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Abstract: Inertial measurement unit (IMU)-based joint angle estimation is an increasingly mature
technique that has a broad range of applications in clinics, biomechanics and robotics. However, the
deviations of different IMUs’ reference frames, referring to IMUs’ individual orientations estimating
errors, is still a challenge for improving the angle estimation accuracy due to conceptual confusion,
relatively simple metrics and the lack of systematical investigation. In this paper, we clarify the
determination of reference frame unification, experimentally study the time-varying characteristics
of reference frames’ deviations and accordingly propose a novel method with a comprehensive
metric to unify reference frames. To be specific, we firstly define the reference frame unification
(RFU) and distinguish it with drift correction that has always been confused with the term RFU.
Secondly, we design a mechanical gimbal-based experiment to study the deviations, where sensor-to-
body alignment and rotation-caused differences of orientations are excluded. Thirdly, based on the
findings of the experiment, we propose a novel method to utilize the consistency of the joint axis
under the hinge-joint constraint, gravity acceleration and local magnetic field to comprehensively
unify reference frames, which meets the nonlinear time-varying characteristics of the deviations. The
results on ten human subjects reveal the feasibility of our proposed method and the improvement
from previous methods. This work contributes to a relatively new perspective of considering and
improving the accuracy of IMU-based joint angle estimation.

Keywords: inertial measurement unit; joint angle estimation; reference frames; dirft correction

1. Introduction

Estimating angles of human limb joints plays a fundamental role in obtaining human
kinestate and assessing human ability, which is involved in various fields ranging from
rehabilitation to robotics, from industry to household. Clinicians observe the joint rotation
conditions of lower-limb joints to diagnose the ongoing progression of gait-related diseases,
such as muscle dystrophy, joint injuries and stroke, etc. [1–5], based on which further
treatment like surgical intervention, recovery or rehabilitative therapy [6,7] will be applied.
As for robotics, joint angle estimation contributes to the robots’ awareness of human
kinestate and thus results in a smart and accurate assistive and/or rehabilitative action
during physical human-robot interaction scenarios [8,9]. Moreover, the angle estimation-
involved techniques enable the assessment of human ability. For example, studies predicted
risk-related information based on the precepted joint angle information, like [10] for fall
prevention, ref. [11] for working safety assessment. Other studies utilized joint angles
to assess motor-related information, like [12] for metabolic cost estimation, ref. [13] for
mobility assessment for sports. Given that joint angle estimation functions importantly in
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multiple fields, some problems remain to be solved for the mobile, wearable sensor-enabled
joint angle estimation for a take-home or easy-to-integrate usage.

Traditionally, optical motion capture (OMC) is accepted as the “gold standard” for
obtaining human joint angles. When leveraging OMC, reflective markers are firstly placed
on analytical landmarks on human segments following the principles proposed in [14,15].
The trajectories of reflective markers that represent human motions can be captured by
infrared cameras. After lower-pass filtering, the coordinate frames of segments are recon-
structed through “pose estimation” process through a global optimization method [16,17].
The relative orientation among the body-fixed coordinate frames of adjacent segments is
then fed to the inverse kinematics model in order to calculate joint angles of interest [18].
Although with the capability of providing accurate measurements of joint angles, OMC
suffers from its obvious limitations, such as costly facilities, requirement of controlled
laboratory settings, trained staff, the inability of real-time application and limited capture
volume. These flaws may impede OMC’s broad usage out of laboratories, especially under
the current trend of take-home healthcare. Inertial measurement units (IMUs) provide an
alternative way due to IMUs’ small volume, easy-to-integrate characteristics.

A nine-axis IMU consists of a three-axis accelerometer, gyroscope and magnetometer,
which measures linear accelerations, angular rates and local magnetic fields respectively.
Using IMUs to estimate joint angles mainly follow a standard procedure. To be specific,
firstly the raw IMU measurements are used to estimate the relative orientation of sen-
sors with the reference of the Earth frame. The so-called “absolute orientations” of IMUs
mounted on two adjacent limb segments are estimated following the methods proposed
in inertial motion tracking-related literatures [19–22]. More precisely, the orientations of
sensor-fixed coordinate frames with respect to a reference frame, i.e., the Earth coordinate
frame, are estimated. Via the Earth frame, the relative orientation between two sensor-fixed
frames can be estimated. Then, the sensor-to-segment alignment is performed by mapping
the sensor-fixed coordinate frames with their respective segment-fixed coordinate frames.
In this step, either calibration strategies including preset calibration postures [23–25] and
calibration devices [26] or calibration-free methods [27] are employed to obtain the analyti-
cal axes like the biological joint rotational axis or the sensor-to-joint center axis and thus to
build the alignment. Finally, a cascade multiplication of the rotation matrices estimated
by the abovementioned two steps can be applied to get the relative orientation between
the segment-fixed coordinate frames of two adjacent segments. Then we can estimate joint
angles by decomposing the rotation matrix into rotations around each biological axis.

Among the steps of this standard procedure, an operation that aims to unify the
estimated absolute orientations of different IMUs is reported with significant improvement
of estimating accuracy [13,23,28–30], regardless of the degree of freedoms (DoFs) and
methods. That is, the unifying operation compensates for the errors caused by the deviation
of IMUs’ estimated reference frames. An ideal estimation of the absolute orientation can
provide the relative orientation of an IMU’s sensor-fixed coordinate frame with respect
to the Earth coordinate frame. However, due to the individual data characteristics of
each IMU (e.g., local magnetic distortion, movement-caused corruption of acceleration
and measurement noise), the estimated orientation of each sensor-fixed frame is actually
depicted in different reference frames, rather than the Earth frame [31]. The unification-
based operation, denoted by the reference frame unification, is to unify the different
reference frames so that the sensor-fixed frames of the IMUs mounted on adjacent segments
can be depicted in the same reference frame. Although there were studies of compensating
for deviations of reference frames, to the best of our knowledge, the RFU problem was never
systematically clarified and studied. Many issues, like the characteristics of the deviation,
the suitable selection of different metrics that can be used to measure the deviations and
the suitable RFU method that meets the characteristics of the deviation, still remain to be
answered. Moreover, the performance of previously proposed methods is also limited
by two aspects. Firstly, the metrics used to measure the deviation of IMUs’ reference
frames are relatively too simple to provide an accurate and robust enough measurement.
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Pioneer studies like [23,28] utilized the consistency of the angular rates of one calibration
motion to measure and compensate for the deviation. Following studies like [29,30]
leveraged the joint axis of the hinge-joint constraint [27] to online detect the deviations
and calculate the compensation. Some other studies [13] employed the consistency of
the gravity acceleration. Secondly, the characteristics of the reference frames’ deviations
should be systematically investigated so as to propose a suitable RFU method. The pioneer
study [28] unified reference frames in a static manner. The following study [23] proposed
a linear interpolated method that improve the RFU efficiency. Latter studies started to
employ a point-wise compensation for RFU [13,29,30]. Although presenting increasing
improvement, the compensation methods for RFU are proposed empirically without the
instruction of reference frame deviation characteristics.

In this study, we systematically define the RFU problem and carefully distinguish it
from the drift correction problem. Then, we analyze the deviations of reference frames
caused by the different characteristics of IMUs, in the manner of excluding the confounding
factors. Based on the analysis, we propose comprehensive metrics and further utilize it
to form a novel RFU method that meets the characteristics of deviations. Both specially
devised three-dimensional gimbal and human movement experiments are employed to
separately estimate the performance. Performance comparison with previously used
methods demonstrates the feasibility and improvement of our proposed method.

2. Related Work

Before presenting our method, it is important to firstly clarify some issues like what is
the RFU problem, what is expected to know about the deviation of reference frames and
how we get inspirations from literatures.

As stated above, reference frame unification is to let the sensor-fixed frames of IMUs
depicted in the same reference frame, with the aim of decreasing the errors caused by
deviations of reference frames and thus improving the accuracy of angle estimation. It
should be noted that although most literatures confuse the “drift correction” [29,30,32,33]
and the “reference frame unification”, RFU is significantly different from drift correction
(DC). In our paper, we will systematically define the RFU problem, distinguish it with the
DC problem and mathematically formulate them.

Previously used methods of calculating the rotational compensation of RFU are based
on different hypotheses of reference frame deviations’ characteristics. Pioneer works
like [23,28] assumed the time-varying characteristics of the deviations can be approxi-
mated statically or linearly. Following works utilized the consistency of the joint axes
estimated by the hinge-joint constraint to calculate point-wise rotational compensation [29].
Although the performance is limited by the leveraged single metrics, the point-wise com-
pensation theoretically provides a better approximation to the time-varying deviations.
Other studies assumed the deviations can be statically compensated through fusing the
corrections calculated by different metrics [31]. In our study, we experimentally study
the time-varying characteristics of the deviations, and utilize the conclusions to propose a
novel point-wise and time-varying compensation for RFU.

The metrics used to measure the deviations also relate to the calculation of the ro-
tational compensation. Studies [23,28] calculated the rotational compensation based on
the consistency of angular rates of IMUs mounted on thigh and shank during the hip
abduction/adduction movement. The angular rate-based metric may be sensitive to the
movement of other lower-limb joints. For example, if the knee rotated during the hip
abduction/adduction movement, the consistency of the angular rates would be broken
and would significantly degrade the RFU performance. Moreover, the implementation of
calibration motions might impede the angle estimation technique’s broader usage. Ref. [29]
proposed to measure the deviations by the joint axis of the hinge-joint constraint. Follow-
ing the hinge-joint constraint, lower-limb joints were simplified as a 1-DoF joint, and the
coordinates of the joint axis in sensor-fixed frames can be estimated. Through calculating
the rotational deviation of the joint axis’ coordinates in different reference frames, the devi-



Sensors 2021, 21, 1813 4 of 17

ations of reference frames can be measured and then compensated. The joint axis-based
metric might be limited by the hinge-joint constraint that simplifies the biological joints
as 1-DoF joints [27]. Although the study [29] has proposed to screen the hinge-rotating
case and interpolate the rotational compensation during non-hinge-rotating cases, as ar-
gued above, the linear interpolation still remains limitations. Fasel et al. [13] proposed to
measure the deviations using the consistency of the gravity acceleration. That is, the ac-
celerations measured by IMUs should process the same coordinates in the same reference
frame. This metric, although promising, is limited by the corruption of movement-caused
accelerations. In contrast to the single metric, Seel et al. [31] fused the rotational com-
pensation calculated by the consistency of the local magnetic field and the gravity. This
more comprehensive metric provided a better solution to decreasing the flaws of each
single metrics, but was still impeded by the static fusion coefficient that needs manually
tuning and the not-comprehensive-enough metrics. Inspired by the existing metrics and
the lessons of their flaws, we propose a novel metric that comprehensively utilizes all the
above-mentioned metrics, and thus contributes to a more accurate RFU.

3. Method and Materials

In this section, we firstly mathematically formulate the problem and secondly de-
scribe the experimental procedure and how the experiments are designed according to the
paradigms of other works. Then, the experimental investigation is given in order to analyze
the characteristics of reference frames’ deviations and to instruct the design of our RFU
method. Finally, our RFU method is proposed by following the investigated characteristics
and principles of reference frames’ deviations.

3.1. Problem Statement

The RFU and DC problems can be mathematically formulated as follows. The mea-
surements of the ith IMU can be described as ω̃i = ωi + δωi , ãi = amove

i + g + δai ,
m̃i = mi + δmi , where g denotes gravity, δ denote noise and corruptions that differ across
IMUs, ω̃i, ãi, m̃i denote measurements and ωi, ai, mi denote real values of angular rate,
movement-caused acceleration and local magnetic field. The absolute orientations es-
timated by the corrupted measurements are denoted by the rotation matrices Rg1

s1 , Rg2
s2 ,

which depict sensor-fixed coordinate frames’ orientations with respect to different reference
frames. It should be noted that in the following, we treat the quaternion q and the rotation
matrix R as equal and without stating the substitution between the two again. The RFU
issue can be formulated as

qcorr = argmin(qg2
s2 ⊗ qcorr(ω̃i, ãi, m̃i)− qg1

s1 ) (1)

where qcorr denotes the rotational compensation of RFU. The DC issue can be formulated as:

qdri f t = argmin((qgi
si ⊗ qdri f t(ω̃i, ãi, m̃i))⊗ rsi − rgi ) (2)

where qdri f t denotes the rotational compensation of DC, rsi and rgi denote reference vectors
in the sensor-fixed frame and the Earth frame, respectively. RFU can be significantly
distinguished from DC from two aspects. On one hand, the result of RFU and DC refers to
different coordinate frames. As shown in Figures 1 and 2, RFU is to make the vectors in
sensor-fixed frames depicted in the same reference frame, regardless of what the reference
frame is. DC is to correct the drift of absolute orientation estimation mainly caused by
magnetic distortion, expecting to make the reference frame the same as the Earth frame.
On the other hand, RFU and DC differ by the calculation of the rotational compensation.
Due to the magnetic measurements’ dominant influence of determining the azimuth angle
of orientation, the operation of DC is to mainly calculate the rotational compensation of the
horizontal plane. In contrast, RFU is just to rotate one reference frame to correspond to
another one, without consideration of the rotational axis.
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Figure 1. The schematic figure of reference frame unification, where Rgi
si denotes the rotaion matrix

from the sensor-fixed frame [si] to the reference frame [gi].

Figure 2. The schematic figure of drfit correction, where Rg
s denotes the rotaion matrix from the

sensor-fixed frame [s] to the Earth frame [g].

3.2. Experimental Procedure

In order to study the characteristics of different reference frames’ deviations, other
factors during angle estimation, like sensor-to-body alignment, relative rotation between
two segments, need to be decreased as much as possible. A gimbal with flat surfaces and
known rotational axes was designed to mimic the biological lower-limb joints, mainly
following the paradigm of the design in [23]. As shown in Figure 3, the Hall sensors
attached to each axis by couplings were used to measure angles of each rotational axis,
the signals of which were sampled at 500 Hz. Four IMUs (74Hz, Delsys Trigno, IM type &
Avanti type) were attached to each segment of the gimbal. Only IMU2 and IMU3, which
were attached to the segments beside a 1-DoF joint (the joint axis j2), were used in this
study. Z axis of IMU2 and X axis of IMU3 were placed in the direction of the main axis
j2. The null position of the axis j2 is to let the X-Z plane of IMU2 and Y-Z plane of IMU3
stay in the same plane, which is ensured by the devised mechanical structure of the gimbal.
Due to the flat mounting surface, IMUs can be mounted with known orientation relative to
segment-fixed frames by the means of manually aligning the sides of IMUs and gimbal
following the manners of [23,34]. In this way, errors of the sensor-to-segment alignment
can be maximally excluded from the calculation. The influence of relative rotation between
two segments, i.e., the mounting surfaces besides the joint axis j2 , will be excluded by
calculation stated in latter sections.
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(a) Laterial view (b) Vertical view

Figure 3. Laterial and vertical views of the 3-DoF gimbal.

In order to evaluate the superiority of our proposed RFU method, level walking
experiments on human subjects were performed. Ten healthy subjects without previous
neuropathological history (7 males and 3 females, age range: 20–30 years, height range:
155–184 cm, weight range: 50–90 kg) were recruited and asked to perform five trials of
3-min level walking. Rest periods were allowed between trials to avoid fatigue. The ex-
periment protocol was approved by the local ethical committee and all participants had
been informed of the content and their right to withdraw from the study at any time,
without giving an explanation.

Before and after the five trials, calibration postures proposed in [25] were asked to
be performed by each subject in order to calculate the 3-dimensional joint angles of each
joint. Besides, the hip abduction/adduction movement, following the paradigm of [23,28],
was also performed in order to calculate the static and linearly interpolated RFU based
on the angular-rate metrics. As shown in Figure 4, multiple IMUs were attached to the
trunk, right thigh, right shank and right foot. The redundant IMUs were attached to
study the influence of IMUs’ placement, which will feature in our future study. In this
work, we randomly select one IMU per segment without loss of generality. Given that we
employ magnetometer measurements in IMUs’ orientation estimating, ferromagnetic metal
plates were placed in the proximity of IMUs in order to induce local magnetic distortion,
which followed the paradigm of [30]. Sixteen retro-reflective markers were attached to
subjects’ pelvis and lower limbs following the principles of [14,15], whose 3-D locations
were recorded (100 Hz) using an 8-camera video system (Vicon, Oxford, UK). The joint
angles were calculated by the pose estimation and inverse kinematics model embedded
in the software Visual 3D. The signals from nine-axis IMUs and the video system were
synchronized by the trigger and time stamps.

3.3. Analysis on the Characteristics of Different Reference Frames’ Deviations
3.3.1. Data Preprocessing

In order to evaluate the deviations’ characteristics of different IMUs, primary factors
like different angular rates and IMUs’ individual characteristics should be included, while
confounding factors like sensor-to-body alignment, rotation-caused IMUs’ orientation
difference should be excluded. To be specific, confounding factors can be excluded by
the careful alignment of IMUs and the gimbal’s mounting surface and some calculations.
As shown in Figure 5, on the null position, the Z axis of the sensor-fixed frame of IMU2,
the Y axis of the sensor-fixed frame of IMU3 and the axis j2 are in the same direction,
and the X-Z plane of IMU2 corresponds to the Y-Z plane of IMU3. The determination
of the sensor-fixed frames of IMU2 and IMU3 is adopted from the user guide of Delsys.
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Under this circumstance, the rotation matrix between the sensor-fixed frames of IMU2 and
IMU3 can be given as

T IMU3
IMU2 =

0 1 0
0 0 1
1 0 0

 (3)

where T IMU3
IMU2 denotes the rotation that transform the orientation of the sensor-fixed frame

of IMU2 to that of IMU3. If the axis j2 is manually rotated away from the null position,
as shown in Figure 5, the consequent rotation can be depicted by the matrix

R =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (4)

where R denotes the rotation matrix, θ denotes the rotational angle around the axis j2,
measured by the Hall sensor. In so doing, the orientation of the sensor-fixed frame of
IMU2 can be transformed into that of IMU3 by the cascade multiplication of T IMU3

IMU2 and R.
Thus, confounding factors are excluded. As for the primary factors, the manually activated
rotation around j2 contributes to different angular rates of the two IMUs thus affects the
absolute orientation estimating of both IMUs, while employing two different IMUs also
contributes to the different IMUs’ individual characteristics.

Figure 4. The sensor attachment on subjects. The numbers 1–6 denote the IMUs placed on the lower
back, the thigh, the shank and the foot, repspectively.

Figure 5. The schematic diagram of the rotational relationship around the axis j2 of the gimbal.
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We next implement the absolute orientation estimating methods adopted from [22] in
order to estimate the absolute orientations of IMU2 and IMU3. The estimates are denoted
by rotation matrices, i.e., Rg2

s2 for the absolute orientations of IMU2 and Rg3
s3 for absolute

orientations of IMU3. The estimation accuracy denoted by the root mean square error
(RMSE) during dynamic movement was reported to be 1.63 deg in [22]. Following the
calculations of excluding the confounding factors, the transformed orientation of IMU2 is
calculated as follow.

R̃g2
s2 = R · T IMU3

IMU2 · R
g2
s2 (5)

3.3.2. Analyzing Procedure

An analysis is performed on the orientation deviations of the two IMUs. Firstly, XYZ
Euler angle decomposition is performed to transform the estimated rotation matrices, R̃g2

s2

andRg2
s3 , into Euler angles, which are denoted by αi, βi, γi for X, Y, Z axes, i = 2, 3 for

IMU2 and IMU3 respectively. Secondly, differences of each Euler angles, denoted by ∆α,
∆β, ∆γ, are calculated for further analysis. Thirdly, overall deviations and time-evolving
characteristics are depicted and analyzed by RMSE and statistical analysis. Particularly,
the differences obtained in each trial are divided into three subsets, each lasting 40 s.
Then the RMSEs of each subset are averaged over all the five trials. One-way ANOVA is
employed to assess the results.

3.3.3. Analyzing Results

In the following, we report our primary findings of the deviations and our analyzing
results. Then, we discuss the findings related to the deviations, expecting to indicate the
design of our method.

As shown in Figure 6, the differences of the estimated absolute orientations of IMU2
and IMU3 are depicted by the differences of XYZ-decomposed Euler angles. The ranges of
∆α, ∆β, ∆γ are 2.071 deg, 6.836 deg and 7.082 deg, respectively. The relative RMSEs are
presented in Figure 7. As shown in Figure 7a, the RMSEs for the roll angle of the three
subsets averaged over all the trials are presented. There is a significant difference between
the RMSEs of the first two subsets. As shown in Figure 7b, the RMSEs for the pitch angle of
the three subsets averaged over all the trials are presented. There is a significant difference
between the RMSEs of the first two subsets and between those of the last two subsets.
As shown in Figure 7c, the RMSEs for the yaw angle of the three subsets averaged over all
the trials are presented. There is a significant difference between the last two subsets in
term of RMSE.

Figure 6. Representative plots of deviations depicted by Euler angle differences.
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(a) Averaged RMSE of deviations for the roll angle (b) Averaged RMSE of deviations for the pitch
angle

(c) Averaged RMSE of deviations for the yaw angle

Figure 7. Analysis on RMSEs of Euler angle differences. * denotes the statistical difference.

3.3.4. Findings

Our main findings basically support our statement in the related work session. That
is, (1) the deviations non-linearly evolve over time; (2) the deviations between reference
frames are significantly different from the drifts caused by magnetic distortion; (3) the
deviations significantly differ from IMUs’ estimation drift, especially from heading drift.

Firstly, the significant differences existed among RMSEs of each subset indicate the
time-varying characteristics of the deviations. Thus, the static method proposed in [28]
cannot provide an acceptable compensation for the deviations, i.e., an accurate unification
of reference frames, which meet the conclusion of [23].

Secondly, the time-dependent varying of deviations is non-linear. As shown in curves
of Figure 6, the deviations do not vary in a linear or pseudo-linear way. Rather, a combined
partially piecewise linear and non-linear manner is presented. This phenomenon suggests
that the deviations can be compensated in a piecewise linear way.

Thirdly, heading drift is obviously not the only origin of the deviations. As stated
in the related work, most of the related literatures confuse the “drift correction” with the
“reference frame unification”. That is, the deviations of reference frames are attributed
to the heading drift caused by the local magnetic distortion. As shown in Figure 7a,b,
the deviations on the pitch and roll angle present a significant amount compared with that
of the deviations on the yaw angle. Other than the heading drift that primarily affects
the accuracy of yaw, the deviations of the two reference frames, even when confounding
factors are excluded, still include estimates’ differences on pitch and roll resulted from
other factors, such as the movement-caused corruptions of accelerations and measurement
noise. Moreover, the RMSEs and range of deviations reported in our analyzing results are
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relatively larger than those reported in previous IMU orientation estimating studies [21,22].
This also gives side proof of the distinction of “estimation drift” and “reference frame
deviation”. The larger results of our study result from the combined usage of estimation
drift and individual characteristics of IMUs’ measurements.

In summary, the findings indicate that the RFU method should not only compensate
for the estimates’ heading drift but also take other factors into consideration. Moreover,
pointwise RFU should be performed to meet the non-linearly time-varying characteristics
of the deviations, if possible, with multiple metrics to give a comprehensive measurement.

3.4. Reference Frame Unification with Comprehensive Metrics

As stated in the problem statement and Figure 8, the RFU issue is to find and calculate
a correction quaternion qcorr that rotates [g2] to [g1], thus both absolute orientations are
depicted in the same reference frame. Indicated by the findings and literatures, in this
section, we propose a novel RFU method that can provide a pointwise compensation with
comprehensive metrics. Our method is distinguished from other RFU methods by (1)
comprehensively using magnetic fields, accelerations and the coordinates of the main axis
as metrics and (2) point-wise compensation of the non-linearly time-varying reference
frames’ deviations.

Figure 8. Schematic figure of correction quaternion for the reference frames’ deviations, where [g1],
[g2] denote reference frames estimated by IMU1’s and IMU2’s measurements.

In order to calculate qcorr, some measurements that are common among reference
frames and sensor-fixed coordinate frames should be employed as an intermediate ref-
erence to solve the RFU issue. Inspired by literatures, the gravity acceleration, the local
magnetic field and the joint axis under the hinge-joint constraint can be leveraged as the
intermediate reference. Without considering the movement-caused accelerations, the ac-
celeration vectors, a1 and a2, should be identical in the common reference frame, which
contributes to the construction of the correction quaternion, given by

qacc = cos(θacc/2) ·


1
0
0
0

+ sin(θacc/2) ·
[

0
Wacc

]

Wacc = (qg1
s1 ⊗ a1)× (qg2

s2 ⊗ a2) (6)

θacc =
qg1

s1 ⊗ a1× qg2
s2 ⊗ a2

‖(qg1
s1 ⊗ a1)× (qg2

s2 ⊗ a2)‖

where Wacc is the rotation axis, θacc is the rotation angle and qacc is the correction quater-
nion calculated from gravity. Similarly, the identical magnetic field vectors m1 and m2
without magnetic distortion could contribute to another correction quaternion, given by
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qmag = cos(θmag /2) ·


1
0
0
0

+ sin(θmag /2) ·
[

0
Wmag

]

Wmag = (qg1
s1 ⊗m1)× (qg2

s2 ⊗m2) (7)

θmag =
qg1

s1 ⊗m1× qg2
s2 ⊗m2

‖(qg1
s1 ⊗m1)× (qg2

s2 ⊗m2)‖

However, due to the corruption of acceleration and magnetometer readings, neither
of the correction quaternions calculated above is accurate enough to represent the rota-
tional relationship between [g1] and [g2]. Herein, a weighted sum of these two correction
quaternions is used to make a fusion.

qcorr = kmag · qmag + kacc · qacc (8)

In [31], Seel et al. proposed to fuse the two correction quaternions by manually
tuning the coefficients. The manually tuned fusion coefficients, as argued in our previous
work [22], cannot well fit the time-varying trends of the corruptions of movement-caused
accelerations and magnetic distortion. Thus, dynamic tuning should be included. Inspired
by the works [29,30] that solely used the joint axes estimated by the hinge-joint constraint,
we employ the same paradigm here to form a more comprehensive metric. To be specific, j1
and j2, denoted as the coordinates of the joint axis of a hinge joint depicted in the two sensor-
fixed coordinate frames, are estimated by the method proposed in [27]. After estimating
the absolute orientations, the deviation of [j1]g1 and [j2]g1 is introduced here to evaluate to
what extent coordinates in [g2] is rotated by qcorr into those in [g1], where [j1]g1 and [j2]g1

are j2D
1 and j2D

2 described in the reference frame [g1],given by

[j1]g1 = qg1
s1 ⊗ j1 (9)

[j2]g1 = qg2
s2 ⊗ qcorr ⊗ j2

where⊗ denotes the multiplication of quaternions. Regarding fi(kmag , kacc) = ‖[j1]g1 −
[j2]g1‖ as the cost function, fusion coeficients, kmag and kacc, can be estimated through the
secant version of L-M method. Hence, the calibration of reference frames synthesizes the
information from local magnetic field, gravity and the main axis of the 3-DOF joint, which
results in a comprehensive metric.

For the sake of real-time calculation, as shown in Figure 9, two sliding windows are
separated by an interval (In) within which the fusion coefficients estimated in the last
sliding window are used to unify reference frames in the interval. At the end of an interval,
the last N measurements could be used to compute the cost function and execute iterations
to update fusion coefficients.

Figure 9. Data windowing scheme.
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3.5. Data Analysis

Data recorded in the experiment on human subjects are analyzed as follow. Firstly, ac-
curacy is depicted by RMSE between IMU-calculated joint angles and the angles measured
by the optical motion capture system, for 3-dimensional angles of hip, knee and ankle.
RMSEs of the five trials are averaged, from which the means and standard deviations
(SD) are derived in order to evaluate the accuracy and precision. In addition, one-way
ANOVA is applied to the performance of different RFU methods. Secondly, in order to
evaluate the influence of movements on the correction quaternion, the repeatability test is
performed by the dispersion of the five correction quaternions, following the paradigm
of [13]. Particularly, the dispersion χ of the five correction quaternions qS,T is calculated
around their mean qS for all subjects.

χ =

√
1

S ∗ T − 1
·∑

S,T
∆2

S,T (10)

∆S,T = 2 cos(‖qS⊗ qS,T‖real) (11)

where ∆S,T corresponds to the orientation angle difference between qS and qS,T . S denotes
the athletes 1, . . ., 10, T the trials 1, . . ., 5, and the quaternion multiplication.

4. Results

Performance is analyzed following the paradigm in the data analysis section. For the
comparison purpose, we implement four previously used RFU methods, which are the
static [28] and linearly interpolated [23] methods supported by the hip abduction/adduction
before and after measurement, the joint axis-based pointwise RFU method [29] and gravity
acceleration-based method [13]. All the data are processed by MATLAB 2015 B.

As shown in Figure 10, all the estimates track the “standard” curves well with similar
trends. As shown in Figure 11, our proposed RFU method significantly outperforms other
RFU methods (α < 0.05), which are depicted by the means and standard deviations of
RMSEs. The RMSEs of each RFU methods averaged over trials and subjects are shown in
Table 1.

Figure 10. Sample plots of the 3-dimensional joint angle curves estimated by employing all the
five RFU methods, where “static” denotes the static RFU method [28], “linear” denotes the linearly
interpolted RFU method [23], “joint axis” denotes the joint axis-based RFU method [29], “gravity”
denotes the gravity acceleration based method [13] and “ours” denotes the RFU method proposed in
this paper.



Sensors 2021, 21, 1813 13 of 17

Figure 11. RMSEs of each joint and each dimension averaged over trials and subjects, where “static” denotes the static
RFU method [28], “linear” denotes the linearly interpolted RFU method [23], “joint axis” denotes the joint axis-based RFU
method [29], “gravity” denotes the gravity acceleration based method [13] and “ours” denotes the RFU method proposed in
this paper, * denotes the significant difference analyzed by the one-way ANOVA (α < 0.05).

Table 1. RMSEs of each RFU methods.

Static Linear Joint axis Gravity Ours

Ankle

flexion/extension 4.3 ± 0.4 3.8 ± 0.5 3.6 ± 0.8 3.9 ± 0.8 2.7 ± 0.6

abduction/adduction 2.7 ± 0.5 2.3 ± 0.7 2.0 ± 0.4 2.1 ± 0.7 1.4 ± 0.6

intra/extra rotation 2.8 ± 0.4 2.6 ± 0.7 2.4 ± 0.7 2.4 ± 0.8 1.1 ± 0.6

Knee

flexion/extension 4.0 ± 0.5 4.1 ± 0.4 3.5 ± 0.8 3.9 ± 0.8 2.6 ± 0.4

abduction/adduction 2.8 ± 0.5 2.6 ± 0.4 2.2 ± 0.8 2.5 ± 0.8 1.5 ± 0.4

intra/extra rotation 2.7 ± 0.5 2.7 ± 0.4 2.4 ± 0.8 2.8 ± 0.8 1.3 ± 0.4

Hip

flexion/extension 7.2 ± 0.4 7.0 ± 0.6 5.1 ± 0.3 5.5 ± 0.5 2.8 ± 0.3

abduction/adduction 6.3 ± 0.5 6.5 ± 0.6 3.2 ± 0.6 4.1 ± 0.7 2.1 ± 0.5

intra/extra rotation 6.8 ± 0.6 6.6 ± 0.5 2.3 ± 0.5 3.9 ± 0.4 2.0 ± 0.3

As shown in Table 2, the dispersion of correction quaternions of each RFU method
range from 2.37 deg to 4.37 deg. The correction quaternion of linear interpolated RFU
method presents the smallest dispersion, while the correction quaternion of joint axis-based
RFU method presents the largest.

Table 2. Dispersion of the calibration quaternions.

Static Linear Joint axis Gravity Ours

2.56 2.37 3.74 4.37 2.89
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Discussion

This paper sought to firstly formulate the issue of reference frame unification and
distinguish it with drift correction, and secondly to design, implement and evaluate a
novel RFU method with comprehensive metrics based on the experimental analysis of
the reference frames’ deviations. We evaluate our method by estimating human lower-
limb joints from IMUs’ measurements in the specially designed heterogeneous magnetic
field and compare the performance with conventional RFU methods. The RMSEs of 3-
dimensional angle estimation that uses our RFU method are all under 3 deg, which is
significantly better than the accuracy of using other methods. The standard deviations
and dispersions of our method present similar repeatability with other methods, which
as discussed in [23] suggests its promising application on clinical usage. These findings
indicate that our proposed RFU method fits better to the time-varying characteristics of
reference frames’ deviations, thus measures and compensates for the deviations with
state-of-the-art accuracy.

The accuracy of other RFU methods reported in our work is generally larger than
that reported in literatures. The RMSEs on knee angles of the static, linearly interpolated
and joint axis-based methods are all relatively higher than those reported in their original
papers. This might result from two aspects. On one hand, as stated above, our experiments
are conducted in the heterogeneous magnetic field, which as indicated in the study [30]
significantly increase the estimation errors. On the other hand, studies of some literatures
are performed using mechanical gimbals, as discussed in [23,34], the performance on
the gimbal is different from that on human subjects, especially considering the fact that
biological joints are neither ideal hinge nor screw joint. The RMSEs are also larger than those
reported in [25] from which we employed the functional calibration postures. Although it
is reported that the sensor-to-body alignment is magnetic distortion-free, the sensor-to-
reference frame orientation is sensitive to the magnetic distortion and other factors like
movement-caused accelerations’ corruption. In addition, the accuracy of the gravity
acceleration-based method reported in our work is similar to that reported in its original
work [13]. This is because our experiment is conducted for level walking, while the
study [13] is conducted for skiing, which presents a larger range of motion and movement-
caused accelerations.

The accuracy of our proposed RFU method is significantly better than that of others.
The reason could be twofold. Firstly, as indicated by our analysis of the reference frames’
deviations, the RFU method is supposed to be able to compensate for the non-linearly time-
varying deviations. That is, the RFU method would better be pointwise. Compared with
the static and linearly interpolated methods, our proposed method provides a pointwise
compensation and the fusion coefficient is time-varied in each interval. Secondly, the met-
rics used to measure the deviations are more comprehensive than the metrics used in other
methods. Compared with the joint axis-based and gravity acceleration-based methods
that are also pointwise, our method’s better performance demonstrates the efficiency of
utilizing the more comprehensive metrics so that effects of the corruptions of each single
metric can be decreased.

The repeatability and precision depicted by the dispersions and standard deviations
present similarity with the data reported in literatures. The dispersions of the gravity
acceleration-based method are slightly lower than that of its original study. It is because,
as stated in [13], the original study performed on skiing results in a greater dispersion
than normal lower-limb motions, like level walking. As for the dispersion of the joint
axis-based RFU method, it is surprising that its dispersion is larger than those of static and
linear methods, although it meets the larger precision reported in [29]. As discussed in [29],
the hinge-joint constraint cannot always be satisfied, especially for the hip that is reported
with greater similarity to the screw joint. The relatively larger dispersion and precision of
our proposed method might result from the involvement of the gravity acceleration and
joint axis.
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The current study has several limitations. Firstly, performance is just evaluated on
functional calibration-based sensor-to-body alignment and the accuracy is thus limited by
the employed aligning method. There is an alternative way of aligning sensors to body
segments without employing calibrations [27]. Further tests will be performed to evaluate
the performance on such aligning methods. Secondly, the performance is also limited by
the absolute orientation estimating performances of the Algorithm 1 we employed [22].
The reported performance only reflects the RFU method-caused accuracy improvement
on this algorithm. Thirdly, performance is just evaluated on level walking. More motion
patterns should be included for future work.

Algorithm 1 RFU method with comprehensive metrics.

Require: ω1, ω2, a1, a2, m1, m2, j1, j2, qg1
s1 , qg2

s2

Ensure: kmag, kacc, qcorr

1: initialize kmag, kacc

2: while sliding windows do

3: calculating the magnetometer measurement-based correction quaternion qmag using

Equation (7)

4: calculating the accelerometer measurement-based correction quaternion qacc using

Equation (6)

5: fusing qmag and qacc using Equation (8)

6: calculating the main axis’ projections in the reference frame [g1] using Equation (9)

7: forming the cost function as fi(kmag, kacc) = ‖[j1]g1 − [j2]g1‖, and solving it using

L-M method.

8: end while

5. Conclusions

In this study, we clarify and formulate the issue of reference frame unification and
propose a novel RFU method with a more comprehensive metric based on the analysis of
the time-varying characteristics of reference frames’ deviations. The analysis indicates the
non-linear time-varying characteristics of deviations and the RFU’s difference with drift
correction, which further instructes the design of our method. The proposed method, which
unifies the reference frames with a more comprehensive metric in a pointwise manner, is
validated by the results. Specifically, the RMSEs of our method (2.7 deg, 1.4 deg, 1.1 deg for
ankle, 2.6 deg, 1.5 deg, 1.3 deg for knee and 2.8 deg, 2.1 deg, 2.0 deg for hip) are significantly
smaller than those of previously used RFU methods. These performances indicate that
our method, even in the heterogeneous magnetic field, can achieve acceptable accuracy.
The repeatability depicted by dispersion also demonstrates our method can be used across
multiple usages with robust performances. This work would assist in further improving
the accuracy of IMU-based joint angle estimation.
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