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Pancreatic cancer is a serious disease that results in more than thirty thousand deaths around the world per year. To design effective
treatments, many investigators have devoted themselves to the study of biological processes and mechanisms underlying this
disease. However, it is far from complete. In this study, we tried to extract important gene ontology (GO) terms andKEGGpathways
for pancreatic cancer by adopting some existing computational methods. Genes that have been validated to be related to pancreatic
cancer and have not been validated were represented by features derived fromGO terms and KEGGpathways using the enrichment
theory. A popular feature selection method, minimum redundancy maximum relevance, was employed to analyze these features
and extract important GO terms and KEGG pathways. An extensive analysis of the obtained GO terms and KEGG pathways was
provided to confirm the correlations between them and pancreatic cancer.

1. Introduction

Pancreatic cancer has been widely reported as a malignant
tumor subtype involving one of the most significant tissue
organs that contribute to both digestive system and endocrine
system, the pancreas. Based on clinical symptoms and genetic
characteristics, pancreatic cancer can be clustered into var-
ious subtypes [1]. Among such subtypes, pancreatic ductal
adenocarcinoma (PDAC) accounts for more than 90% of all
the cases. With a specific low survival rate (18% for one-year
survival rate and 5% for five-year survival rate), pancreatic
cancer results in more than thirty thousand deaths around
the world and has been regarded as one of the top killers for
human beings [1, 2].

Although pancreatic cancer has been included in the
list of top killers for human beings, the biological processes
and mechanisms that contribute to the initiation and pro-
gression of pancreatic cancer have not been fully revealed.
Based on recent publications, the underlying mechanisms of
pancreatic cancer have been partially uncovered mainly by
experimental trials [3, 4]. The traditional experimental trials
that contribute to revealing of pancreatic cancer associated

genes and pathways can be divided into two levels: the
nucleotide level (DNA/RNA) and the protein level. At the
nucleotide level, polymerase chain reaction (PCR), high-
throughput sequencing, and gene chips (either genomic chips
or expression profile chips) contribute to the identification of
the genomic and transcriptional background for pancreatic
cancer initiation and progression [5]. Taking gene chip as
an example, such experimental tool reveals the detailed
genetic and expression profile characteristics of tumor cells
and has been reported to contribute to the identification
of various pancreatic cancer associated biological processes,
including DPC4 tumor-suppressor pathway and the famous
MAPK signaling pathway which we will analyze below [6–
8]. As for the protein level, western blot turns out to be
the most commonly used biochemical method to identify
the expression and activation status of a known protein in
certain in vivo or in vitro environment. Further, relying on
in vitro gene expression (RNA) interference technologies, the
characteristic alteration of the expression and function of a
series of proteins that have been identified on such two levels
as we have mentioned above can be validated and such group
of proteins can be further concluded into various biological
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processes and pathways [9, 10]. Based on the experimental
technologies we have mentioned above, various principal
regulatory pathways have been identified and confirmed to
contribute to the initiation and progression of pancreatic
cancer.

Based on existing publications, various principle regu-
latory pathways and biological processes that contribute to
the initiation and progression of pancreatic cancer have been
identified. Such signaling pathways and biological processes
contribute to three main aspects of the biological processes
of pancreatic cancer: transmembrane signal transduction,
intracellular metabolic transduction, and the intranuclear
proliferative regulation [3, 11, 12]. Different signaling path-
ways have been identified to contribute to different biolog-
ical processes of pancreatic cancer during tumorigenesis.
According to recent literatures, ErbB signaling pathway
and TGF-beta signaling pathway participate in the trans-
membrane signal transduction of pancreatic cancer [13, 14].
Such transmembrane signal transduction pathways have
been further validated to transfer the signals to intracellular
pathways (such as p53 signaling pathway, MAPK signaling
pathway, PI3K-Akt signaling pathway, and VEGF signaling
pathway) [13, 15–17]. Intracellular signaling pathways have
been identified to contribute to the abnormal proliferation of
pancreatic cells and further initiate the tumorigenesis. Taking
MAPK signaling pathway as an example, as the downstream
region of Ras signaling pathway, MAPK signaling pathway
contributes to the phosphorylation of two crucial families of
proteins, ERK and JNK, and further regulates proliferative
signaling transportation into the nucleus [8]. Although var-
ious functional pathways have been revealed to contribute
to the abnormal proliferation during the tumorigenesis of
pancreatic cancer, the core trigger for the initiation of
pancreatic cancer turns out to be the abnormal intranu-
clear proliferative regulation [18]. It has been identified that
two main biological processes contribute to the abnormal
proliferation of pancreatic cells during tumorigenesis: the
inhibition of cell apoptosis and the excessive activation of
proliferation [19]. All of such regulatory signaling pathways
have been reported to be abnormal in pancreatic cancer and
further contribute to the tumorigenesis. However, according
to such signaling pathways, we still cannot explain all the
pathological phenotypes of pancreatic cancer, implying that
there are still core regulatory pathways remaining to be
uncovered.

The study on the underlying mechanism of pancreatic
cancer has lasted for decades [20]. However, based on experi-
mental methods, only limited genes and pathways are proved
to contribute to pancreatic cancer.The experimentalmethods
that contribute to the identification and confirmation of
pancreatic cancer associated pathways are quite expensive
and time-consuming. Recently, with the development of
computational biology and bioinformatics, various compu-
tational methods have been presented to predict cancer,
including pancreatic cancer associated genes [21]. However,
up to now, few computational methods have been present
to describe the detailed functional pathways and biological
processes of pancreatic cancer. In computational biology,
KEGG pathways and gene ontology (GO) terms are widely

used to describe the detailed and specific biological processes
in human cells. KEGG (Kyoto Encyclopedia of Genes and
Genomes) has beenwidely regarded as an integrated database
resource for gene and protein annotation [22]. Based on
KEGG database, we can obtain the KEGG pathway maps
which reflect the functional pathway based network in living
cells [22]. On the other hand, GO is a bioinformatics initiative
to unify the presentation of gene and gene product attributes
across all species [23]. Therefore, KEGG pathways and GO
terms can provide a more accurate and clearer panorama for
the underlying biological processes of pancreatic cancer.

In this study, we applied a popular feature selec-
tion method, minimum redundancy maximum relevance
(mRMR) [24], to extract a group of pancreatic cancer asso-
ciated KEGG pathways and GO terms, filling the gaps of
current study in pancreatic cancer. First, genes that have been
validated to be related to pancreatic cancer were deemed
positive samples, while other genes were deemed negative
samples. Second, the enrichment theory of GO term and
KEGG pathway was adopted to encode each gene. Third, all
GO terms and pathways were analyzed by mRMR method
and some of the important ones were extracted. Finally, the
extracted GO terms and KEGG pathways were extensively
discussed to confirm their relationships to pancreatic cancer.

2. Materials and Methods

2.1. Materials. The validated genes related to pancreatic
cancer were retrieved from the KEGG pathway, which is a
main database in KEGG database [25]. 65 validated genes
were extracted from the pathway hsa05212 (http://www.
genome.jp/kegg-bin/show pathway?map=hsa05212&show
description=show, accessed in December 2014). These genes
were termed as positive samples, comprising the gene set𝑆𝑝, and are listed in Supplementary Material I available
online at http://dx.doi.org/10.1155/2016/7861274. To extract
the GO terms and KEGG pathways that are specific to
pancreatic cancer, it is necessary to employ some genes
that are not related to pancreatic cancer. Since we used
the enrichment scores of GO terms and KEGG pathways
to indicate the associations between genes and GO terms
(KEGG pathways), genes without these scores were not
considered in this study. Up to now, there are 18,600 genes
whose GO and KEGG enrichment scores can be calculated.
Beside the 65 genes related to pancreatic cancer, each of the
remaining 18,535 genes can be deemed a negative sample
because the probability of it being related to pancreatic
cancer is not very high. These 18,535 genes comprised
the gene set 𝑆𝑛. The whole gene set 𝑆 was constructed by
combining the genes in 𝑆𝑝 and 𝑆𝑛; that is, 𝑆 = 𝑆𝑝 ∪ 𝑆𝑛.
2.2. Feature Construction. To extract important GO terms
and KEGG pathways that are related to pancreatic cancer, it
is necessary to encode each gene in 𝑆 based on all GO terms
and KEGG pathways. Here, we used the enrichment theory
of GO term and KEGG pathway to encode each gene, which
can indicate the relationships between genes and GO terms
(KEGG pathways).Then, the difference between positive and
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negative samples can be distinguished by the key features
produced by a feature selection method, which would be
described in Section 2.3. The encoding procedure is shown
as follows.

GO Enrichment Score. The GO enrichment score was utilized
to represent the quantitative correlation between each GO
term and involved genes. For a given GO term GO𝑗 and a
gene 𝑔, let 𝐺1 be a gene set consisting of genes annotated to
GO𝑗 and𝐺2 be another gene set consisting of neighbor genes
of 𝑔 in the protein-protein interaction network reported in
STRING (http://string-db.org/) [26], a well-known public
database providing known and predicted protein-protein
interactions.TheGO enrichment score betweenGO𝑗 and 𝑔 is
defined as the −log10 of the hypergeometric test 𝑃 value [27–
30] of 𝐺1 and 𝐺2, which can be calculated by

ESGO (𝑔,GO𝑗) = −log10(
𝑛∑
𝑘=𝑚

(𝑀𝑘 ) (𝑁−𝑀𝑛−𝑘 )(𝑁𝑛 ) ) , (1)

where𝑁 is the number of genes in human,𝑀 is the number
of genes in 𝐺1, 𝑛 is the number of genes in 𝐺2, and 𝑚 is
the number of common genes of 𝐺1 and 𝐺2. A large enrich-
ment score between GO𝑗 and 𝑔 indicates close relationship
between them. In this study, we considered 12,511 GO terms,
inducing 12,511 GO enrichment scores for each gene, which
can be obtained by an in-house program using R function
phyper. The R code is “score← −log10(phyper(numWdrawn− 1, numW, numB, numDrawn, lower.tail=FALSE)),” where
numW, numB, and numDrawn are the number of genes
annotated toGO𝑗, the number of genes not annotated toGO𝑗,
and the number of neighbors of gene 𝑔 and numWdrawn is
the number of neighbors of gene 𝑔 that are also annotated to
GO𝑗.

KEGG Enrichment Score. Similar to that of the GO terms,
the relationship between KEGG pathways and genes in 𝑆 can
be represented by the KEGG enrichment scores. For a given
KEGGpathway𝐾𝑗 and a gene𝑔, let𝐺1 be a gene set consisting
of genes in 𝐾𝑗 and 𝐺2 is same as 𝐺2 in the above paragraph.
TheKEGGenrichment score between𝐾𝑗 and𝑔 is also defined
to be the −log10 of the hypergeometric test 𝑃 value [29–31] of𝐺1 and 𝐺2, which can be computed by

ESKEGG (𝑔,𝐾𝑗) = −log10(
𝑛∑
𝑘=𝑚

(𝑀𝑘 ) (𝑁−𝑀𝑛−𝑘 )(𝑁𝑛 ) ) , (2)

where the definitions of𝑁,𝑀, 𝑛, and𝑚 are same as those in
(1). Also, a high score between aKEGGpathway𝐾𝑗 and a gene𝑔 indicates they have strong associations.Here, we considered
239 KEGG pathways, resulting in 239 KEGG enrichment
scores for each gene, which can also be obtained by an in-
house program using R function phyper.

As mentioned above, each gene 𝑔 was represented by
12,511 features derived from GO terms and 239 features

derived from KEGG pathways, which can be formulated as
a vector

𝑓 (𝑔) = (ESGO (𝑔,GO1) , . . . ,ESGO (𝑔,GO12511) ,
ESKEGG (𝑔, 𝐾1) , . . . ,ESKEGG (𝑔, 𝐾239))𝑇 . (3)

2.3. Feature Selection Method. As described in Section 2.2,
each gene was represented by 12,750 features derived from
the GO terms and KEGG pathways. Considering the unequal
roles of these features on pancreatic cancer, that is, some
features playingmore important roles than others, it is neces-
sary to employ some advanced tools to analyze them, thereby
extracting key features that are strongly associated with
pancreatic cancer. Here, a reliable and widely used feature
selection method, namely, mRMRmethod [24], was adopted
to analyze all investigated 12,750 features.ThemRMRmethod
was proposed by Peng et al. [24] and was deemed to be
a useful tool to analyze the feature space of complicated
problems. Up to now, it has been widely applied to analyze
various complicated biological systems or problems [32–45].

The mRMR method has two excellent criteria: Max-
Relevance and Min-Redundancy. The criterion of Max-
Relevancemeasures the importance of features based on their
correlation to targets, while the criterion ofMin-Redundancy
gives a guarantee that the selected features have minimum
redundancies. It is clear that the former criterion can be used
to extract important features for a classification problem,
while if one tries to construct an optimal feature subspace,
two of them should be used. Because the purpose of this
study is to extract key features that are closely related to the
pancreatic cancer but not to construct an optimal feature
subspace, we only used the Max-Relevance in this study.
For each feature, let 𝑓 be a variable representing values of
all samples under the feature and 𝑐 be the target variable.
The mutual information (MI) value of each feature can be
computed by

𝐼 (𝑐, 𝑓) = ∬𝑝 (𝑐, 𝑓) log 𝑝 (𝑐, 𝑓)𝑝 (𝑐) 𝑝 (𝑓)𝑑𝑐 𝑑𝑓, (4)

where 𝑝(𝑐) and 𝑝(𝑓) are the marginal probabilities of 𝑐 and𝑓; 𝑝(𝑐, 𝑓) is the joint probabilistic distribution of 𝑐 and 𝑓.
In fact, MI measures the mutual dependence between two
variables. Furthermore, it haswide applications because it can
deal with random variables that are not real-valued. Thus,
mRMRmethod adoptedMI to measure the relevance of each
feature. According to the MI values of all features, a feature
list, namely, MaxRel feature list, can be built. The MaxRel
feature list was formulated as

𝐹𝑀 = [𝑓𝑀1 , 𝑓𝑀2 , . . . , 𝑓𝑀𝑁 ] , (5)

where 𝑁 represented the total number of features. Clearly,
features with high ranks in this list are more likely to be
related to pancreatic cancer. Extensive investigation of the
corresponding GO terms and KEGG pathways may give new
insights for the study of pancreatic cancer.

http://string-db.org/
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Figure 1: The procedures for extracting important KEGG pathways and GO terms of pancreatic cancer.

3. Results and Discussion

The purpose of this study is to extract important KEGG
pathways and GO terms of pancreatic cancer using some
computational methods. The detailed procedures are illus-
trated in Figure 1.

3.1. Results. As described in Section 2.2, each gene in 𝑆 was
represented by 12,750 features derived from the GO terms
andKEGGpathways.These features were analyzed bymRMR
methoddescribed in Section 2.3 by calculating their relevance
to targets measured by their MI values. According to the MI
value of each feature, theMaxRel feature list was constructed,
which is provided in Supplementary Material II.

It is known that not all GO terms and KEGG pathways
have strong associations with pancreatic cancer. The rank
of a corresponding feature in the MaxRel feature list for a
GO term or a KEGG pathway indicates its importance for
pancreatic cancer. Thus, we can select the GO terms and
KEGG pathways whose features received high ranks in the
MaxRel feature list to investigate their importance. Here,
we chose the 22 features receiving MI values no less than
0.01 for further analysis, resulting in 22 GO terms or KEGG
pathways. Their detailed information is listed in Tables 1 and
2. It can be observed from these two tables that there are 17
important KEGG pathways (listed in Table 1) and five key GO
terms (listed in Table 2). In the following section, detailed
discussion on these GO terms and KEGG pathways would be
given.

3.2. Analysis of Key KEGG Pathways and GO Terms. As
shown in Tables 1 and 2, 17 KEGG pathways and five GO
terms were extracted, which are deemed to be highly related
to pancreatic cancer. According to recent published literature,

all of these KEGG pathways and GO terms identified in this
study have been confirmed to participate in pancreatic cancer
associated biological processes.

3.2.1. KEGG Pathways Associated with Pancreatic Cancer. 17
KEGG pathways were extracted in this study, which are
deemed to be associated with the initiation and progression
of pancreatic cancer.

(1) Pathways Describe Various Tumor Subtypes. Among the
17 KEGG pathways, 10 KEGG pathways describe the whole
metabolic regulatory network of a specific cancer subtype.
KEGG pathway hsa05200 describes the kernel regulatory
factors that contribute to the initiation and progression of
pan-cancer. Various pathways (e.g., Wnt signaling pathway,
cAMP signaling pathway, and VEGF signaling pathway) in
such network (hsa05200) and functional genes (e.g., PKA,
Rho, and VEGF) have been identified in pancreatic cancer
[46–48]. Taking gene PKA and its corresponding signaling
pathway, the cAMP signaling pathway, as an example, cyclic
AMP associated pathway and PKA have been identified and
confirmed to contribute to the migration and invasion of
pancreatic cancer, validating our prediction [48].

Apart from the KEGG pathways describing the pan-
cancer, various KEGG pathways have also been predicted
to describe the detailed subtypes of cancer. Among them,
hsa05223 which describes the regulatory network and path-
ways of non-small-cell lung cancer has been predicted to be
related to the specific biological processes of pancreatic can-
cer. Such KEGG pathway contains various tumor associated
factors and pathways (such as KRAS, TP53, and functional
pathways that they participate in). It has been proved that
KRAS and TP53 as we have mentioned above have both been
reported and confirmed to contribute to the initiation and
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Table 1: 17 important KEGG pathways for pancreatic cancer.

KEGG pathway ID KEGG pathway MI value Rank in MaxRel feature list
hsa05211 Renal cell carcinoma 0.011 1
hsa04010 MAPK signaling pathway 0.011 3
hsa05212 Pancreatic cancer 0.011 4
hsa05200 Pathways in cancer 0.011 5
hsa05210 Colorectal cancer 0.011 6
hsa05214 Glioma 0.011 7
hsa05220 Chronic myeloid leukemia 0.011 8
hsa05223 Non-small-cell lung cancer 0.01 9
hsa04510 Focal adhesion 0.01 10
hsa05213 Endometrial cancer 0.01 11
hsa05221 Acute myeloid leukemia 0.01 12
hsa05215 Prostate cancer 0.01 13
hsa05160 Hepatitis C 0.01 14
hsa04012 ErbB signaling pathway 0.01 16
hsa04660 T cell receptor signaling pathway 0.01 18
hsa04150 mTOR signaling pathway 0.01 20
hsa04722 Neurotrophin signaling pathway 0.01 22

Table 2: Five important GO terms for pancreatic cancer.

GO term ID GO term MI value Rank in MaxRel feature list
GO: 0007265 Ras protein signal transduction 0.011 2
GO: 0048011 Neurotrophin-TRK receptor signaling pathway 0.01 15
GO: 0016772 Transferase activity, transferring phosphorus-containing groups 0.01 17
GO: 0016303 1-Phosphatidylinositol-3-kinase activity 0.01 19
GO: 0004713 Protein tyrosine kinase activity 0.01 21

progression of pancreatic cancer [49, 50]. Considering factors
like KRAS and TP53 which have been identified in both pan-
creatic cancer associated pathways and non-small-cell lung
cancer associated pathways, such two regulatory networks
(pancreatic cancer and non-small-cell lung cancer associated
pathways) may definitely interact with each other, and our
predicted KEGG term hsa05223 may actually participate in
pancreatic associated pathways validating the accuracy and
efficacy of our prediction. Apart from non-small-cell lung
cancer, another four subtypes of cancer (prostate cancer,
endometrial cancer, renal cell carcinoma, and colorectal can-
cer) associated biological processes have also been predicted
to be associatedwith pancreatic cancer.There are various core
regulatory factors and pathways in prostate cancer associated
pathways (hsa05215). Steroid hormone biosynthesis has been
reported to contribute to themetastasis of prostate cancer and
interacts with the specific oncogene of pancreatic cancer AR,
implying its core role for the prostate associated pathways that
we have predicted [51, 52]. According to recent publications,
such core pathway of the steroid hormone biosynthesis may
also contribute to pancreatic cancer, revealing the underlying
relationships between prostate cancer associated pathways (as
we have predicted, hsa05215) and pancreatic cancer [53, 54].

Pathways of endometrial cancer (hsa05213), a malignant
neoplasm involving the female genital system, have also been
predicted to be associated with pancreatic cancer. The core

regulatory factors of endometrial cancer and pancreatic can-
cer have quite a lot of crosstalk and overlap. Take 𝛽-catenin
as an example, 𝛽-catenin has been revealed to participate
in the Wnt signaling pathway in various tumor subtypes
[55, 56]. The initiation and progression of both pancreatic
cancer and endometrial cancer have been confirmed to
be associated with Wnt signaling pathway, implying that
such two regulatory networks may have crosstalk and our
extracted KEGG pathway (hsa05213) may actually contribute
to the progression of pancreatic cancer [57–59]. As for the
other three important solid tumor associated pathways, two
of them, renal cell carcinoma and colorectal cancer associ-
ated pathways (hsa05211 and hsa05210), contain functional
regulatory genes and pathways that have been reported to
contribute to pancreatic cancer at the same time. In renal
cell carcinoma, MET has been reported to interact with the
hepatocyte growth factor (HGF) and turns out be the initial
signal for MAPK signaling pathway [60]. Coincidentally, in
pancreatic cancer,MET has also been confirmed to be quite a
crucial gene for tumor initiation, progression, andmetastasis,
implying the crosstalk of pathways associated pancreatic can-
cer and renal cell carcinoma [61, 62]. As for colorectal cancer
associated pathways (hsa05211), during the tumorigenesis of
colorectal cancer, chromosomal instability (CIN) has been
revealed to be a core driver mechanism and pathogenesis
of the initiation [63]. In pancreatic cancer, CIN has also
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been regarded as a common phenotype and pathogenic
factor, implying the undergoing relationship between such
two regulatory networks [64]. According to Table 1, we also
obtained the specific KEGG pathway describing pancreatic
cancer associated pathway (hsa05212) which is definitely
associatedwith pancreatic cancer, validating the accuracy and
efficacy of our prediction.

Apart from such solid tumor subtype, two leukemia
subtypes and sarcoma associated pathways have also been
obtained to contribute to the tumorigenesis of pancreatic
cancer. KEGG pathway, hsa05220, describes pathogenic
biological processes of chronic myeloid leukemia (CML).
Various factors have been reported to contribute to the
chronic myeloid leukemia. PI3K-AKT pathway has been
identified as a core component of chronic myeloid leukemia
associated pathways as we have predicted [65]. Based on
recent publications, such pathway (PI3K-AKT pathway) has
also been confirmed to be quite crucial for pancreatic cancer,
validating our prediction [66]. Apart from that, the specific
BCR-ABL fusion gene has also been identified in some
pancreatic cancer patients, implying that BCR-ABL fusion
gene may also contribute to the tumorigenesis of pancreatic
cancer [67]. Apart fromCMLassociated pathways, regulatory
networks that contribute to another nonsolid tumor subtype,
acute myeloid leukemia (AML) (hsa05221), have also been
contained in our results. As we all know, KRAS, STAT, and
their respective regulatory pathways have all been associated
with our predicted pathway (hsa05221) [68, 69]. As we
have mentioned above, KRAS has been identified as a core
regulatory factor that contributes to pancreatic cancer [49].
According to recent publications, STAT as AML associated
gene has also been reported to contribute to pancreatic can-
cer, validating our prediction of pancreatic cancer associated
genes [70]. Glioma, rising from glial cells, is a malignant
sarcoma involving the brain and central nervous system.
Based on our results, glioma associated pathways (hsa05214)
may also contribute to pancreatic cancer. Genes associated
with glioma such as EGFR (as oncogene) and PTEN (as
tumor suppressor) have also been reported to contribute to
the initiation and progression of pancreatic cancer [71, 72].

(2) Detailed Pathways That May Participate in Tumorigenesis.
Apart from pathways that directly describe the tumori-
genesis, four KEGG pathways that describe the detailed
pathways were also extracted. KEGG pathway, hsa04150,
which describes the mTOR signaling pathway has been
predicted to contribute to pancreatic cancer.The relationship
between mTOR signaling pathway and pancreatic cancer
has been revealed by multiple recent publications [73–75].
As a regulatory mechanism for cell proliferation, mTOR
signaling pathway has been confirmed to have crosstalk with
various core regulatory factors and their respective signaling
pathways including MAPK, TP53, RAS, and EGFR [76–79].
Some of such regulatory factors have also been contained in
our results. MAPK signaling pathway (hsa04010) has been
confirmed to have crosstalk with mTOR signaling pathway
as we have mentioned above and has been reported to be
quite crucial for the invasion and metastasis of pancreatic
cancer [80, 81]. Apart from such two functional signaling

pathways, another pathway, which has been widely reported
to contribute to endometrial cancer, ERBB signaling pathway
(hsa04012), is also in Table 1 [82]. During the initiation
and progression of pancreatic cancer, ERBB signaling path-
way has been confirmed to participate in the biological
processes, validating our newly presented algorithm [83].
Neurotrophins have firstly been identified as a group of
proteins that contribute to the survival, development, and
function of neurons [84]. However, recent publications have
revealed that neurotrophins may participate in the survival
and proliferation of various cell types including the tumor
cells [85–87]. Such functional protein, neurotrophin, which
is regulated by another functional gene TRK has also been
reported to contribute to pancreatic cancer, validating the
efficacy of our prediction [88]. In Table 1, a specific KEGG
pathway, hsa04722, which describes the neurotrophin sig-
naling pathway was also listed. Based on our analyses, such
biological process may definitely contribute to pancreatic
cancer.

(3) Specific Pathways That Contribute to Cell-Cell Interaction.
The last three KEGG pathways with MI values no less than
0.01 have been confirmed to contribute to the cell-cell/cell-
protein interaction associated pathways. KEGG pathway
hsa04510 describes the focal adhesion associated pathways.
The abnormal activation of focal adhesion associated pathway
has been widely reported in pancreatic cancer, implying
that focal adhesion may be core biological processes during
the tumorigenesis of pancreatic cancer [89]. Apart from
focal adhesion, another biological process involving cell-cell
interaction, T cell receptor signaling pathway (hsa04660),
was also extracted in this study. It has been widely reported
that the T cell receptor signaling pathway has been blocked
or abnormally regulated in tumormicroenvironment [90]. In
pancreatic cancer, the initiation and progression of pancreatic
cancer also interfere with the normal function of T cell
receptor. Considering the recognition and cytolysis functions
of T cells, the tumor cells and the T cells may put the
selective pressure on each other and coevolve [91]. During
the evolutionary processes, T cells with high recognition
and cytolysis ability, which are both induced by T cell
receptor signaling pathway, are all screened out, leaving
dysfunctional T cells in tumor microenvironment [92, 93].
Such coevolution processes imply the regulatory role of T
cell receptor signaling pathway in pancreatic cancer. We also
obtained a functional signaling pathway (hsa05160) that is
related with the infection of hepatitis C virus. Based onmeta-
analysis and case-control study, the infection of specific virus
(hepatitis B and hepatitis C) has been confirmed to increase
the risk of pancreatic cancer, validating the prediction based
on our new algorithm, though the undergoing mechanism
has not been fully revealed [94, 95].

3.2.2. GO Terms Associated with Pancreatic Cancer. Apart
from the KEGG pathways mentioned above, five GO terms
(listed in Table 2) that describe different biological processes
were also extracted in this study, which are also deemed to
contribute to the tumorigenesis of pancreatic cancer. The
detailed analyses are listed below.
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GO: 0048011, which describes the neurotrophin-TRK
receptor signaling pathway, has been predicted to con-
tribute to pancreatic cancer. As we have mentioned above,
neurotrophin-TRK receptor has been reported to contribute
to the growth and progression of human pancreatic cancer
[96]. Such evidence validates the efficacy and accuracy of
our prediction algorithm. Apart from that, another GO
term (GO: 0016772) describes the transferase activity, espe-
cially for the activity of transferring phosphorus-containing
groups. During the progression of pancreatic cancer, trans-
ferases, especially for those that contribute to the transfer-
ring phosphorus-containing groups, have been identified to
contain various variants and function abnormally. Take a
classical transferase SphK1 as an example, SphK1 as a tumor
associated protein has been reported to be overexpressed in
pancreatic cancer [97]. Recent publications have confirmed
that SphK1 regulates the sphingolipidmetabolism and further
contributes to the resistance against gemcitabine, a widely
used anticancer drug for pancreatic cancer, validating the
underlying role of phosphorus associated transferase for
pancreatic cancer [97]. Another GO term (GO: 0016303)
describes the specific activity of 1-phosphatidylinositol-3-
kinase (PI3K). As we have mentioned above, PI3K associated
pathway has been widely reported to contribute to pancreatic
cancer [66]. Similarly, the remaining two GO terms (GO:
0004713 and GO: 0007265) describe the protein tyrosine
kinase (PTK) activity and theRasprotein signal transduction,
respectively, which have also been reported to contribute to
pancreatic cancer. The inhibitors for protein tyrosine kinase
have been widely used in clinical treatment for pancreatic
cancer, implying the driving effect of PTK for pancreatic
cancer [98]. As for Ras protein signal transduction, proteins
of Ras family have been widely reported to contribute to
tumorigenesis [3, 99]. A specific protein ofRas family,K-RAS,
has been confirmed to be a driver gene for pancreatic cancer,
validating the accuracy of our prediction.

According to the analyses listed above, all extracted
functional KEGG pathways and GO terms are confirmed to
definitely contribute to pancreatic cancer. Some new findings
may give new insights for the study of pancreatic cancer or
other types of cancer.

4. Conclusions

In this study, effective features, derived from the GO terms
and KEGG pathways, were utilized to encode the genes
related to pancreatic cancer. After being analyzed by the
mRMR method, 22 key features were extracted, correspond-
ing to five GO terms and 17 KEGGpathways.These GO terms
andKEGGpathwaysmay be the novelmaterials to investigate
pancreatic cancer. Furthermore, they may also be useful to
build an effective computational method for identification of
novel genes related to pancreatic cancer. In future, we will try
our best in this regard.
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