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ABSTRACT
Although legumes are of primary economic importance for human and livestock
consumption, the information regarding signalling networks during plant stress
response in this group is very scarce. Lotus japonicus is a major experimental model
within the Leguminosae family, whereas L. corniculatus and L. tenuis are frequent
components of natural and agricultural ecosystems worldwide. These species display
differences in their perception and response to diverse stresses, even at the genotype
level, whereby they have been used in many studies aimed at achieving a better
understanding of the plant stress-response mechanisms. However, we are far from
the identification of key components of their stress-response signalling network, a
previous step for implementing transgenic and editing tools to develop legume
stress-resilient genotypes, with higher crop yield and quality. In this review we scope
a body of literature, highlighting what is currently known on the stress-regulated
signalling elements so far reported in Lotus spp. Our work includes a comprehensive
review of transcription factors chaperones, redox signals and proteins of unknown
function. In addition, we revised strigolactones and genes regulating phytochelatins
and hormone metabolism, due to their involvement as intermediates in several
physiological signalling networks. This work was intended for a broad readership
in the fields of physiology, metabolism, plant nutrition, genetics and signal
transduction. Our results suggest that Lotus species provide a valuable information
platform for the study of specific protein-protein (PPI) interactions, as a starting
point to unravel signalling networks underlying plant acclimatation to bacterial and
abiotic stressors in legumes. Furthermore, some Lotus species may be a source of
genes whose regulation improves stress tolerance and growth when introduced
ectopically in other plant species.
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INTRODUCTION
Impoverished agricultural soils and problems derived from climate change generate abiotic
and biotic stresses that diminish plant growth and crop productivity (Boyer, 1982;
Guttikonda et al., 2014). Therefore, the implementation of transgenic and editing tools to
develop stress-resilient genotypes, with higher crop yield and quality, has turned into a
major biotechnological target. For this purpose, a previous identification of candidate
genes, metabolites, and mechanisms controlling plant adaptation to these stresses is
required. Mechanisms of plant adaptation include intricate regulation networks relying
on the appropriate perception, distribution, integration and processing of the stress signal,
all of which is mediated by physical protein-protein interactions (PPI). Some of these
proteins are highly connected and play a central role in modular organization of PPI
networks (Jeong et al., 2001; Han et al., 2004; Albert, 2005; He & Zhang, 2006; Dietz, 2008;
Zhang, Gao & Yuan, 2010; Vandereyken et al., 2018). These proteins are of critical
importance as their elimination or interfering with, leads to drastic changes in the
structure of the biological network, having a vast impact on the organismal fitness (He &
Zhang, 2006). Therefore, their identification and characterization constitute a relevant
starting point for the development of crop varieties, which are better adapted to abiotic
factors. In fact, large-scale plant PPI networks and interactome studies have been
experimentally reconstructed in several plant species (reviewed by Vandereyken et al.,
2018), with network elements being detected in the model Arabidopsis thaliana (Mukhtar
et al., 2011; Lumba et al., 2014; Trigg et al., 2017) and in important crops such as
Oryza sativa (Seo et al., 2011) and Solanum lycopersicum (Yue et al., 2016). Although
legumes are of primary economic importance for human and livestock consumption
(Duranti & Gius, 1997; Graham & Vance, 2003), little is known about interactions among
stress-responsive proteins in the Leguminosae family. Studies in this area are restricted to
one performed on a non-model, yet under-exploited legume species (drought stressed
Macrotyloma uniflorum; Bhardwaj et al., 2016). Lotus japonicus is regarded as a major
experimental legume model. This species displays characteristics that are useful for
the generation of diverse genomic tools and biotechnological resources such as
http://www.kazusa.or.jp, (Sato & Tabata, 2006; Sato et al., 2008) and the co-expression
Toolkit (CORx) at https://lotus.au.dk/ (Mun et al., 2016), turning L. japonicus a
suitable platform for legume crop improvement. In addition, several Lotus species display
high adaptability to diverse abiotic stresses, making them important components of
grassland ecosystems in environmentally constrained areas, where these species are used
for livestock production, dunes revegetation, or reclamation of contaminated soils
(Escaray et al., 2012). Although some progress has been made to achieve a better
understanding of the plant stress-response mechanisms in Lotus, we are far from
implementing transgenic and editing tools to develop stress-resilient genotypes, with
higher crop yield and quality in these species. To attain this major biotechnological target,
a previous identification of key components of the plant stress-response network is
required.
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Major classes of plant stress response-related signalling elements are transcription
factors (TFs), kinase, phosphatases, ubiquitin system associates, chaperones,
co-chaperones, redox signals (summarised by Vandereyken et al., 2018). The involvement
of these elements in the signalling network may be mapped in silico, but then it needs
to be validated using reliable experimental approaches like yeast two-hybrid (Y2H),
bimolecular fluorescence complementation (BiFC), or affinity purification and mass
spectrometry (AP-MS) assays. In this review we scope a body of literature, highlighting
what is currently known on the stress-regulated signalling elements so far reported in
Lotus spp., which presented PPI interacting properties by datamining and/or
experimentally (themselves or their homologs in other plant species). Phytohormones
were included because of their importance in signalling crosstalks. Stress-related signalling
processes in the specific root nodule environment were left aside in the present review
for being worthy of a separate review, and because several comprehensive reviews, or
studies dealing with regulatory aspects of the nodule stress metabolism just came out
(i.e., Giovannetti et al., 2019; Pérez-Delgado et al., 2020; Signorelli et al., 2020; Sharma et al.,
2020; Hidalgo-Castellanos et al., 2021). Our purpose is to scope a body of literature,
which could be either a helpful precursor to systematic reviews of signalling networks
studies in Leguminosae, or a starting point to identify potential metabolic hubs. This work
was intended for a broad readership in the fields of physiology, metabolism, plant
nutrition, genetics and signal transduction.

SURVEY METHODOLOGY
We surveyed in Google Scholar and Scopus, the literature relevant to the key words “Lotus
(excluding Nelumbo nucifera)”, “L. japonicus”, “L. corniculatus”, “L. tenuis”, “L. glaber” or
“legume”. These keywords were used in different combinations with “interactome”,
“transcriptomic”, “metabolomics”, “proteomics”, “stress”, “biotic”, “protein-protein”,
“transcription factor”, “hormone”, “signal transduction” or “signalling”, with no time
interval. The search was expanded to the names of first and senior authors of referent
publications.

Transcription factors (TFs)
TFs proteins bind to DNA-regulatory sequences to modulate the rate of gene transcription.
Therefore, their functional analysis, including their interaction with other molecules
during biotic or abiotic stress is a key step to understand the signalling cascades that lead to
plant adaptation.

According to the L. japonicus gene annotation from the Kazusa (v3.0) database, over
2050 TFs, classified into 56 families have been identified in this species (PlantRegMap/
PlantTFDB v5.0 Plant Transcription Factor Database Previous version: v3.0 v4.0;
http://planttfdb.gao-lab.org/index.php?sp=Lja). Here we summarized those TFs that
were reported to be regulated by stress in Lotus species (Table 1; Fig. 1).

Basic/helix-loop-helix (bHLH) form the largest TFs family in L. japonicus and
comprise two distinct functional regions, a basic N-terminal DNA-binding region, and a
helix-loop-helix region involved in PPI that functions as a dimerization domain
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Table 1 Overview of studies refering Lotus species and stress-regulated signaling elements.

Authors Lotus species Gene or metabolite Stress*

Transcription factors

Babuin et al. (2014) L. japonicus bHLH NaHCO3 (alkalinity)

MYB

Bordenave et al.
(2013)

L. japonicus bHLH Pseudomonas
syringaeMYB

AP2/ERF

WRKY

Calzadilla et al.,
(2016a)

L. japonicus DREB1CBF Cold

NAC

AP2/ERF

MYB

WRKY

Escaray et al. (2017) L. corniculatus, L. tenuis MYB, bHLH Ns

Ke et al. (2018) L. japonicus WRKY/C2H2 Salinity

Kunihiro et al. (2017) L. japonicus MYB Ns

Lin et al. (2014) L. japonicus Hsf Multiple stresses

Ling et al. (2020) L. japonicus TCP Drought/Salinity

Paolocci et al. (2005) L. corniculatus bHLH Ns

Paolocci et al. (2011) L. corniculatus MYB Ns

Shelton et al. (2012) L. japonicus MYB/bHLH Ns

Soares-Cavalcanti
et al. (2012)

L. japonicus Hsf Multiple stresses

Sun et al. (2014) L. japonicus ERF Salinity

Sun et al. (2016) L. japonicus AP2/ERF Salinity

Yoshida et al. (2008),
Yoshida et al.
(2010)

L. japonicus MYB Multiple stresses

Redox signals,
antioxidants and
compatible solutes

Bordenave et al.
(2017)

L. japonicus Lactic, threonic, succinic
and p-coumaric acids;
valine and β-alanine

Alkalinity

Calzadilla et al.
(2016b)

L. japonicus Glutathione transferase Cold

Trx-TrxR

Melchiorre et al.
(2009)

L. japonicus SOD, GR, APX Salinity

L. filicaulis

L. burtii

Matamoros et al.
(2020)

L. japonicus GSNOR Ns

Ramos et al. (2007) L. japonicus PCS Heavy metals

Rocha et al. (2010) L. japonicus Alanine, succinate Waterlogging

Rubio et al. (2009) L. japonicus CAT, DR, MR Salinity
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(Murre, McCaw & Baltimore, 1989; Feller et al., 2011). Several probesets assignable to
bHLH TFs were strongly regulated in a microarray-based analysis of the transcriptomic
L. japonicus responses to the inoculation with Pseudomonas syringae (Bordenave et al.,
2013). During the bacterial pathogenesis, most bHLH genes were repressed in the sensitive
genotype (MG-20), whereas two up-regulated, bHLH-proteins were observed among the
genes identified in the tolerant genotype (Gifu B-129). Later, the global transcriptomic
responses of the same L. japonicus accessions were analysed on plants exposed to
long-term alkaline stress (Babuin et al., 2014). Again, various bHLH-like probe sets were
greatly induced in the tolerant genotype (MG-20), whereas the majority of bHLH-like
genes resulted down-regulated or slightly induced in the sensitive (Gifu B-129) one. These
results are interesting as several network forming bHLH proteins, with relevant functions

Table 1 (continued)

Authors Lotus species Gene or metabolite Stress*

Shimoda et al. (2005) L. japonicus Hbs Cold

Signorelli et al. (2019) L. japonicus NO Drought

Sanchez et al. (2012) L. japonicus, L. japonicus,
L. filicaulis, L. burttii,
L. corniculatus, L. tenuis

proline Drought

Sanchez et al. (2008) amino acids Salinity

L. japonicus sugars Salinity

polyols Salinity

Phytohormones

Bordenave et al.
(2013)

L. japonicus JA Biótico
(Pseudomonas
syringae)

ET (ACC synthase, ACC
oxidase)

SA (NPR3; EDS5)

ABA

Auxines

Babuin et al. (2014) L. japonicus Gibberellins Alkalinity

Auxines

JA

Espasandin et al.
(2014)

L. tenuis ADC Drought

Menéndez et al.
(2019) (Review)

Polyamines Multiple stresses

Pandey, Sharma &
Pandey (2016)

L. japonicus Strigolactones Drought

Tapia et al. (2013) L. japonicus JA Drought

Miscellaneous

Calzadilla et al.
(2019)

L. japonicus DnaK, GroEL (chaperon/
chaperonin)

Cold

Kojima et al. (2013) L. japonicus ARM Drought/Salinity

Notes:
Ns, no stress factor analyzed in the study.
* Experimental or based on published scientific reports.
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during plant response to biotic and abiotic stress were detected in other plant species by
data mining and experimentally. For example, in rice and chickpea (Singh et al., 2015), and
Arabidopsis (Van Moerkercke et al., 2019), MYCs (bHLH TFs) interact in vitro and in vivo
with proteins involved in several jasmonic acid signalling pathways.

MYB (v-myb avian myeloblastosis viral oncogene homolog) constitute another large
family of TFs In L. japonicus. MYBs represent a family of proteins that include the
conserved MYB DNA-binding domain (Stracke, Werber & Weisshaar, 2001), in plants
characterised by the R2R3-type MYB domain. Three copies of the TRANSPARENT
TESTA2 (TT2, a homolog of an Arabidopsis MYB), were found in L. japonicus by Yoshida
et al. (2008). Their results from yeast two-hybrid experiments showed that LjTT2a
interacts with TT8 and TTG1 (encoding bHLH and WDR TFs proteins, respectively),
whereas its expression in plant was related to environmental stress tolerance, and to the
accumulation of proanthocyanidins (PA, flavonoid end-products, Robbins et al., 2003).
Furthermore, through expression analysis (Yoshida et al., 2010), it was demonstrated
that the ectopic, combined expression of MYB and bHLH (and WDR) regulated one
promoter member of the dihydroflavonol 4-reductase (DFR2), the first committed enzyme
of the flavonoid pathway, which leads to common anthocyanins (another flavonoid
end-products) and PA biosynthesis. Similar MYB and bHLH co-modulations at the
flavonoid pathways have also been shown for other plant species such as maize (Goff, Cone
& Chandler, 1992) and Arabidopsis (Nesi et al., 2001). These works give support to the idea

Figure 1 Signalling and regulators elements overview. Overview of signalling and regulators elements
detected or regulated during Lotus species responses to different abiotic and biotic stresses. Elements
include transcription factors (grey ingots), phytohormones (grey barrels), redox signals (paving stone),
antioxidant enzymes (ovals), co-activators (green ingots) and miscellaneous (turquoise ingots). Meta-
bolites relevant for plant defence are also depicted (grey ovals). Arrows and simple lines mean, respec-
tively, the inductions/reactions, and physical interactions described in the text, with those in non-Lotus
species depicted with dashed lines. For elements abbreviations refer to text.

Full-size DOI: 10.7717/peerj.12110/fig-1
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that proteins of the MYB and bHLH TF families can form MYB/bHLH complexes to
regulate distinct cellular processes or metabolic pathways, including those taking part of
plant response to stresses (Pireyre & Burow, 2015). In L. japonicus in fact, a reduced
expression of a MYB-bHLH complex would permit the derivation of metabolites from the
flavonoid pathway to the isoflavonoid biosynthesis (Shelton et al., 2012). On other hand,
the overexpression of LjMYB12 (ortholog of an Arabidopsis MYB TF) in L. japonicus
resulted in the upregulation of genes coding for the chalcone synthase paralog CHS1
(although not of other paralogs), a key enzyme of the flavonoid/isoflavonoid biosynthesis
pathway (Kunihiro et al., 2017). In addition, several MYB TFs transcripts were found
among genes showing maximal regulation during the response of two L. japonicus
ecotypes (MG-20 and Gifu B-129) to alkaline and biotic stresses by Babuin et al.
(2014) and Bordenave et al. (2013), respectively. Interestingly, a lower proportion of up-
regulated, or even repressed Myb-like genes were detected in the corresponding tolerant
L. japonicus genotype in each stress. All the above information becomes relevant as diverse
roles for many isoflavonoids in plant defence against biotic stresses, as well as in the
acclimatation to abiotic stress have been pointed out (Agati et al., 2012). Based on above
mentioned reports, it could be hypothesized that the observed divergences in the
expression patterns of MYB-like and bHLH genes, between sensitive and tolerant
L. japonicus ecotypes might lead to dissimilar arrangements of flavonoids and
isoflavonoids, which could have accounted for different stress tolerances.

MYB transcription factor physically interacts as well with the promoters of CBF/DREB
(C-repeat binding factor/dehydration-responsive element binding), major elements
regulated by low temperature and water deficit, (Stockinger, Gilmour & Thomashow, 1997).
In L. japonicus, cold stress-induced changes in the expression profile of L. japonicus
DREB1/CBF genes were reported, in congruence with MYB TFs being found among genes
showing maximal upregulation during plant response to cold (Calzadilla et al., 2016a).
Last observed outcomes were congruent with a previous report in Arabidopsis, where
MYB15 negatively regulated the expression of the CBFs, whereas its overexpression
resulted in decreased tolerance to freezing stress, and its knock-out mutant exhibited
increased Arabidopsis freezing tolerance (Agarwal et al., 2006).

Taken together, former results advocate for a role of L. japonicus MYBs and bHLH
interacting proteins in the signalling network that leads to stress responses. They also
invite to perform specific PPI or in silico studies to gain insight into MYBs and bHLH
topological roles as “hubs” or “bottlenecks” (number of interactions that these proteins
may hold within those networks; Dietz, Jacquot & Harris, 2010).

In parallel, stress induced modulation of MYBs and bHLH TFs levels in some Lotus
species may have severe implications on livestock breeding. L. corniculatus and L. tenuis
are herbaceous forage legumes highly valued by livestock producers (Sato & Tabata,
2011). L. corniculatus leaves contain high levels of PA (also known as condensed tannins),
polymeric flavonoids which are present in legumes used as forage of high nutritional value,
while PA are absent in L. tenuis leaves. As PA prevent bloating in ruminant animals,
obtaining plants of forage legumes with engineered PA traits constitutes a pertinent
strategy to increase sustainability of cattle production systems, from both the ecological
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and economical perspectives. To identify among candidate PA regulators and transporters,
the expression analysis of genes related with PA biosynthetic pathways was studied in
interspecific hybrids between L. corniculatus and L. tenuis, and their F2 progeny (Escaray
et al., 2017). As result, it was found that leaf PA levels significantly correlated with the
expression of: MATE1 (the putative glycosylated PA monomers transporter), MYB genes
TT2a and TT2b, MYB14 and the bHLH gene TT8 (authors considered the last four as
candidate regulatory genes). In addition, the expression levels of TT2b and TT8 also
correlated with those of all key structural genes of the PA pathways investigated, including
MATE1.

L. corniculatus was also used to test the effect of the ectopic expression of TFs genes
on flavonoids accumulation and plant stress tolerance. The transgenic over-expression of
the maize bHLH gene Sn in L. corniculatus, led to subtle anthocyanin accumulation,
while PA were dramatically enhanced in the leaf blade, without altering other major
secondary end-products such as flavonols, lignins and inducible phytoalexins (Robbins
et al., 2003). Through a real-time RT-PCR approach, Paolocci et al. (2005) showed that the
same exogenous bHLH TF affected in a lesser extent the expression of early genes
(PAL and CHS), compared to later genes of the pathway (DFR and ANS), whose mRNA
levels were increased. In turn, CT accumulation derived from the increment of DFR
and ANS genes was limited by light. In addition, authors discussed that, to obtain the
desired effect, trans-activation should be targeted to the specific iso-forms members of
such gene families. Also, the flavonoid biosynthesis repressor from strawberry FaMYB1,
tissue-specifically suppressed PA biosynthesis in L. corniculatus transgenic plants (Paolocci
et al., 2011). More recently, the overexpression of an ERF gene cloned from Kandelia
candel (KcERF), along with a DREB TF cloned from Populus euphratica (PeDREB2)
improved drought and salt tolerance in transgenic L. corniculatus (Wang et al., 2018).
Former information could be relevant as L. corniculatus is one of the most important
forage legumes with high nutritive value worldwide, and breeding L. corniculatus with
enhanced stress tolerance would be an interesting biotechnological goal. In addition, it
constitutes an approach for controlling flavonoids biosynthesis given that leguminous
plants use them during their interactions with other organisms, and in response to various
environmental stresses (Aoki, Akashi & Ayabe, 2000).

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) proteins, one of the
largest TFs families in L. japonicus are defined by the AP2/ERF domain. These TFs regulate
a variety of biological processes related to growth, development, and responses to
environmental cues, as they are involved in DNA binding (Nakano et al., 2006).
In Arabidopsis, AP2/ERF genes play a hub role during plant survival to stress conditions,
by integrating regulatory networks during specific stress responses, and by helping
to activate ethylene (ET) and abscisic acid (ABA) dependent and independent
stress-responsive genes (Xie et al., 2019; Müller & Munné-Bosch, 2015). In L. corniculatus
cultivar Leo, the transcription of LcERF genes was strongly induced by salt and
stress-related phytohormones (Sun et al., 2014). The overexpression in Arabidopsis of
LcAP2/ERF107, encoding an AP2/ERF protein resulted in enhanced tolerance to salt stress
and increased seed germination (Sun et al., 2016), indicating that this gene plays an
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important role in the responses of plant to salt stress. On other hand, the transcriptomic
study performed on L. japonicus plants challenged with P. syringae (Bordenave et al., 2013)
revealed different expression patterns in over 15 ERFs genes between two ecotypes
(Gifu B-129 and MG20), which are contrasting in their tolerance to bacterial infection.
Particularly, two Arabidopsis ERF3 and ERF4 homologs were found to be repressed in
the sensitive L. japonicus ecotype (MG-20). In addition, an ERF5-like factor was also
repressed in the sensitive one. These results deserve a deep insight in the future, as the
overexpression of ERF genes enhances plant resistance to pathogens in different plant
species (Xu et al., 2011; Moffat et al., 2012).

C2H2 zinc finger proteins (ZFP) form a relatively large family of transcriptional
regulators in L. japonicus. ZFPs emerge as possible hubs, as they interact with other
zinc finger proteins or other protein types to regulate target gene expression (Brayer &
Segal, 2008; Song et al., 2010). For example, direct interactions between ZAT6, an
Arabidopsis C2H2-type ZFP, and other proteins (LDL, MPK and TPL) were found on
basis to experimental evidence (BioGRID database; https://thebiogrid.org/15592/table/
arabidopsis-thaliana/zat6.html). In addition, key roles for C2H2 zinc finger proteins
during plant responses to abiotic stresses have been described (Wang et al., 2019; Han
et al., 2020). In transgenic L. japonicus plants, salt stress induced the overexpression of a
GmWRKY protein containing a C2H2 zinc finger motif, leading to increased salt
tolerance, compared with the wild type (Ke et al., 2018). Combined, these reports turn
worthwhile to search for the possible interactions between C2H2 and other proteins taking
part during L. japonicus response to salinity.

NAC TFs is a family of proteins sharing a highly conserved N-terminal DNA-binding
domain and a variable C-terminal domain (Ooka et al., 2003; Fang et al., 2008, 2020).
NACs are highly represented among annotated genes in the Kasuza L. japonicus TFs
database. Up-stream regulators of NAC genes and down-stream NAC target genes
have been reviewed by Jensen & Skriver (2014). Last authors revealed NAC molecular
interactions, signal pathways intersections and biological functions with relevance for
agriculture. Furthermore, NACs show potential as candidates to produce plants
with enhanced multiple stress tolerance (reviewed by Shao, Wang & Tang, 2015).
In Lotus, information on the NAC involvement in stress response is limited to a
transcriptomic study performed on L. japonicus plants confronted with cold stress,
where NACs were detected among the most numerous up-regulated TFs, along with
AP2/ERF, MYB and WRKY families (Calzadilla et al., 2016a).

WRKY TFs proteins function as repressors and de-repressors of important plant
processes, including responses to biotic and abiotic stressors (Song et al., 2018).
The common feature of WRKY proteins is the presence of an approximately 60-amino-
acid DNA-binding domain, known as the WRKY domain, followed by a zinc-finger
motif at the C-terminus (Chen et al., 2019). In Arabidopsis and rice, members of the
WRKY TF family were shown to regulate immune responses by reducing their
susceptibility to pathogens (Asai et al., 2002; Abbruscato et al., 2012).

Transcriptomic allowed the identification of 10 upregulated and two down-regulated
WRKY-like genes upon Pseudomonas syringae inoculation in a sensitive L. japonicus,
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whereas the four most regulated of these transcripts were also up-regulated in the tolerant
genotype (Bordenave et al., 2013). Later, a whole L. japonicus genome analysis (Song
et al., 2014), allowed the detection and analysis of 61 putative WRKY genes which were
classified into three groups (LjWRKY I–III). To study the role of these WRKY TFs in
the mechanism of tolerance against P. syringae further research is needed, including
cloning, sequencing of coding protein, and PPI analysis such as Y2H studies. It is worth to
note that caution is needed at transferring outcoming results to the biotechnology field as
divergent effects were found among WRKY proteins, and their over-expression may
enhance stress susceptibility (Kesarwani, Yoo & Dong, 2007).

Heat stress transcription factors (Hsf) and proliferating cell factor (TCP) genes are
among the less represented, stress-involved TFs in the L. japonicus database. Hsf are major
regulators leading to the activation of genes responsive to heat stress, and many chemical
stressors (Kotak et al., 2004). The Hfs repertoire in L. japonicus was identified and
characterized, resulting in 19 candidate ESTs for this species (Soares-Cavalcanti et al.,
2012). Later, the evolution of Hsf genes in six legume species, including L. japonicus,
was studied by Lin et al. (2014). These authors showed the whole genome duplication
origin for the vast majority of Hsf gene duplications. The putative involvement of
L. japonicus Hsf genes in numerous tissues or developmental stages, and in response to
several abiotic stresses was also revealed by the same authors using expression analysis.
On other hand, a total of 25 proliferating cell factor (TCP) genes were identified from the
genome of L. japonicus in a genome-wide analysis (Ling et al., 2020). The promoter
analysis revealed that cis-elements were related to stress responses, in line with results of
qRT-PCR indicating that the L. japonicus TCP genes played regulatory roles in both salt
and drought stresses.

Redox signals, antioxidants and compatible solutes
Drought, salinity and cold may induce the overproduction of reactive oxygen species
(ROS) and nitric oxide (NO), which may contribute to the negative effect of stress caused
by the oxidative damage at the cell level (reviewed by Noctor, Reichheld & Foyer, 2018).
However, endogenous levels of some of these molecules may also play a role in cell
signalling, allowing a fast response to metabolic changes. Notwithstanding this, signalling
reactions need to be tightly controlled to maintain the cellular redox balance and prevent
damage.

NO regulates root architecture through cross talks with other gaseous molecules like
hydrogen sulfide (H2S) and carbon monoxide (CO), often in association with several
other growth regulators, whereby deciphering these interactions could be a potential
biotechnological tool to improve crop production, particularly under restrictive soil
environments (Mukherjee & Corpas, 2020).

NO is a crucial molecule indirectly regulating signalling cascades that may affect
protein functions in different L. japonicus organs (Matamoros et al., 2020). Under drought
stress, L. japonicus displays an active NO metabolism characterized by an increase of
protein nitration and NO (and S-nitrosothiols) accumulation in root cortical cells
(Signorelli et al., 2019).
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NO concentration may be modulated by nonsymbiotic hemoglobins (Hbs) in all plant
organs, by binding it to the heme group, or to cysteine thiol groups (Igamberdiev &
Hill, 2004; Bustos-Sanmamed et al., 2011). It has been shown that cold induces LjHb1
(expressed in all plant tissues; Shimoda et al., 2005), in line with the cold-driven induction
observed on another type of Hb gene in Arabidosis leaves (AtGLB2, Trevaskis et al.,
1997). Interestingly, the overexpression of LjHb1 in L. japonicus plants decreased NO
levels and delayed nodule senescence (Fukudome et al., 2019). These results suggest
that nonsymbiotic Hbs could modulate the signalling cascades triggered by NO during
plant adaptation to cold stress, thus improving plant growth. In addition, the functional
and structural characterization of two nonsymbiotic Hbs in L. japonicus could facilitate the
transfer of genetic and biochemical information of these relevant proteins into crops
(Calvo-Begueria et al., 2017).

NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO; Kovacs &
Lindermayr, 2013). GSNO participates in protein S-nitrosylation, an ubiquitous
posttranslational modification wherein nitric oxide (NO) is covalently attached to a thiol
group of a protein cysteine residue (S—NO; Stamler & Hess, 2010), which impacts on
cellular signalling and plant response to abiotic and biotic stresses (Corpas, Alché &
Barroso, 2013; Kubienová et al., 2014). In turn, the S-nitrosoglutathione reductase
(GSNOR) descomposes the S—NO bonds in Arabidopsis (Sakamoto, Ueda & Morikawa,
2002). Recently, two GSNOR genes were identified and characterized in LjGSNOR1
and LjGSNOR2 mutants by Matamoros et al. (2020). The Ljgsnor1 mutant contains 19
proteins that are specifically S-nitrosylated and are involved in defence and stress
responses (besides protein degradation, hormone biosynthesis and photosynthesis).
Authors showed that the activity of LjGSNOR1 and LjGSNOR2 proteins was sharply
affected by H2O2 and H2S, leading them to suggest that GSNORs may be important
regulatory hubs by integrating signals mediated by H2O2, NO and H2S.

Major components of the plant antioxidant battery in plants include ascorbate,
glutathione and the enzymes superoxide dismutase, catalase, glutathione peroxidase and
the four enzymes of the ascorbate-glutathione cycle: ascorbate peroxidase,
monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase
(Nakano & Asada, 1981; Dalton et al., 1986; Pignocchi & Foyer, 2003). The impact of
salt stress on the levels of most of these enzymes was analysed as part of the antioxidant
defence response characterization in model and non-model Lotus species (Melchiorre
et al., 2009; Rubio et al., 2009). The antioxidant response to combined drought-heat (Sainz
et al., 2010) and to low temperature (Calzadilla et al., 2016b) were also analysed on
L. japonicus. Plants of this species exposed to chilling revealed the up-regulation of a
glutathione transferase transcript, which is compatible with H2O2 and other ROS
accumulation (Calzadilla et al., 2016b).

Thioredoxin is a class of small proteins playing many important biological processes,
including redox signalling. In plants, it is well known that the Trx-TrxR system
(thioredoxin, peroxiredoxin and thioredoxin reductase) takes part in ROS detoxification,
protein redox regulation, and various signalling mechanisms (Foyer & Shigeoka, 2011).
In a study addressing the photosynthetic acclimation response of two Lotus japonicus
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ecotypes (MG-1 and MG-20), with contrasting tolerance to cold stress, the better
photosynthetic performance of the tolerant ecotype (MG-20) could be due to the higher
Trx-TrxR protein levels found in that ecotype, what would have led to a higher ROS
detoxification capacity (Calzadilla et al., 2019).

Phytochelatins (PCs) are Cys-rich, enzymatically synthesized peptides playing an
essential role in heavy metals detoxification in numerous Phyla, including plants (Pal &
Rai, 2010; Hasan et al., 2017). In L. japonicus, the expression of PCs genes was examined
(Ramos et al., 2007) and three functional LjPCS genes were identified and found to be
differentially expressed in roots during response to Cd. However, the overexpression of
phytochelatin synthase gene AtPCS1 in Arabidopsis did not enhance tolerance to
heavy metal stress (Lee et al., 2003). It has been stated that the failure of breeding programs
where gene variation at the structural or expression level does not result in the predicted
stress tolerant phenotype, may be due to the involvement of metabolites, multigenes
and post-translational modifications, not identifiable by genomics or transcriptomics
approaches (Mazzucotelli et al., 2008; Weckwerth, 2011).

Proteomics and metabolomics approaches provide information on levels of anti-stress
components such as compatible solutes, antioxidants, and stress-responsive proteins,
and on metabolic reprogramming associated with stress tolerance (Wienkoop et al.,
2008; Kosová et al., 2011; Obata & Fernie, 2012; Doerfler et al., 2014). Using gas
chromatography/mass spectrometry-based allowed the detection of changes in amino
acids, sugars, and polyols profiles of L. japonicus plants subjected to long-term salinity
(Sanchez et al., 2008; Fig. 2), upon salt stress. The same technique was used to study the
changes that occur in the global primary metabolome profile of L. japonicus MG-20
(tolerant) and Gifu B-129 (sensitive) when treated with 30 mMNaHCO3 (Bordenave et al.,
2017). The study revealed differential accumulations of lactic, threonic, succinic and
p-coumaric acids, as well as valine and β-alanine between both ecotypes. The last amino
acid (along with succinate) also accumulated in L. japonicus plants subjected to
waterlogging-induced hypoxia, due to the activation of alanine metabolism, and the
splitting of tricarboxylic acid pathway (Rocha et al., 2010).

A comparative metabolomic study indicated a relative low degree of conservation
among metabolic responses to drought among L. japonicus, L. japonicus, L. filicaulis,
L. burttii, L. corniculatus, L. tenuis (ex L. glaber) and L. uliginosus (Sanchez et al., 2012).
Despite this, proline accumulated in all genotypes except L. uliginosus. Proline is one
of the best studied stress-related amino acid (Rana, Ram & Nehra, 2017) and its
physiological role has been highlighted among the global metabolic rearrangements in
drought-stressed L. japonicus plants (Diaz et al., 2010).

Phytohormones
Phytohormones are key regulators of multiple developmental processes (Bunsick et al.,
2021) and take part of many signalling networks that control stress responses (Ku
et al., 2018). Because phytohormones are natural and non-toxic compounds, it was
suggested that their application as chemical control agents could be safe and
environmentally friendly (Wang et al., 2020).
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Combined molecular, biochemical, and genetic data have shown that jasmonic acid (JA)
is a key signalling molecule during the plant defence response to pathogens and abiotic
stress (Ruan et al., 2019; Wang et al., 2020). In L. japonicus, methyl-JA contributes
with plant acclimation to drought stress by promoting cuticle synthesis through the
up-regulation of LjLTP6, a gene involved in cutin formation (Tapia et al., 2013). Results
from a global transcriptomic study performed by Bordenave et al. (2013) revealed
contrasting results between L. japonicus ecotypes MG-20 and Gifu B-129, regarding
their JA response to Pseudomonas syringae infiltration. Induction of the JA synthesis
pathways was observed in the bacteria-sensitive L. japonicus ecotype MG-20, but not in the
tolerant Gifu B-129 one (Bordenave et al., 2013). The activation of the JA pathway in
MG-20, could eventually have implications on plant nitrogen nutrition of MG-20, as it was
shown that shoot-derived JA could function as a negative regulator on nodulation
(Nakagawa & Kawaguchi, 2006). In fact, JA is considered a signal intervening in the
photomorphogenetically controlled nodulation of L. japonicus MG-20 by the red/far red
(R/FR) ratio (Suzuki et al., 2011). The above mentioned transcriptomic studied also
revealed the up-regulation in MG-20 leaves, of genes coding for aminocyclopropane-1-
carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase, enzymes
implicated in the ET biosynthesis, supporting that ET often works synergistically with
JA during pathogen attack (Glazebrook, 2005).

Figure 2 Stress-induced metabolites in Lotus japonicus. Scheme of most induced primary metabolites
in Lotus japonicus plants exposed to drought, alkalinity and water logging.

Full-size DOI: 10.7717/peerj.12110/fig-2
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It is known that the activation of the salicylic acid (SA) pathway in plants is associated
with the production of several pathogenesis related (PR) proteins, which play diverse
defence roles (Loake & Grant, 2007). In Arabidopsis, the expression of PR genes mediated
by the SA pathway requires the transcriptional co-regulators NPR1 and Enhanced disease
susceptibility 1 (EDS1; Loake & Grant, 2007). Interestingly, NPR3 and EDS5-like
homologs were found downregulated in MG-20 upon the infection, but no regulation of
these genes was found in Gifu B-129 (Bordenave et al., 2013). Also, most of the genes
related to the Abscisic acid (ABA) metabolism were negatively regulated after MG-20
leaf infiltration with P. syringae. This result was congruent with the occurrence of
dehydration symptoms surrounding the infiltration point, as ABA plays a crucial role in
the adaptation to water stress (Nakashima & Yamaguchi-Shinozaki, 2013). In contrast,
ABA-related genes remained unregulated in Gifu B-129. In parallel, transcripts of
GH3-like genes (which code for IAA-amido synthetases involved in auxins regulation;
Bari & Jones, 2009) were up-regulated in both ecotypes. Authors concluded that
differences in the levels of activation/repression of genes related to the regulated hormonal
pathways between both L. japonicus ecotypes could explain their different sensitivity to
bacterial infection. A similar experimental setup allowed the same research group to
register the differential expression, between MG-20 (tolerant) and Gifu B-129 (sensitive)
ecotypes, of several hormone-related probe sets, upon alkalinization with NaHCO3

(Babuin et al., 2014). Auxin-responsive genes, as well as genes involved in gibberellin
and JA biosynthesis were induced in both ecotypes, mostly in shoots, whereas a
negative regulator of the gibberellin signal transduction pathway, a RGA-like probe set
(cm0584.17_at: Silverstone, Ciampaglio & Sun, 1998) was detected in MG-20 roots.
In contrast, probe sets putatively related to ABA and ET biosynthesis were induced,
and genes probably involved in auxin and cytokinin response or biosynthesis were
down-regulated in Gifu B-129 roots.

Polyamines (Pas) are natural aliphatic amines involved in many physiological processes,
including responses to abiotic stresses, in almost all living organisms. It has been
postulated that molecules generated from their catabolism may act as secondary
messengers, taking part of signalling networks in numerous developmental and stress
adaptation processes (Moschou, Paschalidis & Roubelakis-Angelakis, 2008). Piled up
evidence in L. japonicus and L. tenuis, that links variations in Pas titles and stress tolerance
could foster the identification of stress tolerant phenotypes and promote their yield
and adaptation to constraint environments by the sketching of new biotechnological
approaches (Menéndez et al., 2019). For example, in L. tenuis, the overexpression of ADC2
(a key enzymes involved in the biosynthetic pathway of putrescine, one common
polyamine and precursor of other Pas) driven by the stress-inducible RD29A promoter,
improved drought tolerance in plants subjected to a gradual decrease in water availability
(Espasandin et al., 2014).

Strigolactones (SLs) bear a carotenoid structure, and function as plant growth and
development regulators, modelling the plant architecture in response to biotic and
abiotic stimuli. The structurally simplest known SL is 5-deoxystrigol (5-DS), which was
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isolated from L. japonicus root (Pandey, Sharma & Pandey, 2016). In this species, osmotic
stress alters transcription of genes encoding for SL biosynthesis and transport, decreasing
SL levels. On the other hand, the osmotic stress-induced ABA (also a carotenoid
phytohormone) accumulation was inhibited in L. japonicus plants treated with SL, as it
down-regulates the ABA biosynthetic gene LjNCED2. These results suggest that osmotic
stress promotes precursors derivation from the SLs biosynthetic pathway to the ABA
biosynthetic pathway, confirming a SL-ABA cross talk (Liu et al., 2015).

Miscellaneous: chaperones and flowering-related regulators
Armadillo repeats (ARM) consist of tandem repeats forming a right handed superhelix of
a-helices (Huber, Nelson & Weis, 1997), whose function in Arabidopsis are related to
protein–protein interaction during abscisic acid signal transduction (Kim et al., 2004) and
epidermal-cell morphogenesis (Sakai et al., 2008). The armadillo (ARM) repeat-like
protein of L. japonicus LjTDF-5 plays a role in response to high-salt stress and dehydration
(Kojima et al., 2013). This gene is homologous of the G. max transcript-derived
fragment 5 (GmTDF-5), which has been identified as a salt-inducible gene (Aoki et al.,
2005) and it is considered to interact with other protein(s) responsible for abiotic stress
response, in soybean. In addition, increased levels of DnaK and GroEL (chaperon and
chaperonin, respectively) in response to low temperature were detected to a greater extent
in a tolerant L japonicus ecotype (MG-20), compared to the sensitive one (MG-1;
Calzadilla et al., 2019). Several stress-related functions have been assigned to these
molecules. Importantly, chloroplast chaperonins have been implicated in RuBisCo
biosynthesis, suggesting their involvement in the photosynthetic acclimation response
(Gruber et al., 2013).

Finally, plant response pathways activated by biotic and abiotic stresses can modify
processes under the circadian clock control, including flowering (Kazan & Lyons, 2016;
Kugan et al., 2021). Although it is known that drought-stressed Arabidopsis plants
accelerate or delay flowering under long or short days, respectively (Riboni et al., 2016),
the information regarding the links between changes in clock gene expressions and
stress-induced physiological variations in Legumes is extremely scarce (Kugan et al., 2021).
The fact that phase modulation was found to be involved as a mechanism to alleviate
iron deficiency symptoms in soybean (Li et al., 2019), opens the question for the
occurrence of a similar phenomenon during the stress responses in Lotus spp. A starting
point to find an answer should be the study of the relatively few signalling elements
reported intervening in flowering, and other circadian-controlled processes, which would
be worthwhile being evaluated in relation to biotic and abiotic stresses, i.e., the putative
PHYTOCHROME INTERACTING FACTOR4 (LjPIF4, Ono et al., 2010) Ljmybr, an
MYB-related gene (Duangkhet et al., 2016), clock-associated F-box proteins (Boycheva
et al., 2015), NOOT-BOP-COCH-LIKE (NBCL) regulators (Magne et al., 2018) and the
flowering regulation gene (Lj2g3v1989150, Shah et al., 2020).
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Despite L. japonicus being a long day species, there are intrinsic differences in flowering
time among L. japonicus ecotypes due to their latitudinal distribution in origin, as
occurs in Japan (Kawaguchi, 2000). For example, the Miyakojima MG-20 ecotype flowers
much earlier than the Gifu B-129 ecotype. Therefore, the stress-driven delay in flowering
should be considered when these L. japonicus ecotypes are compared. Likewise, the
flowering time may not be trivial when it comes to biomass production of forage species
like L. corniculatus or L. tenuis, as the later the plant blooms, the greater is the biomass
accumulation.

CONCLUSION AND PERSPECTIVES
The genus Lotus contains several species and genotypes differing in their perception
and response to diverse stresses, which constitutes a valuable platform to study and
understand common and specific PPIs underlying plant acclimation to bacterial infection
and abiotic stressors (drought, salts, cold and heavy metals). Major pathways involved in
transcriptional and metabolic reprogramming to improve plant survival of Lotus spp.
plants include those related with flavonoids and phytohormones. Some Lotus species may
be a source of genes whose overexpression improves stress tolerance and growth,
even when they are introduced ectopically in other plant species. Also, Lotus species
proved useful for testing the effect of foreign gene expression on stress tolerance
improvement.

Most of the genes or molecules here reviewed, which could theoretically function as
signalling or physiological hubs, have been studied in the model L. japonicus (Table 1),
with TFs as the best represented group. To gain insight into the involvement of these
elements in the plant response regulatory network, it would be worthwhile performing
clustering analyses of differentially expressed genes (DEGs) using the Lotus japonicus
expression atlas (https://lotus.au.dk/expat/), which would allow to find groups of genes
with similar gene expression patterns. This would complement global in silico PPI
network analysis, using web tools such as the STRING v11.0 (https://string-db.org/) or
BioGRID4.4 (https://thebiogrid.org/) servers. Since no PPI database is available for
L. japonicus, in silico analysis of PPI networks should be performed by using their
homologs in other legumes (e.g., Medicago truncatula). This strategy allowed the
identification of nitrate reductase as a central gene for the regulation of nodule function
in L. japonicus (Pérez-Delgado et al., 2020). We consider that conducting in silico analysis
of PPI networks in the responses of Lotus species to stress constitutes a very relevant,
exciting and probably fruitful objective in itself, which deserves to be addressed in a specific
research work, exclusively for this purpose. Once detected, potential hubs must be
confirmed through experimental yeast 2-hybrid procedures, or in planta screenings.
Further, to study the structural basis of these interactions may reveal intersections among
pathways involved in more than one stress response. The integration of genomics,
proteomics and metabolomics, with computational predictions and experimental PPI
identifications techniques, would allow a detailed understanding of molecular networks
underlying plant stress response, a prerequisite for engineering of important agronomic
traits to be applied in crop breeding programs.
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