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Let-7 microRNA controls the expression of proteins that belong to two distinct
gene regulatory networks, namely, a cyclin-dependent kinase (Cdk) network driving
the cell cycle and a cell transformation network that can undergo an epigenetic
switch between a non-transformed and a malignant transformed cell state. Using
mathematical modeling and transcriptomic data analysis, we here investigate how
Let-7 controls the Cdk-dependent cell cycle network, and how it couples the latter
with the transformation network. We also assess the consequence of this coupling
on cancer progression. Our analysis shows that the switch from a quiescent to
a proliferative state depends on the relative levels of Let-7 and several cell cycle
activators. Numerical simulations further indicate that the Let-7-coupled cell cycle
and transformation networks mutually control each other, and our model identifies
key players for this mutual control. Transcriptomic data analysis from The Cancer
Genome Atlas (TCGA) suggests that the two networks are activated in cancer, in
particular in gastrointestinal cancers, and that the activation levels vary significantly
among patients affected by a same cancer type. Our mathematical model, when applied
to a heterogeneous cell population, suggests that heterogeneity among tumors may
in part result from stochastic switches between a non-transformed cell state with low
proliferative capability and a transformed cell state with high proliferative property. The
model further predicts that Let-7 may reduce tumor heterogeneity by decreasing the
occurrence of stochastic switches toward a transformed, proliferative cell state. In
conclusion, we identified the key components responsible for the qualitative dynamics
of two networks interconnected by Let-7. The two networks are heterogeneously
activated in several cancers, thereby stressing the need to consider patient’s specific
characteristics to optimize therapeutic strategies.
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INTRODUCTION

Let-7 microRNAs control two distinct gene regulatory networks
(GRNs) that regulate cell cycling and malignant transformation
of breast cancer cells (Johnson et al., 2007; Iliopoulos et al.,
2009). A cyclin-dependent kinase (Cdk) network controls the
correct progression of the cell cycle along the G1, S, G2,
and M phases (Morgan, 2007). Growth factors (GFs) and E2F
stimulate, while Let-7 down-regulates the expression of several
components of this Cdk-dependent cell cycle network (Bueno
and Malumbres, 2011). Mathematical models focusing on post-
translational regulations of cyclin/Cdk complexes were proposed
to account for the dynamics of the Cdk network in mammals
(Novak and Tyson, 2004; Gérard and Goldbeter, 2009). However,
to our knowledge, no model has been proposed to study the
impact of miRNAs on this network.

Let-7 is also a key component of a GRN that promotes
cell transformation in response to an inflammatory stimulus
(Iliopoulos et al., 2009). This GRN is characterized by a
positive feedback loop (PFL), where a transient inflammatory
stimulus is sufficient to induce the cells to undergo a
PFL-dependent epigenetic switch from a non-transformed
state toward a permanently malignant transformed state. We
previously proposed a model describing the dynamics of this
transformation GRN (Gérard et al., 2014). Our model suggested
that a transient inflammatory signal induces an irreversible
bistable switch in the expression of the GRN components,
eventually leading to a stable epigenetic state, allowing cells to
display increased motility and invasiveness. In this GRN, Let-
7 prevents cell transformation by inhibiting the translation of
interleukin-6 (IL6) and Ras, two oncogenic drivers.

Let-7 being a component common to the cell cycle and
transformation networks, we now raise the following questions:
how does Let-7 control the Cdk-dependent cell cycle network?
Does Let-7 play a coupling role between the cell cycle GRN and
the transformation GRN, and can the two GRNs be combined
into a larger network that impacts on cancer progression?
We address these issues using experiment-based mathematical
modeling of the GRNs and by analyzing transcriptomic data
from The Cancer Genome Atlas (TCGA). We characterize the
qualitative dynamics resulting from the coupling between the
two GRNs and show that their activation is cancer-specific and
heterogeneous from patient to patient, stressing the need to
consider patient’s specific characteristics.

RESULTS

Structure of the Cell Cycle and
Transformation Networks and Model
Description
The structure of the Cdk network gives rise to a transient
and sequential activation of the various cyclin/Cdk complexes,
allowing for a correct progression through the different cell
cycle phases (Figure 1A; Morgan, 2007; Gérard and Goldbeter,
2009). The activity of cyclin D/Cdk4-6 ensures the transition

G0/G1 and the progression in G1. Cyclin E/Cdk2 promotes the
G1/S transition, while cyclin A/Cdk2 elicits progression in S and
G2. Finally, cyclin B/Cdk1 brings about G2/M transition and
the entry of cell into mitosis (Figure 1A). In the model, Let-7
represses each cyclin/Cdk complex (see next section for details).

Let-7 is also at the core of a PFL in a malignant
transformation network (Iliopoulos et al., 2009). Indeed, a
transient inflammatory signal mediated by the oncoprotein
Src activates NF-κB, which promotes Lin28, IL6, and STAT3
activation (Iliopoulos et al., 2010; Fofaria and Srivastava, 2015).
Multiple links exist between cell proliferation and the processes
of cell transformation and cell migration (Zhang and Liu,
2002). Indeed, NF-κB, Lin28, Ras, and STAT3 may all regulate
cell proliferation, which strengthens the coupling between cell
proliferation and cell transformation (Coqueret and Gascan,
2000; Bienvenu et al., 2001; Brantley et al., 2001; Ding et al., 2008;
Xiong et al., 2008; Xu et al., 2009). Here, we do not aim to propose
a comprehensive mathematical model to analyze the multiple,
redundant, intertwined links between both GRNs. We focus on
Let-7 and explore its potential role to couple both GRNs driving
proliferation and malignant transformation.

The model is described by a set of 15 kinetic equations for
the Cdk network driving the mammalian cell cycle and 14 kinetic
equations for the inflammatory circuit that controls the dynamics
of malignant transformation (Gérard et al., 2014). Each equation
represents the temporal evolution of the expression level of one
component of the network. For the cell cycle network, it includes
the mRNAs of cyclin D, E, A, and B; the active form of E2F; the
various cyclin/Cdk complexes (cyclin D/Cdk4-6, cyclin E/Cdk2,
cyclin A/Cdk2 and cyclin B/Cdk1); and the active form of the
anaphase-promoting complex (APC), which triggers degradation
of cyclins A and B at the end of mitosis (Supplementary Figure
S1). We assume that the different complexes cyclin/Cdk are
formed immediately after the synthesis of cyclin, Cdk being
present in excess, and consequently, we only consider the
synthesis and degradation of these complexes. Variables are
defined in Supplementary Table S1, the kinetic equations are
given in Supplementary Table S3, detailed kinetic reactions of
the mathematical model is given in Supplementary Table S4, and
the parameters are defined in Supplementary Table S5.

Relative Levels of Let-7 and Growth
Factors Control Cell Cycling
To analyze the impact of Let-7 on the Cdk network dynamics,
we built a qualitative skeleton mathematical model of cell cycle
regulation by Let-7 (see Figure 1A for an overview of the model’s
structure and Supplementary Figure S1 for a detailed description
highlighting all regulatory interactions included in the model).
The model is an extension of an earlier model of the Cdk network
that accounted for the dynamics of the mammalian cell cycle
(Gérard and Goldbeter, 2011). It now explicitly incorporates
the mRNA form of each cyclin, enabling us to describe Let-
7-mediated post-transcriptional regulation of cyclin synthesis.
Let-7 represses the synthesis of multiple activators of the cell
cycle, such as cyclins D, E, A, B, Cdk6, and E2F (see Bueno
and Malumbres, 2011; Supplementary Table S2). For the sake
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FIGURE 1 | Let-7 and GF control cell cycle progression. (A) Scheme of both GRNs coupled by Let-7. (B–E) Temporal evolution of Let-7, cyclin E/Cdk2, cyclin
A/Cdk2, and cyclin B/Cdk1 is shown in the absence (VSLET7 = 0 in panels B,C) or in the presence of Let-7 (VSLET7 = 0.5 in panels D,E), and in the absence (GF = 0
in panels B,D) or in the presence of GF (GF = 10 in panels C,E). Parameter values are as in Supplementary Table S5. A detailed scheme of both GRNs that
includes all regulations considered in the model is in Supplementary Figure S1.

of simplicity, we consider that Let-7 directly represses the
translation of cyclins D, E, A, and B, by forming an “inactive”
complex with their respective mRNA (once bound to Let-7,
cyclin mRNA cannot be translated). In addition, GFs promote
the synthesis of cyclin D, eliciting the G0/G1 transition and
the entry of the cell into the cell cycle, while E2F activates

synthesis of cyclins E and A. In this version of the model
for the cell cycle, we do not consider the inhibitory impact
of RB on cell cycle progression (Giacinti and Giordano, 2006;
Gérard and Goldbeter, 2009).

As a consequence of its regulatory structure, the network self-
organizes with sustained oscillations in the activity of the various
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cyclin/Cdk complexes, which correspond to successive rounds
of cell cycling. The occurrence of the oscillations, however,
depends on the levels of Let-7 and GF. In the absence of
both Let-7 and GF, cells proliferate and sustained oscillations
of the various cyclin/Cdk complexes develop (Figure 1B). This
situation bears similarity with transformed or cancer cells, which
are often characterized by down-regulation of Let-7 and signal-
independent growth (Sotiropoulou et al., 2009; Hanahan and
Weinberg, 2011). Starting from that condition, an increase in
GF maintains cell proliferation (Figure 1C), while an increase
in Let-7 suppresses cell proliferation (Johnson et al., 2007). The
latter case is characterized by a stable steady state, with low
levels of each cyclin/Cdk (Figure 1D). Finally, starting from
that steady state, an increase in GF permits the recovery of cell
proliferation (Figure 1E).

In this version of the model for the cell cycle, Let-7 is
the only break for cell cycle progression. Thus, in the absence
of Let-7, the Cdk network is able to enter into a sustained
oscillatory regime in a GF-independent manner. Because there
is a balance between inhibitors and activators of the cell cycle
that controls the decision between quiescence and proliferation
(Gérard and Goldbeter, 2014), an increase in the level of Let-
7 renders the Cdk network dependent on an activator of the
cell cycle, here GF, to enter into a sustained oscillatory regime.
A previous theoretical study already predicted that a balance
between E2F (activator of the cell cycle) and RB (inhibitor of the
cell cycle) controls the existence of sustained oscillations of the
Cdk network that are either dependent or independent on GF
(Gérard and Goldbeter, 2012).

The respective impact of Let-7 and GFs can be visualized
in a 2-parameter plane where the dynamical behavior of
the cell cycle network is represented as a function of the
synthesis rate of Let-7, VSLET7, and the level of growth factors,
GF (Figure 2A). For large values of VSLET7 (high levels
of Let-7), the Cdk network tends to a stable steady state
corresponding to cell cycle arrest regardless of GF levels. This
corroborates experimental results showing that Let-7 represses
cell proliferation (Johnson et al., 2007; Zhu et al., 2015). In
contrast, for small values of VSLET7 (low levels of Let-7), the
cell cycle network is characterized by sustained oscillations.
The temporal evolution of cyclin E/Cdk2 and cyclin B/Cdk1
corresponding to conditions A to F in Figure 2A are represented
in Supplementary Figures S2A–F, respectively.

Note that we interpret the amplitude of the cyclin/Cdk
oscillations in a semi-quantitative manner. We consider that
the high amplitude of cyclin E/Cdk2 and cyclin B/Cdk1
oscillations enables cell proliferation by triggering G1/S and
G2/M transitions, respectively (Figures 1, 2 and Supplementary
Figures S2A,C). The sustained oscillations in cyclin E/Cdk2
with oscillations in cyclin B/Cdk1 of very small amplitude
might correspond to endoreplication (Edgar et al., 2014)
where multiple rounds of DNA replication occur without
entry into mitosis (see temporal evolution in Supplementary
Figure S2D, which corresponds to condition D in Figure 2A).
Previous theoretical studies already showed that the regulatory
structure of the cell cycle network in mammals is capable
of generating endocycles (Gérard and Goldbeter, 2009).

Near the Hopf bifurcation, the oscillations of the various
cyclin/Cdk may not have sufficient amplitude to trigger the
transitions into the successive cell cycle phases. However,
the domain of limit-cycle oscillations nevertheless provides
an estimate of the extent of the proliferation domain
and how it is affected upon changes in parameter values;
it also indicates what would be the impact of changes in
control parameters.

The dynamics of the cell cycle network is further illustrated
for different levels of Let-7 in a two-parameter plane defined by
the synthesis rate of the cyclin/Cdk complexes, VSMCYC, and the
level of GF (Figures 2B–D). By increasing Let-7, the domain
of sustained oscillations, corresponding to cell proliferation, is
reduced and limited to higher levels of cyclin/Cdk complexes
(compare Figures 2B–D where VSLET7 is equal to 0, 0.25, and
3, respectively). From a stable steady state, corresponding to
quiescence (condition 1 in Figure 2C), an increase in GF or
an increase in the cyclin/Cdk levels may trigger the switch to
sustained oscillations (see temporal evolution of cyclin B/Cdk1
in Figures 2E,F).

We concluded that progression or arrest of the cell cycle is
controlled by the relative levels of Let-7 and GF, or of Let-7 and
the cyclin/Cdk complexes. Thus, when designing efficient anti-
cancer strategies, the model stresses the importance to consider
the relative, rather than the absolute, expression levels of network
components displaying opposing effects on cell cycling.

Let-7 Couples the Cell Cycle and
Transformation Networks
Let-7 belongs to both the Cdk-dependent cell cycle GRN and the
malignant transformation network (Figure 1A). Therefore, we
here determine the qualitative role of Let-7 as a coupling factor
between the two GRNs, by analyzing the mutual impact of the
GRNs on their respective dynamics.

Starting from a non-transformed, quiescent, cell state, defined
by high Let-7 and low cyclin B/Cdk1 levels, a transient Src
signal induced by inflammation triggers a down-regulation
of Let-7, eliciting the switch of the cell cycle network from
a stable steady state to sustained oscillations (Figure 3A).
Thus, transient inflammatory signals can promote persistent cell
proliferation. On the opposite, as observed in the experiments
(Iliopoulos et al., 2009), starting from a transformed and
proliferative cell state, transient inhibition of Lin28 or NF-κB
or transient overexpression of PTEN durably impedes cell cycle
progression (Figures 3B–D).

We concluded that transient modifications in the expression
of the components of the inflammation-dependent bistable
transformation network can impact the long-term behavior of the
cell cycling network when Let-7 couples the two GRNs.

To determine if the cell cycle network can modulate
the dynamics of the transformation network, we simulated
overexpression of all cyclins by increasing their synthesis rates,
via the parameter VSMCYC. Cyclin overexpression promotes
uncontrolled cell proliferation of cancer cells (Gillett et al.,
1994; Pok et al., 2013). Starting from a non-transformed cell
state (high Let-7 levels), the model shows a down-regulation
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FIGURE 2 | A balance between Let-7 and cell cycle activators determines the quiescence and proliferative state. (A) The Cdk network dynamics, i.e., sustained
oscillations versus stable steady states, is represented in a two-parameter plane defined by the synthesis rate of Let-7, VSLET7, and the levels of GF. The Cdk
network dynamics are indicated in a two-parameter plot as a function of the synthesis rate of the different cyclins, VSMCYC, and the levels of GF (B) in the absence of
Let-7, VSLET7 = 0, (C) in the presence of intermediate, VSLET7 = 0.25, or (D) high Let-7 levels, VSLET7 = 3. (E,F) Temporal evolution of cyclin B/Cdk1 in the presence
of GF overexpression (panel E where GF changes from 0.2 to 8, at t = 100 h, which corresponds to the switch from conditions 1 to 2 in panel (C), or in the presence
of cyclin overexpression (panel F where VSMCYC changes from 1 to 4, at t = 100 h, which corresponds to the switch from 1 to 3 in panel (C). Temporal evolution of
cyclin E/Cdk2 and cyclin B/Cdk1 corresponding to conditions A to F in panel (A) are shown in Supplementary Figure S2. Other parameter values are as in
Supplementary Table S5.
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FIGURE 3 | Let-7 is a central component between the proliferation and a malignant transformation network. (A) Effect of the inflammatory circuit on the Cdk network
dynamics. (A–D) Starting from a non-transformed, quiescent, cell state, defined by high Let-7 and low cyclin B/Cdk1 levels, a transient increase in Src from t = 100 h
to t = 105 h (gray area) triggers an epigenetic switch and cell proliferation characterized by Let-7 down-regulation and sustained oscillations of cyclin B/Cdk1. From
that transformed, cell proliferative state, the temporal evolution of Let-7 and cyclin B/Cdk1 is illustrated in the presence of transient (B) Lin28 inhibition (VSLIN28

passes from 0.1 to 0 for 500 h < t < 1000 h), (C) NF-κB inhibition (kAA1NFKB = kAA2NFKB = kAA3NFKB = 0 for 500 h < t < 1000 h), or (D) PTEN over-expression
(VSMPTEN passes from 0.001 to 10 for 500 h < t < 1000 h). Other parameter values are as in Supplementary Table S5.

of Let-7 when VSMCYC increases (Figure 4A, where VSMCYC
increases at t = 100 h). The corresponding temporal evolution
of Let-7 and cyclin B/Cdk1 is represented for different synthesis
rates of cyclins (at t = 100 h, VSMCYC changes from 1.5 to
2.5 in Figure 4B and from 1.5 to 12 in Figure 4C). For weak
overexpression of cyclins, the non-transformed quiescent cell
state is maintained, while for stronger cyclin overexpression, both
GRNs are activated, leading to down-regulation of Let-7 and
sustained oscillations of the cell cycle network (Figures 4B,C).
Note that for mild overexpression of cyclin, the time needed for
Let-7 down-regulation is rather long, possibly longer than the
lifetime of the cell. It is thus likely that the cell will not undergo
a transition toward division. However, in the presence of large
cyclin/Cdk overexpression (Figure 4C), the time needed for the
switch to occur is much shorter.

Temporal evolution of Let-7 and cyclin B/Cdk1 indicates that
the switch to cell proliferation triggered by cyclin overexpression
is irreversible because down-regulation of cyclins to their initial
levels will not restore cell cycle arrest (Supplementary Figure
S3A, condition 1, 1200 h < t < 1500 h). This is the consequence

of the irreversible bistable switch at the core of the transformation
GRN (Gérard et al., 2014). The model predicts that a stronger
decrease in cyclin synthesis can eventually stop cell proliferation,
characterized by low, stable steady-state levels of cyclin B/Cdk1
(Supplementary Figure S3A, condition 3, t > 1500 h). The
corresponding temporal evolution of the expression levels of
Lin28 and STAT3, two critical activators of the transformation
GRN, is shown in Supplementary Figure S3B. The model
indicates that these cells (condition 3 for t > 1500 h) might
be invasive cells, defined by high levels of STAT3 and Lin28
and low Let-7 levels, which are in a quiescent state (low
levels of cyclin/Cdk).

Moreover, the model predicts that a transient down-
regulation of Lin28 can impede both cell proliferation and
the transformation network (Supplementary Figure S3C,
condition 3, t > 1500 h), where low, stable levels of cyclin
B/Cdk1 are present with high Let-7 levels. The corresponding
temporal evolution of Lin28 and STAT3 expression levels
is represented in Supplementary Figure S3D. Here also,
modeling predictions agreed well with the experimental
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FIGURE 4 | Overexpression of cyclins is predicted to impact on the dynamics
of the transformation network. Temporal evolution of (A) Let-7, or (B,C) Let-7
and cyclin B/Cdk1 illustrated for different synthesis rates of cyclins, VSMCYC.
From a non-transformed and quiescent cell state defined by high Let-7 levels
and low levels of cyclin B/Cdk1, a sufficient increase in VSMCYC (for t > 100 h)
down-regulates Let-7, inducing a switch to a transformed and cell proliferative
state. Parameter values are as in Supplementary Table S5.

observations showing down-regulation of both cell proliferation
and cell transformation after transient inhibition of Lin28
(Iliopoulos et al., 2009). To assess if the dynamical behavior of
the model is robust against parameters variation, we perform

sensitivity analysis. This analysis indicates that the rates of
synthesis of the cyclin/Cdk complexes and the parameters
driving the synthesis and degradation of Let-7 and LIN28 are
important to control the dynamics of the cell cycle and cell
transformation networks (see Supplementary Information and
Supplementary Figure S4).

GFs May Also Couple the Transformation
and Cell Cycling Networks
After binding to specific ligands, tyrosine kinase receptors can
lead to the activation of Ras (Schlessinger, 2000). Thus, in
cells that possess active tyrosine kinase pathways, we expect
that growth factors simultaneously activate cell proliferation,
Ras, and the transformation network. The resulting coupling
mechanisms between the proliferation and the transformation
networks should thus be reinforced. We simulated the coupling
mechanisms of the two networks via active tyrosine kinase
signaling (Supplementary Figure S5). The model indicates
that, even in the absence of Src (the triggering signal of
the transformation network), GF is able to activate both the
proliferation and the transformation networks. The model
predicts that the network activation is faster for high levels of
GF (compare Supplementary Figure S5B with Supplementary
Figure S5C). Depending on cell types, GF may lead to the
activation of cell proliferation through numerous different
signaling pathways that do not necessarily depend on Ras.
In the latter cells, we may thus suppose that GFs activate
cell proliferation without affecting the transformation network
via Ras. In the following, we do not take into account GF-
mediated Ras-activation.

Cancer-Type-Specific Activation of the
Proliferation and Transformation
Networks
The coupling of the two networks raised the question of their
potential combined involvement in cancer. To address this issue,
we first defined a cell proliferation index (CPI) and a non-
transformed state index (NTSI), as follows

CPI = max(Md) + max(Me) + max(Ma) + max(Mb)
and

NTSI =
PTEN + Let7

IL6 + NFKB + STAT3 + miR21 + Lin28 + Ras

CPI is the sum of the maximal RNA levels of all
cyclin/Cdk complexes, which is, as a first approximation, an
indication of cell proliferation; NTSI is the ratio between
the RNA expression levels of the inhibitors, i.e., Let-7 and
PTEN, divided by the expression levels of the activators
of the epigenetic transformation switch, i.e., IL6, NF-κB,
STAT3, miR21, Lin28, and Ras. Such ratio characterizes the
degree of cell transformation where a high value defines
a non-transformed cell while a low value corresponds to
transformed cells. We here make use of the available gene
expression data (TCGA) to measure CPI and NTSI in
various cancers.
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FIGURE 5 | Concomitant activation of the proliferation and transformation networks is cancer type-specific. (A) Cell proliferation index, CPI, and
(B) Non-transformed state index, NSTI, calculated from the measured mRNA expression levels of the network components in the non-tumor, normal (N) samples,
(green bars) and tumor condition (T, red bars) of 12 tumor cohorts from TCGA. In each case, mRNA levels are relative to the non-tumor condition. A list of all
components used in the analysis can be found in Supplementary Table S7.

In addition, because the cell cycle is driven by the activity
of successive Cdks and since mRNA and protein expression
levels are not necessarily positively correlated, we collected,
when available, the protein expression levels of the network
components from the Cancer Proteome Atlas1. We showed that
the mRNA and protein expression levels of CYCLIN B1, a major
component driving mitosis entry, are positively correlated in the
two studied cohorts, namely, hepatocellular carcinoma (HCC)
and prostate adenocarcinoma (Supplementary Figures S6A,B).
This already supports the choice of CPI, which is based on mRNA
levels, as an indicator of cell proliferation.

To further support our indexes, we performed a principal
component analysis (PCA) based on the mRNA expression
levels of 124 components belonging to the cell cycle network
pathway as defined in the Kyoto Encyclopedia of Genes and

1https://tcpaportal.org/tcpa/index.html

Genomes (KEGG)2 (Supplementary Figure S6C). This PCA
performed on the HCC cohort (TCGA) permits the selection
of 100 HCC samples with high cell cycle activation (red
dots in Supplementary Figure S6C) and the other HCC
samples defined as low cell cycle activation (gray dots).
Indeed, HCCs with high cell cycle activation are located
at the farthest position as compared to non-tumor samples
(blue dots). CPIs are higher in HCC with high cell cycle
activation compared to HCC with low cell cycle activation
(Supplementary Figure S6D), which validates CPI as a good
proxy of cell proliferation.

In addition, CPI measured in 20 HCC cell lines (RNASeq data
from the OASIS Genomics portal)3 is much higher than CPI
in HCC, which fits with the large cell proliferation capability

2https://www.genome.jp/kegg/pathway.html
3http://www.oasis-genomics.org/
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of immortalized cell lines as compared to tumor samples
(Supplementary Figure S6D).

Furthermore, in this work, the expression levels of Let-7
and cyclin B/Cdk1 were repeatedly used as markers of cell
transformation and cell proliferation states (Figures 3, 4).
As a support of this, we verified that in liver cancer, the
expression of Let-7 and CYCLIN B1 mRNA is negatively
correlated, in a similar manner, compared to NSTI versus CPI
(Supplementary Figures S6E,F).

In conclusion, these analyses support the choice of CPI
and NTSI as good indicators of cell proliferation and cell
transformation states.

Since the components of the cell cycling and transformation
networks are expressed in several tissues, we assessed if
the networks are activated, i.e., if their components are
consistently misexpressed in different types of cancer. We first
calculated CPI and NSTI based on the RNA expression of
the network components (Supplementary Table S7) from the
non-tumor (NT) and tumor samples (T) of TCGA cohorts of
cholangiocarcinoma (CHOL: NT = 9, T = 36), stomach and
esophageal carcinoma (STES: NT = 46, T = 600), HCC (LIHC:
NT = 50, T = 369), stomach adenocarcinoma (STAD: NT = 35,
T = 415), lung squamous cell carcinoma (LUSC: NT = 51,
T = 501), bladder urothelial carcinoma (BLCA: NT = 19, T = 408),
kidney renal clear cell carcinoma (KIRC: NT = 72, T = 534), breast
carcinoma (BRCA: NT = 112, T = 1100), thyroid carcinoma
(THCA: NT = 57, T = 510), kidney renal papillary cell carcinoma
(KIRP: NT = 32, T = 290), kidney chromophobe (KICH:
NT = 25, T = 66), and prostate adenocarcinoma (PRAD: NT = 52,
T = 498) (Figures 5A,B). Significant and consistently high CPI
and low NSTI values, as compared to non-tumor conditions,
were obtained in several cancer types, with largest variations in
gastrointestinal cancers, i.e., cholangiocarcinoma, hepatocellular,
and stomach and esophageal carcinoma. Interestingly, the
proliferation and transformation networks do not seem to be
activated in kidney and prostate adenocarcinoma.

This suggests that concomitant activation of the cell
proliferation and transformation networks is cancer-type-specific
and predominantly occurs in gastrointestinal cancers.

Patient-to-Patient Heterogeneity in the
Activation of the Proliferation and
Transformation Networks
Principal component analysis based on the expression of all
network components was performed in three cohorts from
TCGA: (1) the cholangiocarcinoma cohort, which displays the
highest CPI levels; (2) the HCC cohort, which shows high CPI
and lowNSTI values; and (3) the prostate adenocarcinoma cohort
characterized by low CPI and high NSTI. This analysis revealed
that non-tumor (blue dots) and tumor samples (red dots) cluster
separately in cholangiocarcinoma (Figure 6A), suggesting that
the combined expression of the components of both networks
can be used as a proxy to determine the tumorigenic state of a
sample in this cohort.

A larger level of heterogeneity was detected within the
HCC and prostate adenocarcinoma cohorts (Figures 6B,C).

FIGURE 6 | Activation of the networks in tumors is heterogeneous among
patients. PCA based on the expression of all network components in the
non-tumor (blue dots) and tumor condition (red dots) of (A)
cholangiocarcinoma, (B) hepatocellular carcinoma, and (C) prostate
adenocarcinoma cohort from TCGA.

Frontiers in Physiology | www.frontiersin.org 9 July 2019 | Volume 10 | Article 848

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00848 July 10, 2019 Time: 17:16 # 10

Gérard et al. Coupling Proliferation to Malignant Transformation

Moreover, some tumors cluster together with normal samples,
indicating that the networks are not activated in all samples.
Also, despite the fact that the mean CPI and NSTI values of
prostate adenocarcinoma do not significantly differ from those
in corresponding non-tumor samples (Figures 5A,B), some
individual tumors are characterized by high activation of the
networks (Figure 6C).

We concluded that the network activation varies from patient
to patient and depends on tumor type.

Dynamics of Cell Proliferation and Cell
Transformation of a Heterogeneous Cell
Population
To determine the source of heterogeneity observed in patient
samples, we incorporated a stochastic source of heterogeneity in a
cell population model by applying, for each cell, uniform random
variations around the basal value of each kinetic parameter. We
plotted the simulated levels of CPI as a function of NTSI in
a heterogeneous cell population of quiescent, non-transformed
cells (Figures 7A,C,E; orange dots correspond to CPI and NTSI
in the absence of random variations on parameter’s values), and in
a population of transformed, proliferative cells (Figures 7B,D,F;
green dots correspond to CPI and NTSI in the absence of random
variations). Ten percent, 25%, and 50% of uniform random
variations on each parameter were considered.

Simulations indicate that the non-transformed, quiescent cell
state is less robust to random fluctuations than the transformed,
proliferative state (compare Figure 7C with Figure 7D, and
Figure 7E with Figure 7F). Indeed, starting in a non-
transformed, quiescent cell state, a large proportion of cells switch
to a transformed, proliferative state in the presence of random
fluctuations in kinetic parameters (Figures 7C,E). However, from
a transformed, proliferative cell state, only a small proportion of
cells switch to a quiescent and non-transformed state (Figure 7F).

Thus, random fluctuations in kinetic parameter values
could trigger abrupt switches in the dynamics of the cell
cycling and transformation networks. The “non-tumor” state
(quiescent, non-transformed cells) is more sensitive to random
fluctuations in kinetic parameter values than “tumor” state
(transformed, proliferative state).

We next assessed if the levels of key network components, i.e.,
Let-7, PTEN, or Ras, may affect the robustness of these cell states.
In a heterogeneous population of non-transformed, quiescent
cells with 25% of random parameter variations (Supplementary
Figures S7A–F), an increase in Let-7 strengthens the robustness
of the non-transformed, quiescent cell state toward random
fluctuations in kinetic parameters and prevents random switches
to a transformed, proliferative cell state (compare basal
conditions in Supplementary Figure S7A with Supplementary
Figures S7B–D where VSLET7 changes from 10 to 12, 20, and
50, respectively). Similarly, an increase in PTEN or a decrease
in Ras also improved the robustness of the non-transformed,
quiescent cell state (compare Supplementary Figure S7A with
Supplementary Figures S7E,F).

Along the same lines, tumor suppressors and oncogenes can
also impact the robustness of the transformed, proliferative cell

state (Supplementary Figures S7G–L). Some cells revert
to a non-transformed, quiescent state following a large
increase in Let-7 (compare Supplementary Figure S7G
with Supplementary Figures S7H–J). However, an increase
in PTEN or a decrease in Ras (similar to the conditions in
Supplementary Figures S7E,F) are unable to revert cells to
a non-transformed, quiescent state (compare Supplementary
Figure S7G with Supplementary Figures S7K,L).

Thus, an increase in tumor suppressors or a decrease in
oncogenes reduces the probability of stochastic switches to a
transformed, proliferative cell state. However, if cells are already
in a proliferative, transformed state, similar changes in tumor
suppressors or oncogenes do not permit reverting back to a more
“healthy” cell phenotype, which highlights an irreversible process
in cancer progression.

Finally, since cholangiocarcinomas are characterized by strong
network activation (Figures 5, 6A), we analyzed if the cell
population model can qualitatively reproduce the networks’
switch from normal to tumor condition. Plotting cyclin B1
mRNA as a function of cyclin E1 or Let-7c RNA (Figures 8A–D)
and plotting Kras mRNA (representative as Ras) as a function
of Let-7c (Figures 8E,F) revealed expression patterns that are
qualitatively very similar to those predicted by the mathematical
model of a heterogeneous cell population (Figures 8B,D,E).
We concluded that the cell population model can be used
to assess the stochastic dynamics of the switch of both
networks in cholangiocarcinomas.

DISCUSSION

Tumorigenesis rests on many biological features, which include
sustained proliferative signaling, evading growth suppressors,
resisting cell death, promoting angiogenesis, ensuring replicative
immortality, and eliciting invasion and metastasis (Hanahan and
Weinberg, 2011). Here, we built a mathematical model to analyze
the dynamical properties of a Let-7-dependent mechanism
coupling cell proliferation and an epigenetic switch driving
malignant transformation.

Our mathematical model illustrates qualitatively how Cdk-
dependent and transformation networks may interact, and
proposes a mechanism, acting through Let-7, which suggests
that cyclin overexpression can promote cell proliferation, while
inducing and accelerating malignant transformation. Indeed,
overexpression of cyclins progressively sponges the free form
of Let-7. The latter will no longer be available to repress
the components of the transformation network, leading to the
activation of the epigenetic switch. This effect is known as
competing-endogenous, ceRNA, effect. CeRNAs regulate other
RNA transcripts by competing for shared miRNA and were
involved in tumorigenesis (Salmena et al., 2011; Tay et al.,
2014; Chiu et al., 2017). Here, Let-7 is the shared miRNA
between both networks. Let-7 was shown to be involved in
different ceRNA mechanisms. Indeed, Let-7e can modulate the
inflammatory response in vascular endothelial cells through a
ceRNA effect (Lin et al., 2017). Imprinted H19 lncRNA, which
plays important roles in development, cancer, and metabolism,
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FIGURE 7 | Modeling malignant cell transformation and cell proliferation distributions in a heterogeneous cell population. CPI versus NSTI is shown in a
heterogeneous cell population starting from a non-transformed, quiescent, cell state (A,C,E) or from a transformed, proliferative, cell state (B,D,F). In both states,
10% (A,B), 25% (C,D), or 50% (E,F) of uniform random variations from the basal value of each parameter are considered. Each circle corresponds to one cell in a
population of 500 cells. Horizontal lines define an arbitrary threshold value for CPI, which is equal to 1, above which cells are considered into proliferation; vertical
lines define an arbitrary threshold value for NSTI, equal to 10, above which cells are considered in a non-transformed state. Orange (A,C,E) and green dots (B,D,F)
correspond to the value of both indexes in the absence of random variation on parameters. Initial conditions are given in Supplementary Table S6. Basal parameter
values are as in Supplementary Table S5.
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FIGURE 8 | A cell population model accounts for the qualitative dynamics of the network switches in cholangiocarcinoma. mRNA levels of (A,B) cyclin B1 versus
cyclin E1 (C,D), cyclin B1 versus Let-7c, and (E,F) Kras versus Let-7c of cholangiocarcinoma cohort from TCGA (A,C,E) and (B,D,F) in a model for a
heterogeneous cell population where 50% of uniform random variations are considered around the basal value of each parameter. (B,D,F) Simulations are performed
with a population of 100 cells. Initial conditions are given in Supplementary Table S6. Src = 0.0000001 and other parameter values are as in Supplementary
Table S5. (A,C,E) Green dots: non-tumor samples (n = 9), red dots: tumor samples (n = 36).

modulates Let-7 availability by acting as a molecular sponge
and causing precocious muscle differentiation (Kallen et al.,
2013). Moreover, amplification of MYCN mRNA levels in
neuroblastoma can sponge Let-7, thereby rendering LIN28B
dispensable for cancer progression (Powers et al., 2016). Note,

however, that experimental and theoretical studies indicate that
a ceRNA effect between multiple RNA transcripts and the shared
miRNA is effective only in the presence of adequate expression
levels of the transcripts and the miRNA (Gérard and Novak, 2013;
Denzler et al., 2014; Tay et al., 2014).
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Our mathematical model further shows that stochastic
variations in kinetic parameter values from cell to cell can
create large fluctuations in the global network dynamics,
possibly leading to stochastic switches of some cells to a
transformed and proliferative state. To determine to which
extent tumor heterogeneity could be explained by cell-to-cell
stochastic switches in the network dynamics, cohorts of single-
cell transcriptomic data of tumors would be useful. Stochastic
switches in the GRN dynamics could indeed be a source of
heterogeneity in cancer cell populations (Tang, 2012; Patel et al.,
2014). Stochastic switches in gene networks were identified in
hematopoietic tumor stem cells (Dingli et al., 2007), in the
appearance of mammary tumor in mice (Bouchard et al., 1989),
and in the differentiation and maturation of T lymphocytes
(Davis et al., 1993). These switches in single-cell behaviors may
also promote phenotypic equilibrium in population of cancer
cells (Gupta et al., 2011). Transcriptomic analysis of TCGA
data suggests that the coupling between the cell cycle and
malignant transformation networks and the activation of these
networks in tumors are cancer-type-specific, with predominant
activation in gastrointestinal cancers. Our PCA reveals inter-
patient heterogeneity in network activation in tumors, which
stresses the need to consider patient-specific characteristics
when optimizing therapeutic strategies aiming to reverse the
network dynamics of activated GRNs (Biankin et al., 2015). Inter-
patient heterogeneity in the activation of two networks might
be the consequence of different tumor developmental stages in
each patient. In addition, since each tumor is characterized by
intratumoral heterogeneity, the location of the tumor biopsy
within each patient may also generate heterogeneity in the
network activation.

In conclusion, by means of transcriptomic data analysis and
modeling-based investigations, we identified a Let-7-dependent
connection between two major GRNs involved in tumorigenesis,
and whose activation is cancer- and patient-specific. In the future,
it will be interesting to incorporate in the model the additional

regulatory links between the transformation network and the cell
cycle (Coqueret and Gascan, 2000; Bienvenu et al., 2001; Brantley
et al., 2001; Ding et al., 2008; Xiong et al., 2008; Xu et al., 2009)
and to examine their contribution in the dynamics resulting from
the coupling between the two networks and in particular in the
propensity of the cell to switch into a proliferative, potentially
cancerous, state. We anticipate that a better characterization of
the dynamics resulting from the combination of other GRNs
specific for each patient will help provide a global GRN activation
map for personalizing and optimizing cancer treatment.
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