al., 2011; Baggio et al., 2014;
Gamboa et al., 2014; Arnemann et al., 2015; Duncan and Small, 2016;
Gallen et al., 2015; Yue et al., 2017; Siegel et al., 2018). Given: (a) a
matrix of pairwise connection strengths between all network nodes and
(b) a pre-specified (reference) modular structure, modularity quantifies
the extent of the pairwise connectivity within (reference) modules re-
lative to what would be expected by chance given the total number of
each node's connections across the entire network (referred to as a
node's degree). Network modularity values approach 1 as the overall
level of local integration increases relative to what would be expected
by chance and they approach 0 as the numbers of connections within
modules approach the value that what would be expected by chance.
For example, in Fig. 1, the modularity value for Network 1 is 0.45
whereas for Network 2 (with the same number of nodes and connec-
tions) it is only 0.3. This is because, for each module in Network 2,
there are fewer local, within-module connections as a proportion of the
total degree of each node. (Note: in this example, connections are bi-
narized as simply present/absent, but modularity can also be computed
with graded connection strengths; Newman, 2004).

Whereas modularity characterizes the segregation properties of an
entire network, each node can be characterized in terms of the extent to
which it is locally or globally integrated. In this regard, two types of
nodes are considered to play pivotal roles in determining the modular
structure of a network: global and local “hubs” (Fig. 1). Global hubs are
nodes with connections to multiple modules in a system and thus are
also called connectors, or connector hubs. Conversely, local hubs, some-
times referred to as provincial hubs, or simply hubs, are nodes that are
well-connected within a module (Note that we will refer to these two
types as “global hubs” and “local hubs”). Global and local hubs can be
characterized in terms participation coefficients (PC) and within-module
degree z-scores (WD), respectively (Guimera and Amaral, 2005). The PC
measure can be calculated for each node quantifying the extent to
which the node's total connections are distributed across the modules of
a network, with high PC values indicating high integration across the
network. In Fig. 1, nodes with very different PC values are depicted,
with high PC values indicating global hubs. The WD measure char-
acterizes the degree of integration of a node within a module/cluster. It

Fig. 1. Schematic depictions of two network struc-
tures. Left: Nodes are organized into clusters (i.e.,
modules) with denser within-module connections
and sparser between-module connections. The mod-
ularity measure (Newman, 2006) quantifies overall
modular segregation. Global hubs (triangles) are
nodes with strong connections with multiple mod-
ules; local hubs (squares) have dense within-module
connectivity. The global and local connectivities of a
node are quantified by participation coefficients (PC)
and within-module degree z-scores (WD), respectively
(Guimera and Amaral, 2005). PC and WD values are
reported for three of the nodes for illustrative pur-
poses. Right: A network with the same total number
of nodes and connections but with lower modularity
due to fewer within-module connections and more
between-module connections.

1 Note that we use the italicized term modularity to refer to the specific
Newman's Q measure; unitalicized use of the term is used to refer to the general
concept of modularity.
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is a within-module z-score reflecting the number of a node's connec-
tions with the other nodes of a given cluster, expressed in standard
deviation units computed from the interconnectedness of the other
nodes within the same cluster. A node with a high WD value corre-
sponds to a local hub within its module. In Fig. 1, the WD values of
several nodes are indicated, with high values indicating local hubs. As
illustrated, PC and WD values are independent from one another such
that nodes can have high values in one, both or neither.

Clearly there is a close relationship between the number and
strength of local and global hubs and global network properties. These
relationships have been examined in a number of simulation studies
(Achard et al., 2006; Sporns et al., 2007; Honey and Sporns, 2008;
Alstott et al., 2009). This simulation work has consistently reported that
lesions affecting global hubs (or similar constructs) have more wide-
spread impact on network properties (such as modularity, small-world-
ness, etc.) than do lesions affecting local hubs (or similar constructs).
For example, Sporns et al. (2007) specifically found that simulated le-
sions targeting global hubs created more segregated, less inter-
connected modules, while simulated lesions targeting local hubs had
the opposite effect of decreasing local integration. Although lesions
provide a powerful tool for gaining a deeper understanding of network
organization (Albert et al., 2000; Albert and Barabási, 2002), the effects
on network properties of actual lesions in the human brain and how the
properties of disrupted networks change with recovery of function re-
main relatively unexamined topics.

1.2. Networks and lesions

Previous research concerned with the effects of lesions/disease on
network properties has most often focused on specific networks/re-
gions, such as the frontoparietal network (e.g., Zhu et al., 2014), the
cognitive control network (e.g., Nomura et al., 2010), and on general
deficit types including Alzheimer's Disease (e.g., Stam et al., 2006;
Buckner et al., 2009), schizophrenia (e.g., Bassett et al., 2008; Lynall
et al., 2010), among others. Instead, the investigation we report on here
involves analyses of the relationship between whole-brain network
properties and a specific language impairment. Therefore, we situate
our review and discussion within the context of similar types of studies,
leaving aside the many excellent papers examining connectivity prop-
erties relating to specific networks or more general deficit types (e.g.,
He et al., 2007; Stam et al., 2006; Buckner et al., 2009; Carter et al.,
2010; Lynall et al., 2010; Nomura et al., 2010; Carter et al., 2012; Zhu
et al., 2014).

1.2.1. The consequences of hub damage on network properties and behavior
In one of the few studies to have examined the consequences of

brain lesions on network properties, Gratton et al. (2012) tested the
predictions of prior simulation studies regarding the consequences for
modularity of damage to global vs. local hubs. To do so, they calculated
modularity and the extent of global and local hub damage (using PC and
WD, respectively) for individuals with chronic, focal lesions (stroke,
TBI, tumors) affecting either the right or left hemisphere. They found
that individuals with lesions had lower modularity than healthy con-
trols, the lesioned hemisphere had lower modularity values than the
non-lesioned hemisphere but that the non-lesioned hemisphere still had
lower modularity than the same hemisphere in healthy controls (but see
Arnemann et al. (2015) and Siegel et al. (2018) for findings that in-
dividuals with chronic brain lesions did not differ in modularity from
healthy controls). Moreover, they found that modularity was not cor-
related with lesion size or with local hub damage but was instead
correlated with the extent of damage to global hubs. In sum, their
finding that actual lesions that damage to global hubs had a greater
impact on network modularity than did local hub damage was generally
consistent with the simulation-based predictions described above.

Relatedly, Warren et al. (2014) examined the behavioral con-
sequences of damage to target vs. control locations (which generally

corresponded to global hubs and local hubs, respectively) in individuals
with chronic, focal lesions recruited because their lesions primarily
affected one type of hub or the other. They found that lesions to target
locations were associated with impairment to a larger number of cog-
nitive domains than was damage to control hubs, again consistent with
the general simulation prediction of more widespread consequences of
damage to global vs. local hubs.

1.2.2. Modularity and recovery
Three recent studies have specifically examined the relationship

between modularity and recovery of function with all three finding that
higher modularity values were associated with greater behavioral gains
(Arnemann et al., 2015; Duncan and Small, 2016; Siegel et al., 2018).
Siegel et al. (2018) examined longitudinal changes of modularity values
in a very large cohort of stroke cases at three time-points from the acute
to chronic stage (2 weeks to 1 year post-stroke), finding that modularity
values were below those of healthy controls at the acute time-point, and
then increased to normal levels after 3months. Furthermore, with re-
spect to behavior, they found that better recovery was associated with
larger modularity increases (in some, but not all, cognitive domains).

Arnemann et al. (2015) and Duncan and Small (2016) specifically
considered modularity in the context of treatment for cognitive deficits.
Arnemann et al. (2015) specifically focused on the question of whether
modularity values prior to therapy predict response to treatment. They
examined pre-treatment modularity in individuals (primarily with brain
trauma) who received 5 weeks of cognitive training for attention/self-
regulation and found that higher pre-treatment modularity values were
associated with greater subsequent improvement in attention and ex-
ecutive functions from pre to post training. Relatedly, in a study by
Gallen et al. (2015) of older healthy adults who underwent 12 weeks of
cognitive control training, the authors found that baseline modularity
values positively predicted subsequent training-related gains in per-
formance in the training group but not an untrained control group.
Duncan and Small (2016), instead, focused on the relationship between
changes in modularity and language performance before and after
6 weeks of spoken language therapy in individuals with chronic post-
stroke aphasia. They found that, even controlling for pre-treatment
language severity, modularity values increased from before to after
treatment and were positively and significantly correlated with the
amount of language improvement.

1.3. The current study

The current study examines the relationship between network
properties: modularity, participation coefficient (PC), within-module degree
z-score (WD), and recovery of language function in individuals who
received behavioral treatment for written language deficits (dysgra-
phia) acquired subsequent to a single left-hemisphere stroke. Unlike the
vast majority of previous studies of network properties that have either
evaluated white matter connectivity or resting-state functional con-
nectivity, the current study evaluated network properties of task-related
BOLD response in individuals performing a spelling task. We specifi-
cally analyzed what Norman-Haignere et al. (2011) and Al-Aidroos
et al. (2012) refer to as “background connectivity” which is the residual
of the task-based GLM (see also, Cole et al., 2013, 2014). Studies have
shown that the “background connectivity” is very similar to the func-
tional connectivity observed at rest, but with additional and significant
task-related components (Fair et al., 2007; Cole et al., 2014). A number
of studies have examined connectivity changes associated with re-
covery of function using task-related BOLD. However, these have used
measures such as effective (e.g., Seghier et al., 2010, 2012; Kiran et al.,
2015; Meier et al., 2016) or functional (Abel et al., 2015; Sandberg
et al., 2015) connectivity to evaluate connectivity strength within
specific networks rather than measures that characterize more general
network properties.

Most studies involving assessment of neural changes associated with
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recovery of language functions have considered deficits affecting
spoken naming (e.g., Van Hees et al., 2014; Kiran et al., 2015; Sandberg
et al., 2015), speech production (e.g., Duncan and Small, 2016;
Marangolo et al., 2016) or sentence processing (e.g., Thompson et al.,
2010). Instead, given the increasingly prominent role of written lan-
guage production in communication in daily life (e-mail, texting, etc.),
we examined changes associated with treatment induced recovery of
spelling skills. Meta-analyses of neuroimaging studies of spelling
(Purcell et al., 2011; Planton et al., 2013) have shown that, in neuro-
logically healthy individuals, spelling recruits a highly left-lateralized
network of areas that include: the left ventral occipital-temporal region
known as the visual word form area, or VWFA (e.g., Cohen et al., 2002;
McCandliss et al., 2003), that is also recruited for reading, as well as the
left inferior frontal gyrus, superior frontal gyrus, supplementary motor
area, intra-parietal sulcus/superior parietal lobule, supramarginal
gyrus, and bilateral superior temporal gyrus/sulcus. Spelling involves a
number of cognitive functions that are supported by this network of
brain areas. These include the retrieval and selection of stored re-
presentations of word spellings from orthographic long-term memory as
well as orthographic working memory processes that are necessary for
the serial production of the constituent letters that make up a word's
spelling. In addition, there are sublexical processes that map language
sounds to possible/plausible spellings that rely on information devel-
oped on the basis of an individual's experiences with the systematic
relationships between the sounds and letters (or other graphic symbols)
of their language. These central processes of spelling serve to generate
letter strings that can be expressed in a variety of spelling formats such
as handwriting, typing, oral spelling, etc. by means of “peripheral”
motor planning and production processes (see Rapp et al. (2016) for a
review of spelling processes and the neural substrates that support
them). The dysgraphia treatment protocol that was used in this in-
vestigation (although it involves written practice) targets these central
spelling processes that support orthographic production across multiple
production formats and modalities.

In this study we address the following questions. Regarding pre-
treatment network properties, we ask: (1) Do pre-treatment modularity,
PC or WD index deficit severity? (2) Are pre-treatment modularity, PC or
WD related to subsequent recovery of function? Regarding the network
properties associated with recovery, we ask: (3) Do modularity, PC or
WD change in response to treatment, and, if so, what are the relation-
ships among changes in these properties? (4) How do network changes
relate to behavioral changes? (5) How are treatment-related changes
distributed throughout the brain, in terms of brain regions and hemi-
spheres? Answers to these questions provide a complementary view of
neural recovery to that provided by the more traditional examinations
of the distribution of local, mean BOLD changes and, in so doing, this
approach allows us to deepen our understanding of the network prop-
erties involved in the neuroplastic changes that support the recovery of
complex cognitive functions.

2. Methods and materials

2.1. Participants

Participants consisted of fifteen individuals (4 females, mean age
61±10) with no history of reading/spelling disabilities who suffered
acquired dysgraphia due to a single left hemisphere stroke (> 1 yr post
stroke, mean 58 ± 34months). Years of education ranged from 12 to
19 and all but three (including one who was ambidextrous) were (ac-
cording to self-report) right-handed prior to the stroke, although 8 of
the fifteen (including the three original left-handed participants) used
their left hand for writing after the stroke. See Table 1 for further de-
tails. Fig. 2a depicts the distribution of the lesions, indicating greatest
density of damage in the region of the left insula and the left superior
longitudinal fasciculus. Participants received an average of 26 bi-
weekly dysgraphia rehabilitation sessions and functional and structural

MRI scanning was carried out before and after the rehabilitation period.
In addition, there were two groups of age-matched, neurologically

healthy individuals with no history of reading/spelling disabilities.
Control Group 1 consisted of 10 participants (8 females, age: 60.7± 12,
education: 12–18 years, all right-handed) who were administered the
same spelling task protocol during fMRI scanning as the participants in
the Lesion Group. Control Group 2 consisted of 13 participants (10
females, age: 57± 7.39, with 12–18 years of education (three were left-
handed) who performed a picture version of the spelling task (both
tasks are described below). All participants provided informed consent
following procedures approved by Johns Hopkins University
Institutional Review Board.

2.2. Cognitive/language assessments and treatment

In addition to an evaluation of their spelling performance (JHU
Dysgraphia Battery; PALPA 40, Kay et al., 1992), each participant was
administered an extensive battery of cognitive and language tests be-
fore and after dysgraphia treatment. Test results are reported in Fig. 2b
(group data) and Table A1 (individual participant data) for the fol-
lowing cognitive and language domains: oral reading of single words
(PALPA 35; Kay et al., 1992), written single-word comprehension
(PALPA 51; Kay et al., 1992); auditory single-word comprehension
(Northwestern Naming Battery; Thompson et al., 2012); visual re-
cognition memory (Doors and People Test; Baddeley et al., 1995); se-
mantic comprehension (Pyramid and Palm Trees; Howard and
Patterson, 1992); spoken picture naming (Northwestern Naming Bat-
tery; Thompson et al., 2012).

For the dysgraphia treatment and fMRI scanning, 40 Training and
30 Known Words were selected for each individual. These in-
dividualized sets were identified by administering a number of different
word lists twice for spelling to dictation. Training Words were those on
which letter accuracy was between 25% and 80% on the two admin-
istrations and Known Words had 100% accuracy on the two assess-
ments. The average length of the Training Words across participants is
6.5 letter (ranged from 4.3 to 8.3), and the average frequency is 19.4
(ranged from 6 to 82. The English Lexicon Project. Balota et al., 2007).
For the dysgraphia treatment, a spell-study-spell technique (Rapp and
Kane, 2002) was administered for approximately 60–80min sessions,
typically 2×/week. Each training trial was as follows: (1) The in-
dividual heard a target word, repeated it, and attempted to write the
spelling, (2) Regardless of accuracy, the individual was shown the
correct spelling while the experimenter said aloud the word's letters,
the individual copied the word once and was instructed to study the
word. If the word had been spelled correctly at Step 1, then the training
trial ended and the experimenter continued to the next item. Otherwise,
the word was removed from view and Steps 1 and 2 were repeated until
the word was spelled correctly, or for a maximum of 3 times before
moving to the next item. Treatment sessions continued until partici-
pants achieved 90% or greater letter accuracy on the Training items on
two consecutive sessions or if performance remained constant over 6
sessions.

Treatment-induced improvements of the group were statistically
evaluated using a generalized linear mixed-effects model (LMEM, bi-
nomial family) because participants had different sets of individually
selected Training Words. The dependent variable was percentage letter
accuracy for all the Training Words from each individual participant at
each of the three time-points (pre, post and a 3-month follow-up). The
fixed effect variables were: word length, word frequency, and time-
point (simple-coded with pre-treatment as the reference level). The
following random-effects were included: by-participant random inter-
cept and slopes for word length, word frequency, and time-point, and
by-words random intercept and slope for time-point. To evaluate
whether treatment effects generalized beyond the trained set of items,
we evaluated the pre- to post-treatment improvement for each parti-
cipant on a larger pool of untrained words (each participant had a
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different number of words, ranging from 40 to 454, mean=201).
Generalization was evaluated with the same linear mixed-effects model
as the one used for Training Words, except the dependent variable was
the accuracy of the untrained words.

For the purposes of relating neural measures to behavior (see
Section 2.5.7), the severity of the spelling impairment of each individual
was quantified as the pre-treatment performance on the PALPA 40
spelling sub-test, consisting of 40 high/low frequency and high/low

imageability words presented for spelling to dictation (Kay et al., 1992).
Note that we quantified spelling severity based on this standard test
rather than the Training Words because each individual in the Lesion
Group had a different, individualized set of Training Words, making
this an inappropriate comparative measure of severity across the group;
Pre-post improvement in spelling was quantified as the percentage
change in letter accuracy on Training Words measured at the pre- and
post-treatment time-points (Fig. 2b). For this measurement, each

Table 1
Characteristics of participants in the Lesion Group. “Spelling severity” corresponds to the error rate on the spelling-to-dictation test PALPA 40 (Kay et al., 1992);
“Improvement on Training Words” corresponds to the percent change in letter accuracy on spelling-to-dictation assessments of Training Words administered before
and after the training period.

Subject ID Sex Age Education (years) Handed-ness Month post-
stroke

Lesion vol.
(mm^3)

# Rehab
sessions

Spelling severity (error
rate)

Improvement on training
words

1 – ABS M 58 18 R 97 198,480 19 30% 44%
2 – AEF F 55 16 R 101 280,768 24 30% 27%
3 – DSK M 67 16 R 59 207,472 11 52.5% 21%
4 – DTE F 80 18 R 14 111,968 48 72.5% 24%
5 – ESG M 62 16 L 38 155,232 27 90% 31%
6 – FCE M 64 12 R 119 68,456 19 72.5% 43%
7 – JGL F 72 16 R 32 74,840 48 57.5% 31%
8 – KMN M 55 15 R 28 96,192 48 77.5% 24%
9 – KST M 61 14 R+L 46 46,400 29 35% 33%
10 – MSO M 45 18 R 103 217,440 30 57.5% 66%
11 – PQS M 54 18 R 17 143,128 17 47.5% 27%
12 – RFZ M 60 18 R 46 98,984 16 17.5% 19%
13 – RHH M 45 16 R 82 145,368 18 7.5% 27%
14 – RHN F 75 19 L 27 17,712 16 37.5% 26%
15 – TCK M 69 16 R 68 41,096 26 55% 44%

Fig. 2. (a) Lesion distribution of the 15 participants in the Lesion Group. The highest concentration of lesioned tissue is in the left insula and along the superior
longitudinal fasciculus. (b) Results of pre- and post-treatment cognitive assessments. Left: Spelling outcomes. Pre- and post-treatment percent letter accuracies for
Training Words for each individual. Improvements range from 19% to 66% (mean 32.47± 11.81, median 27); all are statistically significant (p < .05). Right: Pre- to
post-treatment assessments in other language/cognitive domains. Only the visual recognition memory task (Doors and People Test) shows a significant change
(p < .05, uncorrected). Oral-read: single-word oral reading (PALPA 35; Kay et al., 1992); Read-comp: single-word written comprehension (PALPA 51; Kay et al.,
1992); Audi-comp: auditory single-word comprehension (Northwestern Naming Battery; Thompson et al., 2012); Rec-mem: recognition memory (Doors and People
test; Baddeley et al., 1995); Sem-comp: semantic association (Pyramids and Palm Trees; Howard and Patterson, 1992); Pic-name: oral picture naming (Northwestern
Naming Battery; Thompson et al., 2012).
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participant's set of Training words was presented for spelling to dicta-
tion once or twice both before and after the treatment period and the
results at each time point were averaged. The severity and improvement
of each participant are reported in Table 1.

2.3. Neuroimaging experiment

Individuals in the Lesion Group were scanned on 2 days at each of
the pre- and post-treatment time-points (an average of 6.3 days apart).
Each of the two scanning sessions included two 7.7-min runs of the
spelling task, generating a total of 30.8 min of data (4 runs in total) for
each participant at pre- and post-treatment (Fig. S1). In addition to the
spelling task, participants performed several tasks during fMRI scanning
and were evaluated with multiple structural scanning protocols, in-
cluding the T1-weighted imaging we report on here.

The spelling task protocol included a Spelling Probe task and a Case-
Verification control task (Rapp and Lipka, 2010) with event-related
designs.2 Each spelling probe trial consisted of the following sequence
of events: (1) task prompt (“Is the letter in the word?”) presented both
visually and auditorily for 1800ms; (2) a 500ms central fixation cross,
(3) an auditory target word plus a variable period of silence depending
on the word length, for a total duration of 1500ms during which the
fixation cross remained on the screen, (4) A response period consisting
of a single visually presented probe letter presented for 1500ms, fol-
lowed by a 1700ms fixation cross. During this time period, participants
responded whether or not the letter was in the spelling of the target
word with a button press using with their left index or middle finger.
There was a random inter-trial interval (2–7.5 s) between trials. The
Case-Verification trials were identical, except that the task prompt was
“Is the letter uppercase?” and participants were instructed to ignore the
auditory stimulus and judge the case of the letter with a button press to
indicate if the letter was upper or lower case. Control Group 1 was
administered the same experimental protocol (both Spelling Probe and
Case Verification tasks) and as indicated, Control Group 2 was ad-
ministered a modified protocol which was the same as the one just
described except that the auditorily presented target words were re-
placed with black and white line-drawings and participants were in-
structed to respond on each trial if the visually presented letter was in
the spelling of the word depicted in the drawing (or to judge the letter
case for Case-Verification trials). Participants were familiarized with
the names of the drawings prior to the experiment.

For the Lesion Group, each run had 45 trials consisting of the fol-
lowing: 15 Known Word spelling-probe trials, 15 Training Word spel-
ling-probe trials, and 15 Case-Verification trials with words that were
matched in length and frequency to those of the spelling trials. In this
way, for each participant, each scanning session included presentation
of 30 Known Words and 30 Training Words that were randomly se-
lected from the individual's training list. The same stimuli were pre-
sented at both scanning sessions although their order within runs
varied. In order to minimize task-switching costs, 3–6 trials of each task
were presented consecutively in “mini-blocks”. For the Control Groups
the same procedures were followed except that the stimuli were se-
lected to represent a range of lexical frequencies and lengths: word
frequency ranged from 0.27 to 557.12 with a median=8.3 (English
Lexicon Project. Balota et al., 2007) and they were 4 or 7 letters in
length. Participants in the Control Groups also completed four runs of
the task but were scanned within the same day.

2.4. Imaging data acquisition

All MRI data were collected using a Phillips 3 T scanner at the F.M.
Kirby Research Center for Functional Brain Imaging (Baltimore, MD).

The acquisition parameters for all participant groups were as follows:
TR=1500ms, TE=30ms, FOV=216*120*240mm (ap, fh, rl), flip
angle= 65°, voxel dimension=1.875*1.875*3 mm (1.5mm interslice
gap), data matrix= 128*128*27. One run contained 308 TRs (7.7 min).
The T1-weighted structural MRI acquisition parameters were as fol-
lows: TR=6ms, TE=2.91ms, FOV=256*256*176mm (ap, fh, rl),
flip angle= 9°, voxel dimension=1*1*1mm, data ma-
trix= 256*256*176.

2.5. fMRI data analysis

2.5.1. Pre-processing
Functional data were preprocessed with FEAT in FSL 5.0.9

(Jenkinson et al., 2012) with the following pre-processing steps: re-
moval of the first 4 volumes of each run, motion correction with
MCFLIRT, slice-timing correction, non-brain tissue removal with BET,
spatial smoothing using a 5mm FWHM Gaussian kernel, grand-mean
intensity normalization, high-pass temporal filtering (0.01 Hz). Regis-
tration was carried out with FSL's two-step method: functional images
were first registered to the subject's T1 image with the boundary-based
registration (BBR) method, then to standard MNI space (spatial resolu-
tion 2mm, Jenkinson et al., 2002; Greve and Fischl, 2009). A lesion
mask for each participant was manually drawn on the original T1 image
with MRIcron (http://people.cas.sc.edu/rorden/mricron/index.html).
The masks were then aligned to standard MNI space using the trans-
formation calculated with the T1 image.

2.5.2. GLM analysis
A general linear model (GLM) analysis was evaluated at each voxel

with FEAT in FSL (Jenkinson et al., 2012). The model included the
following regressors: task prompt, Known Word trials, Training Word
trials, and Case-Verification trials (these trial-type regressors modeled
the 3 s period including target word presentation, visual letter probe
and response), and the six motion parameters as confound regressors.
The fixation periods and inter-trial intervals were left unmodelled. All
the task-related regressors were convolved with a double-gamma he-
modynamic response function provided in FSL.

2.5.3. Background functional connectivity estimation
Following Norman-Haignere et al. (2011) and Al-Aidroos et al.

(2012), we quantified background functional connectivity using the
residual time-series of the GLM. The analysis was performed by Nilearn,
a Python package for neuroimaging data analysis (Abraham et al.,
2014). We used the 264 locations identified by Power et al. (2011),
excluding 29 locations in subcortical areas based on the segmentation
template provided in FSL (MNI152_T1_2mm_strucseg.nii). For the re-
maining 235 locations, we extracted the averaged time-series from
5mm-radius spheres centered at each location (Fig. 3a). For each par-
ticipant in the Lesion Group, spheres in which> 25% of voxels were
lesioned (32 voxels) were excluded from further analysis. Prior to cal-
culating pairwise-connectivity, we additionally regressed out the first
derivatives of the 6 motion parameters and the averaged time-series of
the brainstem, the cerebellum, the basal ganglia, and the ventricles
defined by the segmentation template in FSL. For each run (7.7 min),
we calculated pairwise Pearson correlations for the 235 nodes (and
fewer for each participant with lesion, see below) which were Fisher's z-
transformed and converted to absolute values. For each time point and
each participant, the correlation matrices of the four runs were aver-
aged to yield one connectivity matrix. Because, for each individual,
nodes with> 25% lesioned voxels were excluded, the individual con-
nectivity matrices had fewer than 235 rows/columns, ranging from 207
to 232. The analysis procedure is depicted in Fig. S1.

2.5.4. Identifying a “reference” modular structure
The graph-theoretic measures used to evaluate the structure and

organization of the connectivity patterns (modularity, participation

2 This experiment was originally designed for a “subtraction-based” GLM
analysis and, for this reason, included a control task.
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coefficient (PC) and within-module degree z-score (WD)) require a “re-
ference” modular structure (functional partitioning) relative to which
the connectivity values of each participant are evaluated. Because we
used a task-based connectivity measure rather than the more commonly
used RS-fMRI connectivity, there was no established functional parti-
tioning. Instead, we developed a characterization of the brain's modular
organization during spelling using the background connectivity values
from Control Group 1. Note that we used a single reference modular
structure to calculate modularity values following Duncan and Small
(2016) and Siegel et al. (2018) rather than computing individual
modular structures for each individual participant (e.g., Gratton et al.,
2012). We adopted this approach in order to have a single un-biased
measure that could be used for comparison across subject groups and
time-points. Further, we assumed that the participants with lesions
were not an appropriate source for the reference modular structure
given variability in terms of lesion size and location as well as in re-
covery and response to treatment.

A reference modular structure was generated based on the averaged
correlation matrix of Control Group 1 and using the hierarchical clus-
tering (agglomerative) method with Ward's criterion implemented in
SciPy (https://scipy.org) (Fig. 3a). Hierarchical clustering is an efficient
clustering approach and has been shown to be particularly suitable for
performing brain parcellation (Thirion et al., 2014). One of the most
valuable characteristics of hierarchical clustering is that it does not
require the number of clusters to be pre-defined. Instead, the algorithm
constructs a dendrogram based on the distances between the nodes. A
specific clustering solution can be derived from the dendrogram by
selecting a cut-off threshold in terms of dendrogram height or number
of clusters. Subsequent analyses are based on the 10-cluster solution

Fig. 3. (a) The reference modular structure was calculated with hierarchical clustering using the mean background connectivity correlation matrix of Control Group
1 (n=10). A 10-cluster partitioning scheme derived from the dendrogram corresponded to the “reference” modular structure used in subsequent analyses (see
Table 2 for information about the 10 clusters). (b) Distribution of global (left) and local hubs (right) identified in Control Group 1, color-coded for their cluster
membership as in (a). The global hubs (n=20; 10 in each hemisphere) were identified as the nodes with high participation coefficient (PC) and were located in
bilateral posterior parietal and occipital lobes. The local hubs (n=37; ranging from 0 to 7 per cluster) were identified as the nodes with high within-module degree z-
scores (WD).

Fig. 4. Modularity values calculated based on different dendrogram partition-
ings (i.e., different numbers of clusters) and proportional thresholds. Cluster
numbers range from 6 to 14 and proportional thresholds from 5% to 50%.
Results from Control Group 1 (solid line) and the Lesion Group (dashed line) at
the pre-treatment time-point are shown. For both groups, modularity values are
highly similar and decrease as the number of clusters and the proportional
threshold increase. The 10-cluster structure and 0.4 proportional threshold are
used for all subsequent analyses.

Y. Tao and B. Rapp NeuroImage: Clinical 23 (2019) 101865
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(Fig. 3a). This solution was adopted given that our examination of
modularity results indicated (see Fig. 4) that the number of clusters had
a very similar effect on modularity of participants in both the Lesion and
the Control Groups, such that modularity decreased as the number of
clusters increased. The 10-cluster simply represented the middle value
of those examined and, moreover, the results were most reliable across
the two Control Groups with the 10-cluster structure (Fig. S2).

2.5.5. Evaluating network properties
The following network analyses were carried out with the Python

version of the Brain Connectivity Toolbox (Rubinov and Sporns, 2010.
https://pypi.org/project/bctpy). For these analyses, each correlation
matrix was first thresholded to preserve the strongest connections and
then converted to an undirected binary graph (in which all connection
strengths correspond to 1's or 0's). To select a threshold, we examined a
range of values (ranging from the top 5% to the top 50% of connection
strengths) to evaluate the reliability of the results (Fig. 4 and Fig. S2).
Like the number of clusters, the proportional threshold also had a si-
milar systematic effect across participant groups such that modularity
decreased as the cut-off threshold value increased (i.e., more connec-
tions included). All subsequent analyses are based on matrices using a
top 40% proportional threshold which yielded highly reliable results
across the two Control groups.

2.5.5.1. Modularity. For each individual (Lesion and Control Groups)
we calculated a global modularity measure (Newman, 2006) for each
(binarized) connectivity matrix relative to the reference modular
structure described in Section 2.5.4 (Note that, as indicated earlier,
the connections of the lesioned nodes of each participant with lesion
were discarded at an earlier analysis stage).

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠∈

Modularity Q
L

a
k k

L
δ1

i j N ij
i j

, (1)

Q is calculated for the set of all N nodes. L is the number of total
connections, a is the connection value between node i and node j, k is
the degree of a node, δ=1 if node i and j are in the same cluster,
otherwise δ=0 (Newman, 2006).

2.5.5.2. Global and local hubs. We first identified “reference” global
and local hubs with Control Group 1 data using the two node-level
graph-theoretic measures, participation coefficient (PC) and within-
module degree z-score (WD) respectively (Guimera and Amaral, 2005).
For Control Group 1, using the modular structure defined in Section
2.5.4, we calculated the average across-participant PC and the WD
score for each node, and then identified the reference global and local
hubs as those nodes with PC and WD values greater than one standard
deviation above the mean across the 235 nodes (Fig. 3b). Then, for use
in subsequent analyses, we computed the average PC and WD values of
these global and local hub nodes for each individual (in all groups) at
each time-point.

∑ ⎜ ⎟− ⎛
⎝

⎞
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=PC k c
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(2)

Participation coefficient (PC) is calculated for each node, k(c) is the
number of connections within a cluster, C is the set of all clusters of the
network (Guimera and Amaral, 2005).

= −WD k s k
σ

( )
i

i s

s (3)

Within-module degree z-score (WD) is calculated for each node, k(s) is
the number of connections of node i within its own cluster s (within-
cluster degree), k and σ are the mean and standard deviation of the
within-cluster degree distribution (Guimera and Amaral, 2005).

We also examined modularity, average PC and WD for the left (ip-
silesional) and the right (contralesional) hemispheres separately.

Specifically, for modularity, we calculated the per hemisphere values
using only the within-hemisphere connections and the same reference
modular structure but using only the left or the right hemisphere nodes
of each cluster. For average PC and WD, we simply divided the iden-
tified hubs (Fig. 3b) into left and right sets, and calculated the mean
participation coefficient or the within-module degree z-score values for ei-
ther hemisphere.3

2.5.6. Evaluating the network properties across participant groups and
treatment time-points

The three network properties (modularity, average PC and WD) were
calculated for each participant and each time-point. First, as the re-
ference modular structure was derived from Control Group 1, we
compared the two Control Groups to validate the measures in the
Control Group 2 (unpaired t-test). Note that because analyses of the
three network measures were theoretically motivated and planned, they
are not subject to multiple comparison correction.

Second, to assess the effects of lesion, we compared the three net-
work properties of the participants with lesion before treatment to the
healthy controls using unpaired t-tests. Finally, we evaluated the pre- to
post-treatment differences of the participants in the Lesion Group by
means of paired t-tests. In addition, the post-treatment values were also
compared to the healthy controls with unpaired t-tests. All the com-
parisons are two-tailed. For the hemisphere analyses, changes in each
neural measure and interactions between hemisphere and time-points
for the participants in the Lesion Group were evaluated using repeated-
measures two-way ANOVAs.

2.5.7. Evaluating the relationship between network measures and spelling
performance

For evaluating the relationships between network measures and
behavior, we developed two sets of linear regression models, one for the
pre-treatment time-point and one for the pre- to post-treatment changes
(with separate models for each of the graph-theoretic measures, for a
total of 6 models). First, for the pre-treatment time-point, we con-
structed a regression model that predicted each neural measure (mod-
ularity, average PC and average WD) using the following predictors:
spelling severity (see Table 1), age, years of education, lesion volume,
time after stroke, and motion during fMRI scanning (RMS mean dis-
placement). Second, for the pre- to post-treatment changes, we con-
structed a regression model to predict changes for each of the three
neural measures, including the same predictors as in the first set of
analyses, plus also: improvement on the Training Words from pre- to
post-treatment (log transformed), the accuracy of the Training Words at
pre-treatment, and the number of treatment sessions (Table 1). All re-
gression analyses were carried out with the lm function in R (R Core
Team, 2017) and the effects were visualized with the R-package effects
(Fox, 2003). Note that the inclusion of pre-treatment Training Word
accuracy as well as the log-transformation of the Training word im-
provement scores alleviate the challenges treatment studies face related
to the fact that, due to different cross-participant starting accuracies,
there are different cross-participant possibilities for improvement.

3 One caveat is that the node-level graph-theoretic measures, participation
coefficient and within-module degree z-score, and the resulting reference hubs
were all calculated on the basis of whole-brain connectivity. Those measures
would differ if calculated with within-hemisphere connections only, resulting in
the possibility that, in that case, different nodes could be identified as hubs.
However, defining a different set of hubs based on within-hemisphere con-
nectivity has fundamental conceptual implications that would require more
systematic investigation. Thus, in the current study we focused on the same set
of hubs defined on the basis of the whole-brain connectivity structure.
Essentially, the hemisphere analyses evaluated whether the whole-brain effects
seen in the Lesion Group were driven by one hemisphere.

Y. Tao and B. Rapp NeuroImage: Clinical 23 (2019) 101865

8

https://pypi.org/project/bctpy


3. Results

3.1. Analysis 1: behavioral results

3.1.1. Spelling and language/cognitive assessments
From pre- to post-treatment, spelling accuracy for Training Words

significantly improved for all participants (Fig. 2b, Table 1) with im-
provements in percentage letter accuracy ranging from 19% to 66%
(median=27%). These improvements – as well as retention at the 3-
month follow-up time point – were statistically evaluated using a gen-
eralized linear mixed-effects model. The results showed that there was a
reliable treatment effect from pre- to post-treatment for the Training
Words (beta= 3.643, p < 2e-16). Furthermore, performance re-
mained significantly higher at the follow-up time-point than at pre-
treatment (beta= 2.019, p < 2e-16) indicating that the treatment
gains were long-lasting. The spelling severity measure, PALPA 40, was
also administered after treatment and the participants showed sig-
nificant improvement (t(14)= 5.88, p= .00004). As the PALPA 40 test
only contained 40 words, to examine the effect of treatment general-
ization, we also evaluated the pre- to post-treatment changes using a
larger pool of untrained words for each participant (each participant
had different number of words, ranging from 40 to 454, mean=201).
The results showed that the spelling performance on the larger set of
untrained words also improved significantly from pre- to post-treatment
(beta= 0.428, p= .001).

In contrast, performance on other language and cognitive domains
(see Table A1 and Fig. 2b) remained unchanged except for the visual
recognition memory test (Doors and People Test; Baddeley et al., 1995)
(t(14)= 2.25, p= .04). Given the novel nature of this task (old/new
recognition memory for pictures of doors), improvement could have
been due to test-retest increase in familiarity with the task. Overall, the
specificity of the behavioral improvements (i.e., they were limited to
the spelling task) increase confidence that any neural changes we ob-
served from pre- to post-treatment were specific to the recovery of
spelling functions, rather than to generalized cognitive changes.

3.1.2. In-scanner performance
Participants performed with comparable (and high) accuracy across

pre- and post-treatment time-points for both Case-Verification trials and
also for Spelling Probe trials with the Known Words (Case-Verification:
pre= 0.95, post= 0.95, t-test t(14)= 0; Spelling Probe Known Words:
pre= 0.79, post= 0.82, t(14)= 0.78). The relatively high accuracy
indicates that participants were actively engaged during the experiment
and the consistency across time-points indicates that neither the spel-
ling treatment nor the repeated scanning produced generalized im-
provements in scanner performance. Furthermore, consistent with
spelling performance outside the scanner, the Training Words Spelling
Probe condition showed both lower accuracy than the Known Words
condition and accuracy improved significantly from pre-to post-treat-
ment (pre= 0.68, post= 0.76, t(14)= 2.5, two-tailed p= .0255).

3.2. Analysis 2: identifying the functional modular structure of spelling and
global and local hubs

Hierarchical clustering analysis of the connectivity matrices of
Control Group 1 identified 10 bilateral, generally symmetrical clusters
of 13–39 nodes each (Fig. 3a) that served as the reference modular
structure for subsequent analyses. In neuroanatomical terms, the 10
clusters can be labeled as follows (see Table 2 for the specific anato-
mical areas associated with each): (1) prefrontal, (2) ventral fronto-
parietal, (3) dorsal frontoparietal, (4) medial occipital, (5) occipito-
parietal, (6) posterior parietal, (7) temporal, (8) ventral
occipitotemporal (VOT), (9) ventromedial prefrontal, and (10) peri-
sylvian. The subset of these clusters that most closely corresponds to the
spelling network as identified in neuroimaging meta-analyses with
neurologically healthy individuals (Purcell et al., 2011; Planton et al., Ta
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2013) are the left prefrontal, posterior parietal, VOT, and perisylvian
clusters.

Table 2 reports, for each cluster, the mean percentage of damaged
nodes across participants. In line with the lesion distribution seen in
MCA strokes, the perisylvian cluster was the most affected with mean
percentage damage of 27% (SD=25%). The total percentage of da-
maged nodes (those with> 25% lesioned voxels) per participant
ranged from 1% to 12% (mean=5%, SD=3%). There was also a high
correspondence between lesion volume and the percentage of damaged
nodes (Pearson r=0.91).

With regard to the identification of hubs based on Control Group 1
data, 20 global hubs (i.e., inter-module connector nodes) were identi-
fied with a bilateral distribution, although they were located only in the
occipital and parietal clusters (medial occipital, occipitoparietal, pos-
terior parietal). Local hubs (within-module connectors) were found in
all clusters except for the posterior parietal cluster, for a total of 37; but
they were primarily distributed in the prefrontal (cluster #1, 7/37) and
the perisylvian (cluster #10, 7/37) clusters, followed by the VOT
(cluster #8, 6/37), the dorsal frontoparietal (cluster #3, 5/37) and the
temporal (cluster #7, 5/37) clusters (Fig. 3b).

3.3. Analysis 3: pre-treatment network properties

3.3.1. Do pre-treatment modularity, average PC and/or average WD index
deficit severity?

First, since the reference modular structure (Fig. 3a) that forms the
basis of all the subsequent analyses was derived from Control Group 1
data, a comparison of Control Group 1 with Control Group 2's mod-
ularity, average PC and WD values allows for evaluating the reliability
of these network properties with an independent dataset. For each
group, average PC and WD were calculated as the mean participation
coefficient and within-module degree z-score values for the global and
local hubs respectively (identified as such based on Control Group 1
data) as shown in the glass brains in Fig. 3b. There were no significant
differences between the two control groups for either modularity or
average PC (modularity: t(21)= 0.60, p= .55; PC: t(21)= 0.91,
p= .37. Fig. 5a and b). While the two groups were significantly dif-
ferent in terms of average WD (t(21)= 2.77, p= .01. Fig. 5c), each
Control Group's values were very significantly larger than those of the
Lesion Group (reported in the next paragraph).

Second, we evaluated whether the Lesion Group's pre-treatment
modularity, average PC and WD values differed from those of the
Control Groups (Fig. 5, comparison indicated with purple). There was
no significant difference for modularity (two Control Groups combined:
t(36)=−0.21, p= .83; Control Group 1: t(23)= 0.10, p= .92; Con-
trol Group 2: t(26)=−0.40, p= .69). This is generally consistent with
the finding of Siegel et al. (2018) that modularity values generally
normalize within a few months post-stroke. For the average PC values
of global hubs, we also found no difference with the Control Groups
(two groups combined: t(36)= 0.21, p= .84; Control Group 1: t
(23)= 0.59, p= .56; Control Group 2: t(26)=−0.19, p= .85). In
contrast, the Lesion Group's local hubs exhibited average WD scores
that were lower when than those of the Control Groups (two groups
combined: t(36)= 5.37, p=5e-06; Control Group 1: t(23)= 5.70,
p=8e-06; Control Group 2: t(26)= 3.5, p= .0017).

As there is a close relationship between modularity and average PC
and WD, we correlated modularity with each of the hub-based measures
for the individuals in the Lesion Group. As shown in Fig. 6a, there was a
significant negative correlation between modularity and average PC
(Pearson r=−0.63, p= .003 by 5 K permutation), indicating that
lower global modularity was related to higher degrees of global in-
tegration. On the other hand, no significant correlation was found be-
tween modularity and average WD (r=0.06, p= .39). This finding is
consistent with observations from both empirical and simulation stu-
dies that damage to global hubs has more widespread consequences
than does damage to local hubs (Albert et al., 2000; Albert and

Barabási, 2002; Sporns et al., 2007; Honey and Sporns, 2008; Alstott
et al., 2009; Gratton et al., 2012; Warren et al., 2014).

Third, with regard to the relationship between pre-treatment mod-
ularity, average PC and WD values and deficit severity, regression
analysis results (Fig. 6b, left to right) indicate that pre-treatment
average PC values were significantly positively correlated with deficit
severity (t=2.97, p= .0178) such that greater spelling severity was
associated with higher average PC values (stronger global con-
nectivity). Note that, given that lesion volume was also included as a
predictor variable in the regression models (Fig. S3), the relationship
between severity and PC was not driven by lesion volume. As modularity
and average PC were negatively correlated, modularity exhibited the
reverse relationship with severity (i.e., greater spelling severity was
associated with lower modularity) but this did not reach significance
(t=−1.45, p= .1856). Lastly, average WD values did not correlate
with severity (t=0.031, p= .971).

With regard to the other variables included in the pre-treatment
time-point regression analyses: In terms of modularity, higher modularity
values were correlated with greater age (t=2.61, p= .0309) and
longer time after stroke (t=2.59, p= .0321). For average PC, higher
values were associated with lower age (t=−3.26, p= .0115), more
years of education (t=4.55, p= .0019), and smaller lesions
(t=−3.02, p= .0166). Average WD values were not significantly
correlated with any of these variables at pre-treatment. The amount of
in-scanner motion was not correlated with modularity or average WD
(t=0.59 and− 1.56 respectively) and only marginally correlated with
average PC (t=2.03, p= .07). (All effects of the three models are
shown in Fig. S3).

3.3.2. Are pre-treatment modularity, average PC, and/or WD related to
future response to treatment?

To examine whether future response to treatment was related to
these network properties at pre-treatment, we calculated the correla-
tion between each of the three graph-theoretic measures at the pre-
treatment time-point and the pre-to post-treatment behavioral im-
provement on the Training Words. As shown in Fig. 7a, we found that
higher pre-treatment average WD was significantly associated with
larger future treatment gains (Pearson r= 0.51, p= .02 by 5 K per-
mutation) while there was no significant association for either mod-
ularity (r=0.22) or average PC (r=−0.15).

3.4. Analysis 4: the relationship between pre to post-treatment changes in
behavioral and network properties

3.4.1. Do modularity, average PC and/or WD change in response to
treatment? If so, what is the relationship among these variables?

The three graph-theoretic measures at the pre- and post-treatment
time-points for the individuals in the Lesion Group and the comparisons
with the Control Groups are depicted in Fig. 5 (purple and green re-
spectively). The comparison of modularity values (Fig. 5a, orange) from
pre- to post-treatment for the Lesion Group reveals a significant in-
crease (t(14)= 3.03, p= .0089) with post-treatment modularity ex-
ceeding that of the Control Groups (two groups combined: t
(36)=−2.49, p= .02).

As can be seen in Fig. 5, average PC values did not change in re-
sponse to treatment (t(14)=−1.05, p= .31). In contrast, average WD
values increased significantly from pre-to post-treatment (t(14)= 2.2,
p= .04) but still remained significantly lower than those of the Control
Groups at the post-treatment time-point (t(36)= 4.30, p= .0001).

Given the mathematical relationships between average PC/WD and
modularity, in order to evaluate whether changes in either one or both
contributed to the significant modularity changes reported in the pre-
vious analysis, we examined the correlation between these measures.
Results showed that changes in average PC (global integration) changes
were not related to modularity changes (r=−0.17, p= .26 by 5 K
permutation test), although there was a significant correlation between
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average PC and modularity at pre-treatment as we reported in Section
3.3.1 (Fig. 6a). In contrast, we find that average WD (local integration)
changes were significantly correlated with modularity changes (Pearson
r=0.62, p= .01 by 5 K permutation test. Fig. 8a). These results in-
dicate that, although the degree of global integration plays a key role in
determining modularity (a global network measure) the changes in
modularity that we observed to be associated with treatment were, at
least in large part, driven by increases in local connectivity.

Given that head motion can have an impact on patterns of func-
tional connectivity (e.g., Power et al., 2012; Satterthwaite et al., 2013),
we compared the amount of motion across groups and time-points
(mean RMS calculated by MCFLIRT, Jenkinson et al., 2002). Results
revealed no significant difference between pre- and post-treatment
time-points (t(14)= 0.82, p= .44), no difference between the two
Control Groups (t(21)= 0.51, p= .62), nor between the Lesion Group
at the pre-treatment time-point and the Control Groups (two groups
combined: t(36)= 1.61, p= .12). Only at the post time-point was the
Lesion Group's motion greater than that of the Controls Groups' (two
groups combined: t(36)= 2.25, p= .03). Importantly, however, the
fact that there was no difference between pre- and post-treatment time-
points for the Lesion Group indicates that the observed changes in
modularity cannot be attributed to motion changes. In addition, we also
evaluated the relationship of inter-node distance and the correlation
between motion and connectivity strength following Satterthwaite et al.
(2013), as it has been suggested that motion tends to increase short-
distance connectivity values and decrease long-distance connectivity
values. However, we found no such relationship (Pearson r=−0.11
and− 0.13 for pre- and post-time-points respectively), indicating that
the observed changes in modularity cannot be explained by a distance-

dependent effect of motion.

3.4.2. How are pre- to post-treatment changes in network properties related
to behavioral changes?

Regression analyses revealed that modularity increases were sig-
nificantly and negatively correlated with behavioral treatment gains
such that participants with smaller modularity increases (or decrease)
had larger behavioral improvements (t=−2.77, p= .0396, Fig. 8b).
Thus, despite the fact that overall there was a significant pre- to post-
treatment increase in modularity such that modularity was actually sig-
nificantly higher than normal at post-treatment (Fig. 6a), larger in-
crease in modularity were generally associated with smaller behavioral
improvements. Why might this be the case? One obvious possibility is
that the negative relationship between modularity increases and
treatment gains occurs because the higher modularity observed after
treatment was maladaptive. That interpretation predicts that higher
post-treatment modularity should have been associated with lower post-
treatment spelling accuracy. However, we found no such relationship
(Pearson r=−0.17), making such an explanation very unlikely. The
alternative interpretation we propose is that individuals that started out
with a healthier, more intact spelling system required less neural
modification to achieve a larger benefit from treatment. This not only
explains the seemingly paradoxical observation that smaller increases
in modularity were associated with greater behavioral treatment gains,
but is consistent with two additional observations. Namely, that those
individuals who experienced smaller modularity increases from pre- to
post-treatment: (a) had less severe deficits at pre-treatment (t=4.98,
p= .0042, Fig. S4) and (b) also had higher pre-treatment modularity
(Pearson r=−0.44, p < .05 by 5 K permutation test). Thus, these

Fig. 5. Comparison of network properties across time-points and participant groups. Four comparisons are evaluated for each network property: Control Group 1 vs.
2 (black), pre-treatment Lesion Group vs. all Controls (purple), post-treatment Lesion Group vs. all Controls (green), and pre- vs. post-treatment for the Lesion Group
(orange). The pre vs. post comparisons are calculated with paired t-tests and the other three with unpaired t-tests, all p-values are two-tailed. (a) Modularity: values
for individuals in the Lesion Group at pre-treatment do not differ from the Control Groups, but increase significantly from pre- to post-treatment and become
significantly higher than the Control Groups at post-treatment. (b) average PC: No significant difference between Lesion and Control Groups at either time-point, and
within the Lesion Group the values do not differ from pre- to post-treatment. (c) average WD: Significantly lower in individuals in the Lesion Group than for those in
the Control Groups at both time-points, and increase significantly from pre- to post-treatment. There is also a significant difference in average WD between the two
Control Groups. (~: p < .1, ⁎:p < .05, ⁎⁎: p < .01, ⁎⁎⁎: p < .001, ⁎⁎⁎⁎: p < .0001, ⁎⁎⁎⁎⁎: p < .00001, n.s.: p > .1).
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Fig. 6. (a) Relationship between modularity and average PC and WD in individuals with lesion at pre-treatment time-point. Modularity is significantly correlated with
average PC such that lower modularity is associated with higher average PC values of the global hubs, i.e. higher global integration. No significant correlation is
observed between modularity and average WD. (b) Relationships between pre-treatment network properties (from left to right: modularity, average PC, average WD)
and deficit severity as estimated from multiple regression models (described in Section 2.5.7). The plots visualize, for each model, the estimated slopes (and
confidence intervals) combined with partial residual plots of the predictor severity (R package effects, Fox, 2003). The results indicate that greater spelling severity is
significantly associated with higher PC before treatment. Effects of all the other predictors can be found in Fig. S3. (~: p < .1, ⁎:p < .05, ⁎⁎: p < .01, ⁎⁎⁎: p < .001,
⁎⁎⁎⁎: p < .0001, ⁎⁎⁎⁎⁎: p < .00001, n.s.: p > .1).

Fig. 7. Relationship between pre-treatment network properties and behavior changes from pre- to post-treatment, left to right are: modularity, average PC and
average WD. Higher average WD values before treatment is correlated with the amount of improvement in spelling (Pearson r=0.51, p= .02 by 5 K permutation
test).
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observations all support the interpretation that less severe deficits prior
to treatment, presumably due to a healthier and more modular spelling
system, are characterized by higher pre-treatment modularity which
requires less modification to achieve greater behavioral benefits.

There was no statistically significant relationship between changes
in average PC and behavioral changes (t=0.88, p= .42, Fig. 7b), but
we did find a significant correlation between changes in average WD
and behavioral changes such that, as we observed for modularity,
smaller average WD increases (or decreases) were associated with
greater treatment gains (t=−3.37, p= .0199, Fig. 7b). Like mod-
ularity, WD changes showed trend of positive correlation with severity
such that smaller WD increases tended to have less severe deficits at
pre-treatment (t=1.82, p= .1279, Fig. S4), and smaller WD increases
also correlated with higher WD values at pre-treatment (Pearson
r=−0.74, p < .001 by 5 K permutation test). In other words, changes
in average WD and modularity show the same relationship with beha-
vioral gains, while average PC changes seem unrelated.

With regard to the other variables included in the pre-post treat-
ment regression analyses, only age was significantly correlated with
magnitude of change in modularity (t=−3.44, p= .0184), such that
greater age was associated smaller modularity increases (or decrease).
No other significant effects were observed. Results of all the in-
dependent variables of the regression models are shown in Fig. S4.

3.4.3. How are treatment-related network changes distributed throughout
the brain?

We examined if the significant average WD changes reported in
Section 3.4.2 were evenly distributed across clusters or, instead, were
concentrated in a subset of them. To do so, for the 9 clusters with local
hubs (cluster #6 lacked local hubs), we evaluated the WD changes of
each cluster from pre- to post-treatment with two-tailed paired t-tests.
As shown in Fig. 9, the increases in average WD were not equally dis-
tributed across clusters but instead were concentrated in a few clusters:
the VOT cluster (#8) had the largest increase (Fig. 8, dark red, t
(14)= 3, p= .0096); the dorsal frontoparietal (#3) and the ven-
tromedial prefrontal clusters (#9) also had marginal increases (t
(14)= 1.82, p= .0898 & 1.96, p= .0706 respectively). Only the VOT
cluster remained marginally significant after multiple comparisons
correction (Bonferroni corrected p= .0864). We also evaluated the
relationship between behavioral recovery and WD changes for each
cluster. However, none of the individual clusters (including the VOT
cluster) showed statistically significant correlations between the WD
changes and behavioral improvement (p-values ranged from 0.18 to 1).
Nonetheless, all of the clusters that showed numerical increases in WD
from pre to post treatment (i.e., clusters 3, 4, 6, 8, 9, 10) exhibited the
same pattern (that was found to be statistically significant across the
clusters) such that smaller WD increases or decreases were associated

Fig. 8. (a) Relationship between changes in modularity and average PC and WD in individuals with lesion. No significant correlation is found between modularity
and average PC changes, but changes in modularity are significantly correlated with changes in average WD such that greater modularity increases are associated
with greater average WD increases. (b) Relationships between network property changes (left to right: modularity, average PC and WD) and behavioral changes from
pre- to post-treatment as estimated from multiple regression models (described in Section 2.5.7). The plots visualize, for each model, the estimated slopes (and
confidence intervals) combined with partial residual plots of the predictor improvement after log transform (R package effects, Fox, 2003). The amount of pre- to
post-treatment improvement in spelling is significantly associated with pre- to post-treatment change in modularity and marginally with change in average WD, while
for average PC the correlation is not significant. The correlations are negative, indicating that greater behavioral improvement is associated with smaller increases (or
decreases) in modularity and average WD (see text for further discussion). Effects of all the other predictors can be found in Fig. S4. (~: p < .1, ⁎:p < .05, ⁎⁎:
p < .01, ⁎⁎⁎: p < .001, ⁎⁎⁎⁎: p < .0001, ⁎⁎⁎⁎⁎: p < .00001, n.s.: p > .1).
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with larger behavioral gains.
As the VOT cluster showed the largest change and it also included

the visual word form area (VWFA), we visualized the connectivity pat-
terns and the WD values of the local hubs for each group and time-point
in Fig. 10a to provide a concrete picture of the pre to post connectivity
differences within this region. As clearly shown in Fig. 10a, the VOT
connectivity pattern of the Lesion Group normalized towards the Con-
trol Groups from pre-to post-treatment. Furthermore, we compared the
average WD scores of both time-points to the healthy controls
(Fig. 10b). Although this cluster was well preserved in the individuals
in the Lesion Group (Table 2), the average WD values at pre-treatment
were lower than for the Control Group (t(36)= 3.38, p= .0018) and,
although they significantly increased, they remained (marginally)
lower than Controls' at post-treatment (t(36)= 1.92, p= .0634).

3.5. Analysis 5: hemispheric effects

The analyses and results reported thus far are based on bilateral
clusters of nodes. One natural question is whether results observed from
these bilateral clusters could have been driven by connectivity in a
single hemisphere. To evaluate this possibility, we examined the effects
reported in Sections 3.3. and 3.4 separately for the nodes in the left
(ipsilesional) and the right (contralesional) hemispheres.

3.5.1. Hemisphere-specific modularity, average PC and WD at pre-
treatment

For modularity, we found that at pre-treatment, individuals in the
Lesion Group showed higher LH modularity than the Control Group (t
(36)=−2.13, p= .0405), but did not differ from the controls in the
RH (t(36)=−0.10, p= .3253), with the RH results mirroring those
reported in the whole-brain analysis. Regarding average PC, as with the
whole-brain analysis, neither LH nor RH differed from the controls (LH:

t(36)=−0.37, p= .7119, RH: t(36)= 0.81, p= .4241). Analysis of
hemisphere-specific average WD showed effects similar to those found
in the whole-brain analysis such that individuals in the Lesion Group
had significantly lower average WD values than the healthy controls in
both hemispheres (LH: t(36)= 3.94, p= .0004, RH: t(36)= 3.51,
p= .0012). Those comparisons are shown in Fig. S5 (in purple). In
addition, in direct comparisons of the hemispheres, there were no sig-
nificant differences between the two hemispheres for any group at any
time-point. In sum, at the pre-treatment time-point, the hemisphere-
specific effects were the same as the whole-brain results except that
modularity in the ipsilesional LH was higher for the Lesion Group than
for the Control Group. In addition, we found that LH modularity was
positively correlated with lesion volume (Pearson r=0.46, p= .04)
but that this was not the case for RH modularity (r=0.10, n.s.).

3.5.2. Hemisphere-specific pre- to post-treatment changes in modularity,
average PC and WD

With regard to modularity, each hemisphere showed a similar pat-
tern of results as was reported for the whole-brain, with modularity
values significantly increasing in each hemisphere from pre-to post-
treatment (LH t(14)= 2.48, p= .0267; RH: t(14)= 2.77, p= .0150)
and no interaction between hemisphere and time-point (F
(1,1)= 0.0109, p= .9182, Fig. S5). Moreover, as with the whole-brain,
both LH and RH showed higher modularity than the controls after
treatment (LH: t(36)=−4.19, p= .0002; RH: t(36)=−3.27,
p= .0024). For average PC, also consistent with the whole-brain re-
sults, neither hemisphere showed a difference from pre- to post-treat-
ment (LH t(14)=−1.34, p= .2024; RH: t(14)=−0.56, p= .5857),
nor did the post-treatment values differ from those of the controls (LH: t
(36)= 0.89, p= .38; RH: t(36)= 1.54, p= .13). In terms of average
WD, we observed a marginally significant increase from pre- to post-
treatment in the RH (t(14)= 1.96, p= .0698), while the increase in the
LH was not significant (t(14)= 1.46, p= .1671), and there was no
interaction between hemisphere and time-point (F(1,1)= 0.19,
p= .6712). The post-treatment WD values in both hemispheres were
still lower than the controls, as was seen for the whole-brain analysis
(LH: t(36)= 3.67, p= .0008, RH: t(36)= 2.05, p= .0480).

Within-hemisphere regression analyses also revealed similar rela-
tions between modularity changes and behavioral changes as were seen
for the whole brain such that smaller modularity increases (or decrease)
in each hemisphere were associated with larger pre- to post-treatment
behavioral improvements (LH t=−2.17, p= .0818; RH t=−2.05,
p= .0955). Likewise, there was also a positive relationship between
modularity increases and pre-treatment spelling accuracy (severity) in
each hemisphere (LH: t=2.50, p= .0548; RH: t=2.54, p= .0520)
such that participants with larger modularity increases tended to have
more severe deficits, and had smaller treatment gains. As in the whole-
brain analysis, only age was significantly correlated with magnitude of
change in modularity in LH (t=−3.05, p= .0285), such that greater
age was associated smaller modularity increases (or decrease). No other
significant effects were observed.

To summarize, the pre- to post-treatment effects found for each
hemisphere were by and large very similar to the whole-brain results.
Together with the absence of any statistically significant interactions
between hemispheres, we conclude that the significant effects observed
with whole-brain connectivity were not clearly driven by a single
hemisphere.

3.5.3. Hemisphere-specific effects in the VOT cluster
Finally, we examined the hemisphere-specific effects for the VOT

cluster which was the cluster that showed the greatest pre to post-
treatment WD increase (Section 3.4.3). There were 6 local hubs in the
VOT (black nodes in Fig. 9), of which 4 were in the left and 2 were in
the right hemisphere. In the LH, (see Fig. 10b) the average WD values
calculated with the 4 LH hubs showed that, as for the bilateral cluster,
WD increased, albeit marginally, from pre- to post-treatment (t=2.04,

Fig. 9. Distribution of pre- to post-treatment changes of average WD across the
9 clusters. The average WD values of the local hubs of each cluster at pre- and
post-treatment are depicted (on the x-axis are the cluster numbers as reported in
Table 2). The uncorrected p-values of two-tailed paired t-tests are indicated.
Among the 9 clusters with local hubs (the posterior parietal cluster #6 lacked
local hubs), only the VOT cluster (dark red) shows a statistically significant pre-
to post-treatment increase, with marginally significant changes in the dorsal
frontoparietal cluster (green) and the ventromedial cluster (turquoise).
⁎⁎:p < .01; ~ p < .1.
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p= .0612), and average WD values at both time-points remained sig-
nificantly lower than for the Control Group (pre: t(36)= 3.54,
p= .0011, post: t(36)= 2.40, p= .0216). For the RH, we did not ob-
serve significant pre-post changes in average WD (t(14)= 0.43,
p= .6712), and the individuals in the Lesion Group were not different
from those in the Control Group (pre: t(36)= 0.03, p= .9748, post: t
(36)=−0.28, p= .7846). However, we did not find a statistically
significant interaction between hemisphere and time-point in the in-
dividuals in the Lesion Group (F(1,1)= 0.47, p= .5045). In sum, al-
though there was a trend towards left-lateralization of the WD treat-
ment-related changes in the VOT cluster, the non-significant interaction
between the effects in the two hemispheres does not allow for strong
conclusions in this regard.

4. General discussion

In this study, we investigated the properties of functional networks
in chronic stroke-induced language deficits, specifically evaluating the
graph-theoretic measures of modularity as well as global and local
connectivity (participation coefficient (PC) and within-module degree z-
score (WD), respectively). Fifteen individuals with chronic, acquired
written language deficits (dysgraphia) subsequent to left-hemisphere
stroke completed an intensive behavioral treatment program, with task-

based functional MRI data collected before and after the treatment.
Using task-based functional connectivity (Norman-Haignere, et al.,
2012), we identified a reference modular structure as well as local and
global hubs from age-matched healthy controls. On this basis, we in-
vestigated the three network properties both before and after treatment,
comparing the Lesion and Control Groups and the relationship between
the network properties and behavior. We found: (1) at the pre-treat-
ment time-point, network properties (PC and, to a lesser extent, mod-
ularity) indexed deficit severity, such that higher PC and lower mod-
ularity were associated with more severe deficits; (2) at the pre-
treatment time-point, WD was significantly lower in the individuals
with lesions than in the healthy controls and higher WD values were
associated with better future responsiveness to treatment; (3) there
were significant increases in modularity and WD from pre- to post-
treatment; (4) the magnitude of the modularity and WD increases were
(negatively) correlated with treatment gains (as measured outside the
scanner); (5) cluster-based analyses showed that the observed mod-
ularity increases were driven by enhanced WD, especially within the
ventral occipitotemporal cortex (VOTC). Overall, the investigation re-
vealed that more modular networks with higher local integration were
associated with lower deficit severity and greater response to treatment;
after treatment, both global network modularity and local integration
increased, especially within intact ventral occipital-temporal regions of

Fig. 10. (a) VOT cluster connectivity for groups and time-points. Nodes and connections of the VOT cluster are plotted in 3D space with x, y, z axes corresponding to
MNI coordinates. Connections that are present in all participants of that group/time-point are shown. Filled circles represent local hubs (identified based on within-
module degree z-score (WD) measures from Control Group 1) and the circle size is proportional to the WD value calculated with each group. (b) Comparisons of
average WD values across groups and time-points. The comparisons are color-coded as in Fig. 5. The average WD values depicted in the boxplots correspond to the
average WD values of the 6 hub nodes. The average WD values (i.e., local integration) of the VOT cluster are similar across the two Control Groups and normalizes in
the Lesion Group from pre-to post-treatment. Results of the separate analysis of the left and right hemisphere local hubs are also shown. Although there are some
significant LH effects, there is no significant interaction between time-point and hemisphere.
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the spelling network.

4.1. The impact of lesions on network properties and task performance

Previous work has shown that modularity values are associated with
various aspects of cognitive performance in healthy populations such as
motor skill learning (Bassett et al., 2011, 2013), working memory load
and/or task demands (Kitzbichler et al., 2011; Braun et al., 2015a; Yue
et al., 2017), cognitive training (Gallen et al., 2016), as well as normal
aging (Meunier et al., 2009a; Betzel et al., 2014; Chan et al., 2014).
Abnormal modular organization has also been found in populations
with various neurological disorders, including Alzheimer's Disease
(Stam et al., 2006; Buckner et al., 2009; Brier et al., 2014), schizo-
phrenia (Bassett et al., 2008; Lynall et al., 2010; Yang et al., 2016),
traumatic brain injury and strokes (Gratton et al., 2012; Arnemann
et al., 2015; Caeyenberghs et al., 2017; Siegel et al., 2018). Although
higher modularity values are typically associated with better perfor-
mance (e.g., Gratton et al., 2012; Siegel et al., 2018), this is not always
the case and one might well imagine that higher modularity might be
beneficial for certain tasks but not others, as different tasks should
benefit differently from local and global integration. In fact, in neuro-
typical adults Yue et al. (2017) reported that higher modularity values
were associated with stronger performance on less complex tasks, while
lower modularity (greater global interactivity) was associated with
stronger performance on more complex tasks.

4.1.1. Before treatment, modularity and global integration were comparable
to heathy controls but local integration was below normal

First, we found that in terms of overall modularity and global in-
tegration values (mean PC of the global hubs), at pre-treatment the
individuals with lesions (as a group) did not differ from the control
participants. The generally normal levels of modularity for the Lesion
Group are consistent with the findings of Siegel et al. (2018), who found
that whereas modularity values were below normal shortly after a
stroke, they had normalized by 3months post-stroke.

Second, before treatment, the individuals in the Lesion Group ex-
hibited significantly lower average local integration values (mean WD of
the local hubs) than the control participants, indicating weaker within-
module connectivity. Although comparisons with healthy controls
specifically regarding PC and WD values have not been previously re-
ported, the lower WD values we observed are generally consistent with
the Siegel et al. (2016) finding of lower than normal segregation be-
tween specific network pairs within the ipsilesional hemisphere.

4.1.2. Before treatment, greater modularity and local integration were
associated with better spelling performance and future responsiveness to
treatment

As depicted in Fig. 6a, for the individuals in the Lesion Group, lower
global connectivity (hence higher global segregation) was associated
with less severe deficits (better spelling performance). This indicates
that, generally speaking, a more modular organization reflects a more
functionally intact spelling network. It is worth noting, however, that in
the literature higher modularity is not always associated with lower
deficit severity. For example, higher than normal modularity has been
found in Parkinson's disease and multiple sclerosis and higher mod-
ularity was related to worse behavioral performance (Baggio et al.,
2014; Gamboa et al., 2014). Given the differing demands of different
tasks and the damage etiologies, it is not surprising to find a mix of
findings in this regard. In fact, this variability offers an opportunity to
better understand the surely complex relationship between global net-
work properties, task demands and different types of network disrup-
tion.

Pre-treatment average WD (local integration) values were sig-
nificantly and positively correlated with the future behavioral respon-
siveness to treatment (Fig. 7), consistent with the general notion that
greater pre-treatment modularity/segregation reflects greater network

health, at least in the context of spelling and dysgraphia. Although the
relationships of modularity and average PC with future treatment re-
sponse were not statistically significant, they were in the directions that
would have been predicted based on this general notion. These results
are consistent with, and extend to include average WD, the findings of
Arnemann et al. (2015) and Gallen et al. (2016) that baseline modularity
levels predicted subsequent learning in brain injured and healthy older
individuals, respectively. The focus of this study was on understanding
the properties of neural networks and how these are changed by lesion
and recovery rather than on more broadly identifying biomarkers of
responsiveness to treatment. The latter would represent a different re-
search focus and, to be effective, would entail comprehensive com-
parison of the predictive properties of network properties with those of
other demographic, behavioral, and neural measures. We do note,
however, that while average WD at pre-treatment was significantly
correlated with treatment gains, lesion size was not.

4.2. Changes in network properties that support recovery of function

We found that both modularity and average WD significantly in-
creased from before to after treatment while average PC remained
stable. Given that average WD values were significantly below normal
before treatment, it may have been expected that an increase in local
integration would play a role in recovery of function. Despite this in-
crease, after treatment, average WD values still remained significantly
below normal, while modularity values increased to levels significantly
above normal. Importantly, the significant correlation reported be-
tween changes in average WD values and modularity values indicates
that the increases in local integration were driving the observed in-
creases in overall modularity. Both Siegel et al. (2018) and Duncan and
Small (2016), in the context of spontaneous and treatment-based re-
covery, respectively, also reported that increases in modularity values
were associated with improvement in performance. Our work extends
these previous results by specifically identifying the role that increases
in local integration play in the overall modularity increases.

In an examination of individual differences, unlike Duncan and
Small (2016) and Siegel et al. (2018), we found that the amount of
behavioral improvement was negatively correlated with modularity
change, such that greater improvement was associated with smaller
modularity increases (or even decreases in a few individuals). Note that
this was the case despite the fact that pre-treatment accuracy on the
Training items (as well as overall dysgraphia severity) was included in
the regression model. Given the negative direction of the relationship
and the fact that modularity values were higher than normal after
treatment, we considered whether increased modularity after treatment
was maladaptive or beneficial. If high modularity after treatment was
maladaptive (e.g., modules might have become overly segregated) then
higher post-treatment modularity values should have been associated
with lower post-treatment spelling accuracy. However, we found no
such relationship. Instead, the evidence supports the alternative inter-
pretation that high modularity after treatment is generally beneficial but
that the observed negative relationship results from the fact that in-
dividuals with high modularity at pre-treatment required less neural
change to obtain greater behavioral benefits. This interpretation is
consistent with the further finding that higher pre-treatment modularity
values were associated with less severe deficits and smaller modularity
increases.

While we think this is a reasonable interpretation that is consistent
with the observations, we also acknowledge that the finding of the
negative relationship between modularity (and WD) increases and be-
havioral gains may well indicate a level of complexity that we do not
yet fully understand. It is important to clarify, however, that it is not the
case that it is only participants whose modularity values actually de-
creased who made treatment gains. All participants made significant
treatment gains and only 3/15 individuals exhibited decreases in
modularity values (and 6/15 exhibited decreases in WD, see Fig. 8a).
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Therefore, modularity (and WD) increases are generally associated with
treatment gains, however the magnitude of the neural increases is ne-
gatively associated with treatment gains. The explanation we offered
earlier provides an account of these general findings, but there are other
possibilities such as sub-groups of subjects, non-linear relationships
among network values, initial deficit levels, and recovery-associated
changes. Examining these types of possibilities will require more
complex analysis models that in turn will require a greater number of
(carefully studied) participants.

In sum, we found that spelling treatment resulted in improvement of
spelling accuracy for both trained and untrained words (as measured
outside the scanner) and that this was accompanied by increases in
network modularity which were largely driven by increased integration
within local networks (WD). Individuals with more modular, globally
segregated systems prior to treatment were able to benefit more from
treatment and required less neural change to obtain greater behavioral
benefits. It is worth noting that, consistent with our findings, Purcell,
Wiley and Rapp (under review) also found, despite evaluating entirely
different neural measures, that higher pre-treatment system integrity
required less neural change to achieve greater treatment response.

4.3. Treatment-induced changes in ventral occipital-temporal cortex
(VOTC)

While the analyses focused primarily on quantifying aspects of
overall brain network organization (modularity, average PC and average
WD), for WD we were able to consider if the observed changes in local
integration were distributed uniformly across the 10 modules (i.e.,
clusters) or if they were concentrated in certain modules more than
others. We found (Fig. 9) that the changes in average WD from pre- to
post-treatment were not evenly distributed across the modules. Instead
some modules showed virtually no change, others exhibited trending
(p < .1) changes (dorsal frontal parietal and ventromedial prefrontal
clusters), but only the ventral occipito-temporal (VOT) cluster exhibited
a marginally significant (after multiple comparisons correction) change
in average WD values from before to after treatment. Fig. 10 depicts the
changes in the local connectivity from before to after treatment within
this VOT module. It illustrates that not only does the density of local
connectivity significantly increase with recovery, it clearly moves to-
wards normalization. This specific finding is interesting for a number of
reasons.

First, the ventral occipital-temporal region includes the left-hemi-
sphere area often referred to as the VWFA (visual word form area). This
area has been shown to form a part of the orthographic network in the
healthy brain, playing an important role in both reading (e.g., Cohen
et al., 2002; McCandliss et al., 2003) and spelling (Purcell et al., 2011;
Planton et al., 2013). Furthermore, in terms of its specific role in
spelling, it is thought to play a key role in orthographic long-term
memory representation (the long-term storage of our knowledge of
word spellings), used for both reading and spelling (Rapp and Dufor,
2011; Rapp et al., 2016). On that basis, we would suggest that in the
group of individuals that participated in this study, the treatment may
have involved reinstating or strengthening knowledge and/or retrieval
processes for word spellings, within this region.

Second, although the treatment-induced changes were not entirely
limited to this single region, it is nonetheless the case that they were not
similarly distributed across all clusters. This indicates that although one
may evaluate global network characteristics, one should not lose sight
of the possibility that relevant network characteristics or changes might
actually be fairly localized. Localized changes will impact global mea-
sures and it is important to understand when and under what circum-
stances these global values reflect more or less localized network
characteristics (also see Gallen et al., 2015).

4.4. Absence of robust hemisphere-specific effects

Regarding the neurotopography of the brain changes that support
recovery of function, previous studies have variously attributed positive
recovery outcomes to: (1) ipsilesional-perilesional reorganization (e.g.,
Winhuisen et al., 2007; Fridriksson, 2010, 2012; Postman-Caucheteux
et al., 2010); (2) modulation of contralesional areas homologous to the
stroke (e.g., Thulborn et al., 1999; Gold and Kertesz, 2000; Blasi et al.,
2002; Turkeltaub et al., 2012); and (3) reorganization of both left
perilesional and homologous contralesional areas (Kuest and Karbe,
2002; Crosson et al., 2005; Fridriksson et al., 2006). To examine these
possibilities in the context of our study, we repeated all of the network-
based analyses on hemisphere-specific nodes and connections.

The results indicated only three areas in which there was some in-
dication of differences between the hemispheres: (1) at pre-treatment,
left hemisphere modularity values were significantly higher for the
Lesion compared to the Control Group, while right hemisphere ones did
not differ across groups (Fig. S5); (2) at pre-treatment, left-hemisphere
modularity values were significantly correlated with lesion volume,
while in the right hemisphere they were not, (3) the left hemisphere
VOT local hubs showed a marginally significant (p < .06) increase in
average WD from pre-to post-treatment, while the right hemisphere
ones did not (Fig. 10). However, none of these effects showed a sta-
tistically significant interaction with hemisphere. Thus, while the re-
sults suggest some left-lateralization of network effects, they are not
sufficiently robust to support strong conclusions. This is likely to be
another area where future work, with larger numbers of participants
will be needed to more decisively clarify the issues.

4.5. Task-based vs. resting-state networks

One of the main differences between this investigation and the
majority of previous functional connectivity studies, is that we ex-
amined network structure as defined by background connectivity – the
residual time-course of the GLM from task-based fMRI (Norman-
Haignere et al., 2012; Al-Aidroos et al., 2012), using a spelling task
carried out during scanning. The relationship between resting-state
functional connectivity (RSFC) and the functional connectivity derived
from the task-based residual time-course has been previously examined
(Fair et al., 2007; Cole et al., 2014). Fair et al. (2007) compared RSFC
with task-based background connectivity and concluded that the task-
based background connectivity was qualitatively similar to RSFC but
also had several significant differences. Likewise, Cole et al. (2014)
compared RSFC with task-based background connectivity derived from
a large set of tasks, and concluded that task-based functional con-
nectivity included both the intrinsic neural activity fluctuations of RS-
fMRI along with subtle, yet significant, task-related components.

Our findings are consistent with this interpretation in that we found
certain important differences between the parcellation of nodes we
identified (from healthy control task-based functional connectivity
patterns) and typical RS parcellations. For example, RS parcellations
typically yield a single frontal-parietal cluster (or module), that is as-
sumed to participate in the default-mode network or the frontoparietal
network. However, the parcellation obtained from the task-based
(spelling) functional connectivity in this investigation assigns these
areas to distinct clusters. This type of separation between frontal and
parietal regions might be due to the specific task involved in the current
study, as the frontoparietal network has been argued to be a “flexible
hub” that displays increased connectivity to other specific networks
during task performance (e.g., Bassett et al., 2011, 2013; Cole et al.,
2013; Yue et al., 2017). For instance, Cole et al. (2013) showed that the
frontoparietal network displayed the greatest variability in its con-
nectivity pattern to other cortical networks across a large number of
tasks. Overall, the separation between the frontal and parietal areas we
observed is in line with the claim of Fair et al. (2007) and Cole et al.
(2014) that measures such as background connectivity are sensitive to
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task-based functional networks.
Relatedly, the global hubs identified in this study were concentrated

in bilateral posterior parietal and occipital areas, including the pre-
cuneus. While these locations are typically associated with hubs in RS
functional connectivity studies (e.g., Hagmann et al., 2008; Buckner
et al., 2009; Meunier et al., 2009b; Bertolero et al., 2015), we did not
see the frontal hubs that have been reported in many of these studies.
Presumably, using a measure such as background connectivity that
captures task-based properties, we would expect that different hubs
would be identified from different task-based data sets.

Overall, the fact that several of the findings we report are consistent
with those reported in resting-state based studies of brain damage and
recovery increases confidence that task-based background connectivity
is an appropriate and useful measure for investigating network prop-
erties in these contexts. Moving forward, it will be important and in-
teresting to identify the extent to which resting state and task-based
approaches provide similar or different understandings of these com-
plex systems, and how these relate to the recovery of different cognitive
functions.

4.6. Limitations

There are various limitations of this investigation. First, although all
the participants had a single left-hemisphere stroke, there was none-
theless considerable heterogeneity in the lesion distribution. Lesion
heterogeneity poses a challenge to studying neural mechanisms of re-
covery of function. For example, perilesional tissue is often argued to
play an important role in recovery but this can be difficult to assess in a
set of heterogeneous lesions. Second, there is also the issue of deficit
heterogeneity. Although the fact that all participants suffered from
chronic acquired dysgraphia provides a homogeneity of deficit type
absent in many studies, it is still the case that the participants suffered
from different sub-types of dysgraphia and various degrees of other
language and cognitive deficits. Third, there are a large number of
graph-theoretic measures that could have been included, and which
might have provided different insights into the characteristics of the
functional neural networks that support recovery. Furthermore, a more
targeted analysis approach could have been adopted, evaluating spe-
cific networks and connections (e.g., Van Hees et al., 2014; Sandberg
et al., 2015). While there are certain advantages to examining global
measures such as those used in this investigation, specific local effects
are at risk of being over-looked. Fourth, even within the context of the
modularity, PC and WD measures we adopted, different analysis deci-
sions could have been made. We chose to define a reference network on
the basis of neurotypical brain responses, but approaches that define

reference networks based on Lesion Group data at the pre-timepoint
could also be considered. Among other things that type of approach
may result in a different distribution of global and local hubs, with
consequences for PC and WD values.

5. Conclusions

It has long been recognized that interactions among brain regions
play a pivotal role in supporting various cognitive processes. Graph-
theoretic approaches offer powerful statistical metrics to evaluate
neural connectivity data and hence have been shown to be a promising
tool for disease detection and prognosis (Bullmore and Bassett, 2011;
Carter et al., 2012; Braun et al., 2015b; Fornito et al., 2015; Ulm et al.,
2018; Wig, 2017). The investigation reported here extends previous
work directed at understanding the network characteristics that support
recovery of function by using functional connectivity (rather than
resting-state connectivity) to examine a larger set of related network
characteristics with an experimental design that specifically allowed for
the evaluation of treatment-driven recovery and comparisons with
control participants. The results reveal that the analysis of network
properties related to the modularity of the system provides a deeper
understanding of the neural conditions that support performance and
recovery in the face of brain injury. Specifically, in the context of re-
covery from dysgraphia, we found that recovery was associated with
increases in modularity that was driven largely by increases in local
connectivity. It will be especially interesting in future work to under-
stand possible similarities and differences in network properties asso-
ciated with recovery of different language and cognitive functions.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2019.101865.
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Appendix A. Appendix

Table A1
Individual scores of the 6 standard tests shown in Fig. 2c. All scores are percent correct measures at pre-/post-timepoint respectively (pre score/post score). Values in
parentheses are the normative values provided with each test.

Subject ID Oral reading
(100)

Single-word comprehension
(86)

Auditory comprehension
(N/A)

Recognition memory
(71)

Semantic comprehension
(98–99)

Spoken picture naming
(N/A)

1 – ABS 87/95 80/84 96/100 71/83 96/98 73/88
2 – AEF 88/93 57/67 96/100 67/54 88/88 65/65
3 – DSK 57/53 76/77 100/100 71/79 92/94 62/62
4 – DTE 97/93 70/70 100/100 75/88 98/96 58/77
5 – ESG 68/76 50/60 100/100 58/58 90/88 69/81
6 – FCE 75/80 63/73 100/100 88/79 98/100 88/92
7 – JGL 50/68 73/60 100/100 71/92 98/100 58/62
8 – KMN 33/52 73/80 100/100 58/79 92/94 19/38
9 – KST 40/93 73/77 100/100 58/67 94/85 42/34
10 – MSO 85/82 57/60 100/95 79/75 94/100 77/73
11 – PQS 90/93 87/93 100/100 58/75 98/98 96/92
12 – RFZ 98/97 87/73 100/100 100/96 96/100 100/100
13 – RHH 95/96 77/77 100/100 83/83 90/99 92/92

(continued on next page)
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Table A1 (continued)

Subject ID Oral reading
(100)

Single-word comprehension
(86)

Auditory comprehension
(N/A)

Recognition memory
(71)

Semantic comprehension
(98–99)

Spoken picture naming
(N/A)

14 – RHN 100/98 93/87 100/100 75/79 98/100 96/100
15 – TCK 85/83 73/70 100/100 75/100 100/100 73/77

Oral reading: single-word oral reading (PALPA 35; Kay et al., 1992).
Single-word comprehension: single-word written comprehension (PALPA 51; Kay et al., 1992).
Auditory comprehension: auditory single-word comprehension (Northwestern Naming Battery; Thompson et al., 2012).
Recognition memory: Doors and People test (Baddeley et al., 1995).
Semantic comprehension: Pyramids and Palm Trees (Howard and Patterson, 1992).
Spoken picture naming: oral picture naming (Northwestern Naming Battery; Thompson et al., 2012).
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