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Systemic modeling myeloma-
osteoclast interactions under 
normoxic/hypoxic condition using 
a novel computational approach
Zhiwei Ji1,2,*, Dan Wu2,*, Weiling Zhao2, Huiming Peng2, Shengjie  Zhao1, Deshuang Huang1 
& Xiaobo Zhou2

Interaction of myeloma cells with osteoclasts (OC) can enhance tumor cell expansion through 
activation of complex signaling transduction networks. Both cells reside in the bone marrow, a 
hypoxic niche. How OC-myeloma interaction in a hypoxic environment affects myeloma cell growth 
and their response to drug treatment is poorly understood. In this study, we i) cultured myeloma 
cells in the presence/absence of OCs under normoxia and hypoxia conditions and did protein 
profiling analysis using reverse phase protein array; ii) computationally developed an Integer Linear 
Programming approach to infer OC-mediated myeloma cell-specific signaling pathways under 
normoxic and hypoxic conditions. Our modeling analysis indicated that in the presence OCs, (1) 
cell growth-associated signaling pathways, PI3K/AKT and MEK/ERK, were activated and apoptotic 
regulatory proteins, BAX and BIM, down-regulated under normoxic condition; (2) β1 Integrin/FAK 
signaling pathway was activated in myeloma cells under hypoxic condition. Simulation of drug 
treatment effects by perturbing the inferred cell-specific pathways showed that targeting myeloma 
cells with the combination of PI3K and integrin inhibitors potentially (1) inhibited cell proliferation 
by reducing the expression/activation of NF-κB, S6, c-Myc, and c-Jun under normoxic condition; 
(2) blocked myeloma cell migration and invasion by reducing the expression of FAK and PKC under 
hypoxic condition.

Multiple myeloma (MM) is the second most common hematological malignancy and is characterized 
by the clonal expansion of plasma cells in the bone marrow1. Myeloma cells reside in the bone marrow 
(BM), which is composed of various stromal cells, including osteoclasts (OCs), osteoblasts, endothelial 
cells and fibroblasts, as well as immune cells2. Therefore, bone marrow niche is critical for myeloma cell 
proliferation, growth and migration through provision of survival signals and secretion of cytokines, 
chemokines and growth factors3,4. OCs are derived from bone marrow stem cells and play an important 
role in bone degeneration. Early studies have showed that OCs stimulated myeloma cell growth and 
survival via a cell-cell interaction5. However, the detailed mechanisms have not been well studied.

BM has long been accepted as a naturally hypoxic organ6. The spatial distribution of oxygen in BM 
is heterogeneous, thus, BM compartments contains different oxygen tensions7,8. The bone-BM interface 
is strongly hypoxic and vascular niche comparatively less hypoxic1. Hypoxia has been associated with an 
increased risk of metastasis and mortality in many human cancers9. Early studies have devoted to explore 
the molecular mechanisms underlying the effect of intratumoral hypoxia on cancer progression10. The 
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molecular responses of myeloma cells in a hypoxia environment have been studied by several groups11,12. 
However, the impact of OCs-myeloma cell interactions on myeloma growth under hypoxic condition has 
not been explored. In this study, we developed a novel computational approach to model the effect of 
OCs on myeloma cell growth and revealed the relevant molecular mechanism.

Human myeloma cell line RPMI 8226 and primary OC cells were co-cultured under either nor-
moxic or hypoxic condition and protein samples of RPMI 8226 cells collected at 5 h, 24 h and 48 h 
post-treatment. An integrated proteomic strategy of reverse phase protein arrays (RPPA) was applied to 
assess the changes in the signaling molecules associated with cell proliferation, apoptosis, migration, and 
adhesion. Based on our proteomics data and a prior set distribution of potential generic pathways, two 
generic signaling networks of myeloma cells were built manually for normoxic and hypoxic conditions. 
Then the time-series RPPA data were applied to the generic signaling networks to infer OCs-mediated 
myeloma-specific pathways.

Two major types of pathway inference approaches have been used to optimize cell-specific pathways 
from the proteomics data: ordinary differential equations (ODEs) modeling approaches13,14 and discrete 
modeling approaches15–18. Commonly, many parameters are needed in the ODEs modeling approaches to 
model the dynamics of signaling networks, however, the parameter estimation is very challenging when 
simulating large-scale networks with small samples19. Hence, ODE modeling approach is not flexible 
in determining the topology of signaling networks in this study. On the other hand, discrete mode-
ling approaches include Boolean operation based approaches16,18 and Ternary operation approaches17. In 
Boolean operation based approaches, the status of a kinase were normalized as activated (“1”) or inac-
tivated (“0”) for qualitatively analyzing large-scale signaling pathways. However, Boolean states used in 
these approaches are not sufficient enough to represent the variations of phosphor-signals under different 
conditions. In Melas’s discrete model, three possible states for signaling proteins were taken into account, 
including up-regulation (valued as “1”), down-regulation (“− 1”), and no-change (“0”); and the pathway 
topologies under various perturbations were assumed to be the same. This approach could not be directly 
applied to solve our problem because the activation of signaling pathways in our study was involved 
in dynamic changes at different time points. Thus, we proposed to develop a time-series-data-driven 
Integer Linear Programming (simply called as dynamic ILP or DILP) approach to infer OCs-mediated 
myeloma-specific signaling pathways by detecting topology alterations of the signaling network at dif-
ferent times (See Fig. 1).

Our modeling analysis indicated that in the presence of OCs (1) the growth and proliferation-associated 
signaling pathways were activated, including PI3K/AKT and MEK/ERK, and apoptotic regulatory pro-
teins, BAX and BIM, down-regulated under normoxic condition; (2) β 1 Integrin/FAK signaling path-
way was activated in myeloma cells under hypoxic condition. Analysis of specific pathway networks of 
myeloma cells provided an insight into the molecular mechanisms of myeloma cell survival and growth 
under normoxic and hypoxic conditions.

Based on the inferred myeloma-specific pathways, we simulated drug treatment effects by perturbing 
the inferred cell-specific pathways with PI3k and integrin inhibitors, simultaneously. The simulation 
results indicated that targeting myeloma cells with the combination of PI3K and integrin inhibitors 
potentially (1) inhibited cell proliferation by inhibiting the expression/activation of NF-κ B, S6, c-Myc, 
and c-Jun under normoxic condition; (2) blocked myeloma cell migration and invasion by reducing the 
expression of FAK and PKC under hypoxic condition.

As a general tool for qualitative analysis of signaling pathways, the DILP-based discrete modeling 
approach is suited to effectively infer large-scale signaling pathways and predict qualitative behavior of 
the signal transduction system.

Results
RPMI 8226 myeloma cells are resistant to hypoxia when cocultured with OCs.  OCs were gen-
erated from human peripheral blood mononuclear cells in the presence of RANKL and macrophage col-
ony-stimulating factor. The formation of osteoclasts was demonstrated qualitatively by tartrate-resistant 
acid phosphatase staining as shown in the Supplementary Fig. S1. The differentiation rate of OCs was up 
to 90%. In order to determine the effect of OCs on myeloma cell growth, RPMI 8226 myeloma cells were 
cultured in the presence or absence of OCs up to 72 h. Cell proliferation was quantified by measuring 
dsDNA contents. As shown in Fig. 2A, RPMI 8226 cells co-cultured with OCs had an increased prolif-
eration rate (1.5 fold higher) under normoxic condition, when compared with RPMI 8266 cells cultured 
without OCs. We then evaluated the effect of hypoxia on myeloma cell growth w/wo OCs. The average 
oxygen tension of bone marrow in MM patients was around 5% (ranged from 1–7%)20. 5% O2 was often 
used to simulate hypoxic condition in vitro21–23. Therefore, in our study, we used 5% O2 as a hypoxic con-
dition and 21% O2 as a normoxic condition. Incubation of RPMI929 cells in the hypoxic condition led 
to a significant increase in the HIF1 expression at 24 h and 48 h post-treatment (Supplementary Fig. S2),  
when compared with the cells cultured in the normoxia incubator20. Under hypoxic condition, 37.6% 
of RPMI 8226 cells were survived in the presence of OC and 21.4% without OCs, indicating that OCs 
protected myeloma cells from hypoxia injury (Fig. 2B).

RPPA data analysis.  Our RPPA data were collected from four treatment conditions at three time 
points. The treatment groups included (1) myeloma cells co-cultured with OC under normoxia, (2) 
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myeloma cells co-cultured with OC under hypoxia, (3) myeloma cells cultured without OC under nor-
moxia, and (4) myeloma cells cultured without OC under hypoxia. Protein samples were harvested at 
5 h, 24 h, and 48 h post-treatment. The RPPA dataset was divided into two segments. The first segment 
was used to infer myeloma-specific pathways under normoxic condition for understanding the impact 

Figure 1.  Flowchart of the proposed DILP approach. 

Figure 2.  Effects of osteoclasts on myeloma cell. RPMI 8226 myeloma cells were cultured in the presence 
or absence of OCs under normoxia (21% O2, 5% CO2) and hypoxia (5% O2, 5% CO2) conditions. 
Myeloma cells were harvested at 72 h centrifugation. Myeloma cell growth was measured using dsDNA assay. 
Panel A shows myeloma growth in the presence or absence OCs under normoxic condition. Panel B shows 
myeloma cell growth in the presence or absence of OCs under hypoxic condition. **means p <  0.01.
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of osteoclast-myeloma cell-cell interaction on myeloma growth. The fold change ratio (ρ) of each protein 
was calculated as myeloma co-cultured with OCs vs. without OCs under normoxia. The second seg-
ment was applied to infer myeloma-specific pathways under hypoxia for understanding the response of 
myeloma cells to hypoxia in presence or absence of OCs. We then calculated the ratios of fold changes 
for each protein, including myeloma co-cultured with OC under hypoxia against normoxia; myeloma 
without OC under hypoxia against normoxia. The significant up-regulated or down-regulated proteins 
were screened with the thresholds as ρ ≥  1.2 or ρ ≤  0.8 (Supplementary Fig. S3).

Construction of generic pathway maps of myeloma cells for normoxic and hypoxic condi-
tions.  Based on the ratios of fold change for all the proteins in our RPPA dataset, we screened the dif-
ferentially expressed proteins and imported them into IPA (http://www.ingenuity.com). Combining the 
top-ranked enriched pathways from IPA and the myeloma-related pathways reported in the literatures24, 
we manually built up two generic OC-mediated myeloma-related pathway maps for both of normoxic 
and hypoxic conditions (Fig. 3). The Figure 3A denotes the generic OC-mediated myeloma-related path-
way map in normoxia. This map mainly associated with three cell functions: cell cycle regulation, cell 
proliferation, and apoptosis. The up-regulation of tumor suppressor p53 can arrest cell cycle to repair 
DNA-lesion25. NF-κ B has been shown promoting cell survival, proliferation, and resistance to anticancer 
drugs13,26. AKT/mTOR/P70S6K pathway plays an important role in the cell growth and proliferation in 
multiple myeloma27. c-Jun, a transcription factor, promotes cell growth and proliferation in many cancer 
cells28. The pro-apoptotic proteins BAX and BIM both regulate the activation of the mitochondrial cell 
death pathway29,30. Figure 3B shows the generic OC-mediated myeloma-related pathway map in hypoxia. 
Except PI3K/AKT, MEK/ERK, and JNK pathways, integrin-FAK signaling pathways was presented in this 
map, which is associated with cell migration and invasion.

There are 31 nodes and 45 edges included in the pathway maps in Fig.  3A, and 31 nodes and 42 
edges in Fig. 3B. Nodes in the pathway network represented signaling proteins with their discrete values 
1,− 1, or 0. These values represented the status of proteins and 1, − 1, and 0 standed for “up-regulation”, 
“down-regulation”, and “no-change”, respectively. There are two types of edges in the signaling pathways: 
activation reaction (“→ ”) and inhibitory reaction (“ ”). They were encoded by integer variables, which 
had discrete values 1 (activation) or − 1 (inhibitory)16. The state of each reaction at certain time point 
is represented with logical values (“occur”(0) or “does not occur”(1)). In this study, we summarized 
five types of linking patterns of signaling proteins which were common in most of signaling network 

Figure 3.  Generic pathway maps of myeloma cells in the presence of osteoclasts in normoxia and 
hypoxia. (A) OC-mediated myeloma cell-related generic pathway map in normoxia; (B) OC-mediated 
myeloma cell-related generic pathway map in hypoxia. The nodes with a dark color were predicted using our 
model.

http://www.ingenuity.com
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topologies (See Methods). In our DILP model of signaling network, the states of nodes and connected 
edges were constrained with the state consistent rules (see Supplementary Text S1). For example, there 
was an “activation” edge from PDK1 to AKT in the generic pathway in Fig. 3A. Our developed linear con-
straints restrict that the states of PDK1 and AKT would be positive related if the reaction (PDK1 →  AKT) 
occurred at certain time point. In addition, all the edges, connected to the same protein, were considered 
as independent. In another word, a downstream protein could be regulated by several upstream kinases 
simultaneously and its status was determined by all of its upstream proteins. The inference for states of all 
the nodes and edges was implemented with a set of constraints in our DILP model. The details regarding 
these constraints were described in Supplementary Text S2.

Inference of OC-mediated myeloma-specific pathways by DILP.  To infer cell-specific pathways 
based on the generic pathway map constructed above, we minimized the differences between measured 
and predicted values, as well as the complexity of inferred signaling network topology. To solve this 
multi-objective optimization problem, we developed the DILP model of the generic pathway map and 
obtained the cell-specific pathways by optimizing formula (3) in Methods (also see Supplementary Text 
S2, S3, and S4). The DILP model was solved with the MATLAB optimization toolbox Gurobi 5.631, which 
guarantees minimal differences between proteomics data and predicted data, as well as the simplification 
of signaling network topology.

The inferred myeloma cell-specific pathway networks in the presence of OCs under normoxic/ hypoxic 
conditions are shown in Figs  4 and 5. Comparing with the signaling network shown in Fig.  3, several 
redundant edges were removed from the generic pathway networks due to the inconsistencies between 
these links and experimental measurements of connected nodes. Figure 4 represents the myeloma-specific 
pathway network in the presence of OCs under normoxic condition, in which the pathways of AMPK/
mTOR and p53/p21 were removed from the generic pathway network, as shown in Fig. 3A. The fitting 
precision (defined in Supplementary Text S3) of the inferred cell-specific pathways in normoxia was 
84.72%. The downstream proteins shown in Fig. 4 were mainly involved in two functional modules: the 
down-regulated cell apoptosis, and up-regulated cell proliferation. Our prediction of DILP model showed 
that three receptors, VEGFR, EGFR, and ERBB2/ERBB3, were up-regulated, which play an important 
role in stimulation of cell proliferation and inhibition of apoptosis32. PI3k/AKT and its downstream 
signaling molecules NF-κ B and p70S6K, were activated at 24 h and 48 h following co-incubation with 
OCs. Particularly, the activation of NF-κ B confers drug resistance in MM24. Transcription factors c-Jun 
and c-Myc were up-regulated at 5 h and/or 24 h. Anti-apoptosis machinery was activated to protect cells 
from apoptosis, including increased expression of cell survival proteins AKT and FOXO3, and reduced 
levels of apoptosis proteins of caspase 8, BAX, and BIM.

Figure 5A,B represent the inferred myeloma-specific pathways in the presence vs. absence OC under 
hypoxia. The phenotype-related functional modules were also highlighted in Fig. 5. All these pathways 
were inferred by fitting the generic pathway map with two sets of calculated ratios of corresponding 
proteins (myeloma without OC in the presence of hypoxia relative to normoxia; myeloma with OC in the 
presence of hypoxia relative to normoxia). The fitting precision of these two inferred myeloma-specific 
pathway networks in hypoxia is about 89.33%. Comparing with the signaling network shown in Fig. 3B, 
some edges were removed in the inferred networks. Comparing Fig. 5B  to A, we can clearly see some 
of similarities between two of them. The protein level of NF-κ B and S6 were reduced and E-cadherin 
and Yes-associated protein (Yap) up-regulated in both networks. Early studies showed overexpression 
of E-cadherin hinders tumor growth by suppressing PI3K/AKT signaling via B-catenin33. Yap plays a 
pivotal role in tumor suppression by restricting proliferation34.

Several proteins were up-regulated in the myeloma cells co-cultured with OCs under hypoxia con-
dition as shown in Fig.  5B, including fibronectin, integrin, EGFR, PKC, FAK, BCL2 and P53. Soluble 
fibronectin can bind to integrin and induce the activation of FAK. Activation of FAK has been linked 
to cancer cell migration and invasion32. EGFR signaling plays an important role in cell proliferation 
and migration through downstream PKC pathway. Increased expression of p53 and p21 in Fig.  5B 
suggested that an induction of cell cycle arrest to allow cells repair their DNA damage35. BCL2 is a 
well-known anti-apoptotic protein. Increased expression of BCL2 may also contribute the attenuated 
hypoxia-induced cell death. The predicted values of key proteins at three time points were detailedly 
represented in Supplementary Fig. S4-S5.

Experimental validation of signaling proteins.  To validate the changes of signaling molecules 
in myeloma cells cultured with/without OCs under normoxic condition, myeloma cells were harvested 
after culturing for 24 h in the presence or absence of OCs. Western blot were processed to determine 
the key signaling proteins in the specific pathway of myeloma cells that was inferred above. As shown in 
Fig. 6, the phosphorylated protein levels of AKT, MEK, and ERK were increased in the RPMI 8226 cells 
co-cultured with OCs, compared with the cells without OCs (Fig. 6A). In addition, increased c-Myc and 
reduced c-Jun in these cells were also consistent with the results obtained from the RPPA data.

To validate the different signal transduction of OCs-primed myeloma cells under normoxia and 
hypoxia conditions, we did western blot analysis for some key proteins shown in the inferred signaling 
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pathway (Fig. 6B). The protein levels of phosphorylated-FAK, fibronectin, c-Myc and p53 were increased 
following treatment with hypoxia.

Prediction of drug treatment effects based on the state transition analysis.  A great advantage 
of discrete dynamic modeling is its ability to predict the outcomes of system perturbations. In dynamic 
Boolean network, the future state of each node is determined by the current states of its parental nodes 
via Boolean-operation-based transfer functions36. In this study, we considered three possible states for 
each protein in our model and the transfer functions were implemented by a set of integer linear con-
straints, which were generated according to the topology of inferred cell-specific pathway network (see 
Methods).

Figure 4.  Inferred specific pathways of myeloma cells in the presence/absence of OCs under normoxic 
condition. Our model predicted that the functional module with red color was up-regulated, which 
potentially increases of cell proliferation and decrease of cell apoptosis. Similarity, the module with green 
color was down-regulated, which indicated the decrease of apoptosis. The predicted states of key proteins in 
this network were represented in detail in Supplementary Fig. S4.
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Our analysis above has shown the differential response of myeloma cells to oxygen tension in the 
presence or absence of OCs. Therefore, therapeutic approaches should also be taken into account of the 
complex heterogeneous microenvironment in the bone marrow. Considering the signaling molecules in 
our RPPA dataset were significantly changed at time point 24 h (Supplementary Fig. S4 and S5), we chose 

Figure 5.  Inferred specific pathways of myeloma cells in the presence/absence of OCs under hypoxic 
condition. Several functional modules were highlighted to indicate the changes of phenotypes under 
different cellular contexts. (A) The specific pathways of myeloma cells in the absence of OCs under hypoxic 
condition. (B) The specific pathways of myeloma cells in the presence of OCs under hypoxic condition. The 
predicted states of key proteins in both networks were displayed in Supplementary Fig. S5 (A,B).

Figure 6.  Experimental validation of key proteins involved in the inferred signaling pathways. (A) RPMI 
8226 myeloma cells were cultured in the presence or absence of OCs under normoxic condition for 24 h. 
Cell lysates were collected and subjected to western blot analysis with p-Akt, p-MEK, p-ERK and c-MYC 
antibodies. (B) Myeloma cells were cultured in the presence OCs under normoxic and hypoxic conditions 
for 24 h. Myeloma cell lysates were subjected to western blot analysis with the FAK, c-MYC, p53 and 
fibronectin antibodies.
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the predicted states of all the proteins at 24 h as an initial state of signaling network to study drug treat-
ment effects (Figs 4 and 5B). The details about network state transition was described in Supplementary 
Text S5.

PI3K/AKT and Integrin/FAK-associated pathways were involved in regulation of myeloma cell prolif-
eration, anti-apoptosis, cell cycle arrest, and migration under normoxic and hypoxic conditions, respec-
tively (Figs 4 and 5). Therefore, we simulated the combined treatment with PI3K and integrin inhibitors 
on the inferred myeloma-specific pathway networks. The simulated drug effects are shown in Fig.  7. 
Figure 7A shows the simulated drug effect in normoxia. Comparing with the network shown in Fig. 4, 
PI3K/AKT, MEK/ERK, and JAK/STAT pathways were inhibited and NF-κ B, S6, c-Myc, and c-Jun also 
down-regulated accordingly following the combined treatment, suggesting cell proliferation process was 
suppressed. The expression of pro-apoptotic factor BIM was up-regulated. These findings suggested that 
PI3k inhibition potentially reduced cell proliferation and enhanced apoptosis in the myeloma cells37,38. 
Figure 7B represents the simulated drug effect in hypoxia. The combined treatment with PI3k and integ-
rin inhibitors led to a blockage of PKC and FAK pathways, potentially reducing migration and invasion 
of myeloma cells39. In the meantime, c-Myc was also down-regulated after treatment, suggesting an 
inhibition of cell growth. The state transition of signaling networks was solved by constraints (31–48) 
in Supplementary Text S5 and the fixed point (steady state) for both networks occurred after 5 and 2 
steps, respectively. The expressions of all the proteins involved in above two networks were listed in 
Supplementary Table S2 and S3. Our drug simulation indicated that combination of PI3K and integrin 
inhibitors potentially reduced the myeloma cell proliferation in normoxia and inhibited cell migration in 
hypoxia. These predicted results were consistent with the previously reported results40,41.

Discussion
In this paper, we presented a computational approach to infer the osteoclast-mediated myeloma 
cell-specific pathways in BM heterogeneous microenvironment and predict drug treatment effects on 
myeloma cells. Based on the differential expression of signaling proteins, we combined the enriched 
pathways from IPA with the related pathways described in the literatures to build up two generic path-
way maps of myeloma cells. We then used our DILP approach for pathway topology optimization and 
eventually inferred the myeloma cells-specific pathway maps in normoxia and hypoxia. The cell-specific 
pathway maps were optimized by fitting generic pathway networks to the proteomics data collected 

Figure 7.  Simulation of treatment effects by perturbing the inferred cell-specific pathways with 
combination of PI3K and integrin inhibitors. The changes of downstream modules were highlighted. (A) 
Predicted treatment effects of PI3K and integrin inhibitors on OC-mediated myeloma cells-specific pathways 
in normoxia; (B) Predicted treatment effects of PI3K and integrin inhibitors on OC-mediated myeloma 
cells-specific pathways in hypoxia.
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experimentally. Each of our generic pathway maps was mainly built with the proteins which were dif-
ferentially expressed under two conditions (for example, in the presence/absence of OCs), therefore, 
the cell-specific network inferred by DILP was used to clarify the significant differences of myeloma 
intracellular signaling response induced by different cellular contexts. A parts of signaling pathways 
in the inferred network might be represented as un-changed due to they both were up-regulated or 
down-regulated under both conditions.

An important aspect of the proposed approach is its practicability in inferring myeloma cell-specific 
pathways. Although ordinary differential equations (ODEs) are commonly used to model dynamics of 
signaling networks; estimating parameters using ODE models is quite challenging. Our approach, based 
on discrete modeling, has simplified the representation of signaling pathway topology.

For inference of the OC-mediated myeloma-specific pathways under the normoxic or hypoxic condi-
tions, the optimization procedure of DILP approach contained about 2862 constraints and 1116 variables 
(81 integer variables and 1035 binary variables). About 673 constraints and 366 variables in each step 
of state transition were used for optimizing drug treatment effect. Compared to other systems modeling 
approaches (such as ODE-based method), our approach, based on linear constraints, can simplify the 
optimization process and quickly search an optimal solution in an allowable subspace. Even though this 
approach was scaled up to larger signaling networks, it still would be efficient because a linear program-
ming problem can be solved in linear time when the dimension is fixed42.

When the proposed approach was applied on the RPPA data, fitting precision of the inferred 
cell-specific pathways was high (Supplementary Table S1). As shown in the Supplementary Table S1, the 
inferred cell-specific pathways were fitted well with the data obtained at 24 h post-treatment. In addition, 
several key factors were significantly altered at 24 h and no difference seen at 5 h or 48 h, indicating that 
the intracellular signals regulated by cell-cell interaction appeared to be time-dependent. The fitting 
curves in Supplementary Fig. S4-S5 have also shown the similar changes.

Furthermore, the DILP approach was also applied to study the drug treatment effects on myeloma 
cells based on the well-defined concept of state transition in dynamic Boolean network. Given an initial 
state of the specific pathways of myeloma cells, our DILP system was used to infer the future steady 
state (dynamic attractor) of the signaling network after the potential targets were inhibited by drugs. 
The simulation results of DILP approach indicated that treatment cells with the combined PI3K and 
integrin inhibitors potentially blocked the proliferation- and migration-associated signaling pathways 
and increase expression of apoptosis-associated proteins in myeloma cells. Early studies have shown that 
treatment myeloma cell with PI3K inhibitor led to a considerable induction of apoptosis, and inhibition 
of proliferation as well33,34. Moreover, integrin pathway is significantly up-regulated in MM, which plays 
a critical role in angiogenesis, migration, and invasion43. Puente et al. summarized that cell signaling tar-
geted therapies (PI3K/AKT, p38, HDAC, and Wnt) and strategies targeting the tumor microenvironment 
(such as integrin, hypoxia, and angiogenesis) were currently two types of potential therapeutic strategies. 
The combination of these two therapeutic agents has improved outcomes for MM patients41. SF1126, 
an integrin-targeted PI3K inhibitor, has potent antitumor activity against multiple myeloma in vitro and 
in vivo40. Treatment with SF1126 on MM appeared to affect the tumor microenvironment by inhibiting 
angiogenesis40. In addition, some previous works reported that treatment of SF1126 on glioma and neu-
roblastoma cells blocked integrin-mediated migration44,45. Treatment of SF1126 on renal cell carcinoma 
results in marked inhibition of tumor growth via PI3K/AKT signaling pathway and profound inhibition 
of integrin-mediated migration46. Our prediction of drug effects is consistent with experimental results 
from others.

In summary, we constructed a computational framework using a systems biology approach to infer 
large-scale signaling pathways and predict dynamic behavior of the signal transduction system with 
time-series proteomics data.

Methods
Summary of the computational approach DILP.  In this study, we designed DILP approach to 
model myeloma cell growth and survival, and simulate perturbation effects of drugs in the presence/
absence of OCs and in the normoxic/hypoxic microenvironment (Fig. 1). The modeling approach con-
sisted of three major steps, including construction of generic pathway maps, inference of cell-specific 
pathways by DILP; and prediction of drug treatment effects by state transition analysis.

Step 1: Construction of generic pathway maps.  Firstly, differentially expressed proteins were identified 
from the experimental proteomics data. We then selected the enriched signaling pathways from the 
canonical pathway database through the use of Ingenuity Pathway Analysis (IPA) based on the differen-
tially expressed proteins. Secondly, the generic signaling pathway maps were manually built by merging 
the enriched signaling pathways with myeloma cell-related pathways reported in the literatures.

The signaling pathway maps were presented as a discrete network, consisting of a set of nodes and 
directed edges. Nodes in the pathway networks represented signaling proteins with their discrete val-
ues 1,− 1, and 0, which standed for “up-regulation”, “down-regulation”, and “no-change”, respectively. 
The edges indicate signal reactions. There were two types of reactions: activation (“→ ”) and inhibition 
(“ ”), which were encoded by integer variables (1 or − 1). In this study, we summarized five cases 
of linking patterns of signaling proteins which were common in most of pathway network topologies 
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(Fig. 8). Figure 8 indicated that the state of a downstream protein was determined by a set of upstream 
proteins and the linking pattern between them. Figure  8A,B indicates that, the downstream protein 
is regulated by its unique parental node through a single reaction (activation or inhibition), respec-
tively; In Fig. 8C,D, the states of a downstream protein could be modified if at least one of the paren-
tal proteins was up-regulated/down-regulated. In Fig,  8E, a downstream protein was up-regulated (1), 
down-regulated (− 1) or unchanged (0), if it had been both up- and down-regulated by activation and 
inhibition, simultaneously. In our model, the states of all the nodes and connected edges in the pathway 
network meets the state consistent rules (see Supplementary Text S1).

Step 2: Inference of cell-specific pathways by DILP.  A signaling pathway network is defined as a set of 
signaling proteins P =  {1, 2, …,  j, …, ns} and reactions E =  {1, 2, …, i, …, nr}. All of the proteins were 
measured at several time points, indexed by the set T =  {t1, t2, …, tL}. A discrete variable xj,k ∈ {− 1, 0, 0} 
indicates whether the protein j (j ∈  P) is up-regulated (xj,k =  1), down-regulated (xj,k =  − 1), or un-changed 
(xj,k =  0) at the time point k, in which k ∈  T. The reaction i (i ∈ E) can be represented as u →  d (activa-
tion) or u   d(inhibition), where u and d are the upstream and downstream proteins of this reaction, 
respectively (u, d ∈  P). The impact (“positive regulatory” or “negative regulatory”) of the upstream protein 
u on downstream protein d is described as the regulating effect from u to d when protein u is up- or 
down-regulated. They will be used to design the constraints of the reactions in the inferred signaling 
pathways (Supplementary Text S2).

To find an optimal set of reactions from the original generic pathway map, we have introduced the 
binary variable yi and zi,k. The variable yi denotes 1 if the reaction i is removed in the inferred cell-specific 
pathway network, and 0 else wise. The variable zi,k denotes 0 if the reaction i (i ∈  E) takes place at the time 
point k, and 1 else wise. The state of zi,k may affect the fitting error between experimentally measured and 
predicted values of proteins. Moreover, formulas (1–2) reflect how the state of reaction i at time point k 
(zi,k) constrains the presence of this reaction in the inferred cell-specific pathway network. Formula (1) 

Figure 8.  Five cases of linking patterns of signaling proteins in pathway network topology. (A) single 
activation; (B) single inhibition; (C) multiple activations; (D) multiple inhibition; (E) mixed reactions. 
(A,B) show that, the state of downstream protein is determined by its unique parental node through single 
reaction of activation/inhibition, respectively; In (C,D) the state of a downstream protein can be changed if 
at least one of the upstream proteins is up-regulated/down-regulated and others are un-changed. In Fig. 8E, 
the state of downstream protein might be un-changed (0), up-regulated (1) or down-regulated (− 1) if it has 
the potential of being both up- and down-regulated by its parental nodes, simultaneously.
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indicates that reaction i is present in the cell-specific pathway network if it takes place at least at one 
time point. Formula (2) denotes that the reaction i is not included in the cell-specific pathway network 
if this reaction doesn’t occur at all of the time points.

z y k T i E 1i k i≥ , ∈ , ∈ ( ),

y z1 1
2i

k T
i k∑− ≤ ( − )

( )∈
,

To infer cell-specific pathway networks, we developed a time-series-data-driven Integer Linear 
Programming (simply called as dynamic ILP or DILP) approach to minimize the differences between 
experimentally measured and predicted values of signaling proteins, as well as to obtain a minimized 
sub-network of original generic pathway map. The objective function is defined as:

∑∑ ∑β







( − ) +


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
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j k j k
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i
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In this objective function, the first term represents the fitting error between experimentally measured and 
predicted values and the second term denotes a set of reactions from the original generic signaling net-
work. The measured and predicted values of j–th protein at time point k were denoted as mj,k,xj,k ∈  {− 1, 0, 
1}, respectively. When mj,k and xj,k are equal, the value of term (mj,k− xj,k)2 will be 0; otherwise it is either 
1 or 4. Hence, optimization of the above objective function might induce local-optimal solution because 
of the non-uniform distribution of the term (mj,k− xj,k)2. In order to address this bias, binary variable 
aj,k (taking value of 0 or 1) was designed as the difference between mj,k and xj,k as following: aj,k will be 
1 if mj,k is not equal to xj,k, and 0 else wise. Then the term (mj,k− xj,k)2 in above objective function was 
replaced by aj,k. The calculation of aj,k is implemented by constraints (26-27) as shown in Supplementary 
Text S2. Finally, the above objective function can be simplified as formula (3).

∑∑ ∑β





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+
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The negative constant β in formula (3) is used to obtain a minimum sub-graph of the generic pathway 
maps as the finalized cell-specific pathways (here, we have 0

E
1 β− < < ), in which E  is the number of 

reactions in the network. In the optimization procedure, the predicted states of proteins and reactions in 
signaling pathway network meet State consistent rules (see Supplementary Text S1). All these rules were 
implemented using our developed constraints which were presented in Supplementary Text S2.

In addition, minimizing the optimal network topology by edge removals might eliminate some reac-
tions, leading to some phosphor-signals not being transduced into downstream proteins (such as two 
examples shown in Supplementary Fig. S6-S7). After obtaining a single minimized sub-graph of generic 
pathway network via DILP approach, we designed a strategy for searching the missing edges. The missing 
edges were added to the optimal network obtained from formula (3) if the goodness of fit was un-changed. 
The details of addition of missing edges were described in Supplementary Text S4.

The DILP formulations presented above were implemented in our Matlab-based software tool 
DILPMAT (Http://ctsb.is.wfubmc.edu/publications/DILPMAT). This toolbox was developed basing on 
GUROBI optimizer31, which is a well-known Mathematical Programming Solver. The optimization of 
formula (3) using DILPMAT will deliver an optimal sub-network (cell-specific pathways) of the generic 
pathways which can best explain the experimental time series proteomics data.

Step 3: Prediction of drug treatment effects by state transition analysis.  Based on the established network 
topological structure and transfer functions (Boolean operations), state transition analysis in Boolean 
networks is a kind of approach to predict the future state of each node from the current states of its 
parental nodes36,47,48. The assumption of state transition is that: the state of protein j at time point k +  1 
(xj,k+1) is associated with the states of its parental proteins at time point k48,49. Thus we predicted the 
state of pathway network at time point k +  1 from the state at time point k through state transition, 
following perturbation of the cell-specific pathway network with drugs (formula (4)). Given the inferred 
cell-specific pathway network topology G and the states of all the proteins involved in the network at 
time point k: Xk =  [x1,k, x2,k, …, xn,k] (n is the total number of proteins in the network), we can obtain 
the states of these proteins at time point k +  1 using the following formula:

X F X G 4k k1 = ( , ) ( )+

where k =  1, 2, …, L; xj,k∈ {− 1, 0, 1}; and F is a set of transfer functions to change the signaling net-
work from one state to another. In Boolean networks, transfer functions are denoted by using logical 
expressions via Boolean operators48,50. However, it is difficult to represent the transfer functions using an 
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established mathematic expression if each signaling protein has three possible states (1, − 1, or 0)17. In 
our study, the transfer functions F were represented by a set of integer linear constraints. The details of 
these constraints involved in the transfer functions F were described in Supplementary Text S5.

Let’s use X0 =  {x1, 0, x2,0, …, xj,0, …, xn,0} (xj,0 ∈  {− 1, 0, 1}) to denote a measured state of signaling net-
work without any intervention or treatment. When cells are treated by an inhibitor, we assume protein j 
is targeted by this inhibitor, and then the state of above signaling network after treatment is changed as 
X0 =  {x1,0, x2,0, …, − 1, …, xn,0}. We used X0 as the initial state to predict the performance of the inhibition 
or perturbation. We then used formula (4) to calculate the next state (X1) of X0 and repeat this process 
until the signaling network reached to steady state50. We eventually generated a set of states {X1, X2, …, 
XA}. XA is regarded as the final effects of drug treatment in cell-specific pathway network.

Cell culture and analysis.  Cell culture.  Human myeloma cell line RPMI-8226 was obtained from 
the American Type Culture Collection (Rockville, MD, USA). The cells were routinely maintained in 
RPMI 1640 medium (DMEM) containing 10% heat-inactive bovine calf serum, 2 mM L-glutamine, 
100 IU/ml penicillin and 100 μg/ml streptomycin (all from Invitrogen, Gaithersburg, MD, USA) at 37 °C 
with 5% CO2 in air.

Isolation of peripheral blood mononuclear cells (PBMCs).  PBMCs were isolated from buffy coat (Gulf 
Coast Blood Center, Houston, TX) using Ficoll-Paque density gradient centrifugation. Briefly, whole blood 
was mixed with an equal amount of 1 X PBS (Bio-Rad, Hercules, CA), and layered over Ficoll-Paque. 
The PBMC layer was removed, washed, and centrifuged twice with Hank’s Balanced Salt Solution (HBSS) 
(Sigma-Aldrich, St. Louis, MO). Totally 20 buffy coat samples were used in this study.

Generation of human osteocalst-like multinucleated cells (OCs).  OCs were generated in vitro according 
to the previously described procedures51–53. PBMCs were seeded in 24 well Osteo Assay surface plates 
(Corning, Tewksbury, MA) for 3 h in alpha-MEM medium (Life Technologies, Gaithersburg, MD) sup-
plemented with 10% fetal bovine serum. Non-adherent cells were discarded by rinsing with 1 X PBS 
and the remaining adherent cells were cultured in a complete alpha-MEM medium containing 10% FBS, 
50 ng/ml M-CSF and 30 ng/ml recombinant RANKL at 37 °C in a humidified atmosphere of 21%O2 and 
5% CO2 for 2–3 weeks. The generation of OCs was determined by staining the cells with tartrate-resistant 
acid phosphatase (TRAP). The TRAP was performed using a commercial acid phosphatase leucocyte kit 
(Sigma, St Louis, MO). Images were taken using an Olympus IX83 microscope.

Coculture of myeloma cells and osteoclasts.  For co-culture experiments, primary OCs cultured in a 
24-well plate were washed twice with 1 X PBS to remove non-adherent cells. RMPI-8266 cells suspended 
in osteoclast culture medium were added to the OC culture plate (2 ×  105 cells/per well) and incubated in 
normoxic (21% O2) and hypoxic (5% O2) conditions. For the hypoxic culture, medium was pre-incubated 
in a hypoxic incubator for 2 h before use. We used a tri-gas incubator (Thermo Scientific Heracell™  150i 
CO2 incubator) and nitrogen gas was employed for the regulation of O2 concentration. RMPI-8266 cells 
were rinsed using PBS and collected by centrifugation for 10 min at 300 g at expected time points.

dsDNA quantitation.  Double strand DNA (dsDNA) was used for estimation of cell numbers and quan-
tified using Quant-iT PicGreen assay kit (Invitrogen). Briefly, at day 3 following treatment, cells were 
collected by centrifugation. After washing with 1 X PBS for three times, 500 μ l of 0.05% Triton-X in PBS 
was added to lyse cells. Cell lysates were stored at − 80 °C until further analysis. Each thawed sample was 
sonicated for 5 s using an ultrasonic cell disrupter (Fisher Scientific, pittsburgh, PA). Fifty μ l of the cell 
lysates were mixed with an equal volume of PicoGreen working solution and incubated in the dark for 
5 min. The plate was then read on a SpectraMax M2 fluorescence microplate reader (Molecular Devices 
Inc., Sunnyvale, CA) at excitation and emission wavelengths of 485 and 535 nm, respectively. The dsDNA 
contents were calculated according to a standard curve generated using a set of double stranded DNA 
standard.

Reverse Phase Protein Array (RPPA).  RPRA was performed by RPPA Core Facility of MD Anderson 
Cancer Center (Houston, TX) as described previously19. We had two replicates for each samples and 
there was no significant difference observed between two replicates. RPMI-8266 cells were harvested 
at 5 h, 24 h and 48 h after treatments. Cells were lysed with a RIPA buffer (150 mM NaCl, 1% NP-40, 
1% sodium deoxycolate in 50 mM Tris-HCl, pH 7.5). The cell lysates were centrifuged at 14,000 rpm 
for 10 min at 4 °C, supernatants collected and protein concentration determined by Bradford method 
(Biorad, Hercules, CA). The cell lysates were then mixed with SDS sample buffer (250 mmol/l Tris, pH 
7.4, 2% w/v SDS, 25% v/v glycerol and 10% v/v 2-mercaptoethanol) and boiled for 5 min. The samples 
were then sent to RPPA core facility in MD Anderson Cancer Center for analysis. RPPA assay includes 
172 antibodies which recognized proteins associated with cell surface growth factors and receptors, com-
mon signaling pathway molecules, steroid hormone receptors, and proliferation and apoptosis. The anti-
bodies used for RPPA analysis are listed on the MD Anderson website (http://www.mdanderson.org/).

http://www.mdanderson.org/
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Western blot.  The cell lysates collected above were mixed with an equal volume of SDS sample buffer, 
heated to 95 °C for 5 minutes, and chilled at 4 °C for 10 minutes. 30 μ g proteins were loaded on an 4–15% 
SDS-polyacrylamide gel (Bio-Rad), run for around 90 minutes at 100 v, and then transferred to a nitro-
cellulose membrane (GE Healthcare) in a transfer buffer containing 25 mmol/l Tris, pH 8.8, 192 mmol/l 
glycine, and 10% v/v methanol (60 min at 100 v). All washing, blocking and antibody solutions were 
prepared in TBST (the details of antibodies see Supplementary Table S4). Membranes were blocked in 
5% BSA (bovine serum albumin) for 1 h, followed by overnight incubation with primary antibodies. 
Membranes were then washed three times, followed by secondary antibody incubation for 1 h in 5% BSA. 
After washing 3 times with TBST, the blots were probed using an enhanced chemiluminescence system 
(Cell signaling) and imaged on a ChemQ imager. Densitometrical analysis was performed following 
acquisition using Image J software (NIH).
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