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Background. With the development of social economy, type 2 diabetes mellitus (T2DM) is becoming a severe health problem
globally. Methods. To systematically understand the lipid metabolism in T2DM, we applied untargeted lipidomics to the serum
of T2DM patients and control group using ultrahigh-performance liquid chromatography (UHPLC) coupled with high-
resolution mass spectrometry (MS). Results. Over two thousand molecular features were detected by our approach, of which
222 lipid species in positive ion mode and 145 species in negative were reliably identified based on precise molecular weights
and MS/MS patterns. Multivariate analysis was adopted to differentiate T2DM patients and the control group using principal
component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). The dysregulated lipid
species were found and their significance in pathophysiology was discussed. Correlation analysis of selected lipids and
important clinical variables was performed and addressed. Conclusions. This study unveils several new lipids and pathways
considerably involved in T2DM and provides novel insights into understanding the pathogenesis underlying T2DM.

1. Introduction

With the development of social economy, type 2 diabetes
mellitus (T2DM) is increasingly prevalent in the 21st cen-
tury. The global prevalence of diabetes is estimated to be
9.3% (463 million people) in 2019 and likely to rise to
10.2% (578 million people) by 2030 [1]. Globally, T2DM is
the leading cause of morbidity and mortality [2, 3]. The past
30 years have witnessed the sharply increased prevalence of
diabetes in China [4]. In addition, studies indicated that
metabolic syndrome (MetS) was also increased dramatically,
and the proportion of adult people suffering metabolic syn-
drome was as high as 25 percent all over the world [5].
The global public health concern is not only the single factor
about obesity, ageing, diet, and physical health but also

humans. Metabolic changes affect body’s internal balance
and lead to severe complications in patients with T2DM.
Thus, the identification of reliable metabolic changes of this
severe disease helps reduce the disability rate of T2DM.

Metabolomics is an emerging technology that enables
the global assessment of metabolites and their biological
significance in diseases. There have been several recent
metabolomic studies on T2DM [6–8], focus on the patho-
genesis of this disease, the biomarkers associated and predic-
tion of insulin resistance (IR), etc. Lipidomics, an important
branch of metabolomics, aims to detect, quantify, and pin-
point all lipid species in a biological system [9, 10]. Cera-
mides were reported to be associated with a higher risk of
diabetes and insulin resistant [11]. Free fatty acids (FFA)
could lead to insulin resistance by inhibiting the activity of
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PI3K. Phosphatidylethanolamine and acylcarnitines were
also involved in high blood glucose and T2DM. With the
advances of mass spectrometers and the software for qualita-
tive and quantitative analysis, liquid chromatography-mass
spectrometry- (LC-MS-) based lipidomics is increasingly
applied to clinical and fundamental researches [12–14]. Sev-
eral studies recently investigated lipid predictors and lipid
pathways in humans with T2DM using the lipidomics
approach [15, 16]. For instance, Lu et al. investigated lipi-
dome changes in lipid coregulation antecedent to the
T2DM using QTRAP 6500 PLUS with MRM scan mode
[15, 16]. Lappas and co-workers identified lipids and lipid
profiles that were predictive of the development of type 2 dia-
betes in women with a gestational diabetes mellitus (GDM)
pregnancy also using 4000 Q/TRAP MRM scan mode [17].
However, the detection technology they adopted is targeted
lipidomics or shotgun lipidomics rather than untargeted lipi-
domics. It is difficult to identify new lipid markers due to the
technology’s low resolution and low mass accuracy.

In this study, an untargeted lipidomics approach using
ultrahigh-performance liquid chromatography coupled with
an advanced high-resolution mass spectrometer Q-Exactive
(UHPLC-Q-E-MS) was developed to profile lipid alterations
in T2DM patients. Lipids could be reliably chemically attrib-
uted by their accurate m/z values and MS/MS spectra. The
T2DM group and healthy controls were clearly distinguished
by multivariate data analysis such as orthogonal partial least

squares discrimination analysis discrimination analysis
(OPLS-DA). Lipids were identified with accurate m/z values
and their MS/MS spectrum patterns. This strategy may be
helpful for the understanding and elucidation of the molec-
ular mechanism of T2DM.

2. Experimental

2.1. Study Subjects and Inclusion Criteria. A total of 40
T2DM patients, diagnosed by World Health Organization
criteria between April 2014 and December 2014, were
recruited from the outpatient or hospitalized with diabetes
in Peking University People’s Hospital (Beijing, China).
The inclusion criteria were age between 18 and 80 years
old, body mass index between 20 and 35 kg/m2, and not
having diet programs. The participants with severe active
infectious diseases, any musculoskeletal diseases, malignant
tumors, chronic inflammatory diseases, severe kidney failure
(eGFR ≤ 25ml/min × 1:73mm2), severe heart failure
(LVEF ≤ 30%), special diet, or recent weight changes were
excluded. Patients with severe organ failure or severe
chronic wasting disease that affects lipid metabolism were
excluded, because they were in an environment of severe
or extreme metabolic disorders. 47 healthy controls were
age, gender, body mass index (BMI), and homocysteine
(HCY) matched with the T2DM patients (Table 1). Blood

Table 1: a Clinical information of subjects.

Clinical characteristics HC (n = 47) DM (n = 40) p value

Age (years) 62:60 ± 10:82 64:10 ± 9:42 0.49

Female/male 12/35 12/28 0.82

BMI (kg/m) 25:34 ± 3:22 26:04 ± 2:97 0.29

HCY (μmol/L) 15:28 ± 1:03 14:98 ± 1:09 0.84

Hs-CRP (mg/L) 1.43 (0.66 - 3.90) 1.85 (0.65-5.51) 0.64

HbA1c (%) 5:6 ± 0:38 7:5 ± 1:43 ≤0.001

Fasting glucose (mmol/L) 4:98 ± 0:94 6:97 ± 2:19 ≤0.001

ALT (U/L) 29 ± 24 24 ± 12 0.22

AST (U/L) 21 (16 - 28) 21 (16 - 26) 0.69

LDH (U/L) 195 ± 90:3 190 ± 85:0 0.80

CK (U/L) 64.5 (52.5 - 92.8) 73.0 (53.5 - 107.0) 0.44

UN (mmol/L) 5:31 ± 1:37 5:70 ± 1:66 0.23

Cr (μmol/L) 78 ± 11 77 ± 21 0.64

UA (μmol/L) 344 ± 92:8 347 ± 78:3 0.87

eGFR (mL/min/1.73m2) 85:12 ± 11:10 86:52 ± 15:50 0.64

HDL-C (mmol/L) 1:08 ± 0:30 0:94 ± 0:22 0.01

LDL-C (mmol/L) 2:19 ± 0:79 2:08 ± 0:78 0.23

TG (mmol/L) 1:53 ± 0:94 1:58 ± 0:69 0.79

TC (mmol/L) 4:03 ± 1:02 3:60 ± 1:08 0.06
aContinuous data are presented as mean ± SD or median (interquartile range). HC: healthy controls; DM: diabetes mellitus; BMI: body mass index; HCY:
homocysteine; hs-CRP: high sensitivity C-reactive protein; HbA1c: hemoglobin A1c; ALT: alanine aminotransferase; AST: aspartate aminotransferase;
LDH: lactate dehydrogenase; CK: creatine kinase; UN: urea nitrogen; Cr: creatinine; UA: uric acid; eGFR: glomerular filtration rate; HDL-C: high-density
lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; TG: triglyceride; TC: total cholesterol.
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samples were collected in procoagulation tube, and serum
was recovered by centrifugation.

This study was approved by the Ethics Committee of the
Peking University People’s Hospital, and informed consents
were obtained from all participants. All methods were per-
formed in accordance with the relevant guidelines and
regulations.

2.2. Sample Processing. Lipids in serum were extracted by a
modified Folch method [18, 19]. Specifically, 267μL CHCl3
and 133μL methanol were added into 100μL samples. After
sufficient vortexing and adequate centrifugation, the lower
phase was recovered and evaporated by lyophilization. The
resultant powder was resuspended in CHCl3/methanol for
LC-MS/MS lipidomic analysis.

2.3. LC-MS Analysis. UHPLC-Q-Exactive MS (Thermo Sci-
entific) using a reversed-phase C18 column (Xselect CSH)
was employed for lipid analysis. The analytical column used
was in line with other publication [20]. Detailed LC instru-
ment conditions are listed in the supporting material in Sup-
plementary Methods and Table S1.

For MS analysis, the source voltage was 3.3 kV for + ion
mode and 2.8 kV for − ion mode. Quality control samples
(QCs) were prepared by pooling real samples together and
injected every ten runs during the whole sequence.

2.4. Data Treatment and Analysis. The raw data were first
processed using MSDIAL for peak integration, retention
time alignment, and chemical identification [21]. Statistical
significance was calculated using the t-test, and the thresh-
old of p value was 0.05. The retention time and intensities
of the molecular features detected were uploaded into Meta-

boAnalyst [22] for multivariate analysis such as principal
component analysis (PCA), heat map, and OPLS-DA.

3. Results

3.1. Clinical Characteristic of Subjects. A total of 40 T2DM
patients and 47 healthy controls were enrolled in this
open-label study. The clinical information of the subjects
recruited is listed in Table 1. T2DM patients and healthy
controls (HCs) were matched in terms of age, sex, body mass
index (BMI), and homocysteine (HCY). HCY is primarily
disposed via two methionine-conserving pathways and is
an indicator of dietary habits [23]. HCY was matched
between the two groups, reflecting the balanced diet of
omnivorous Chinese people. As compared to healthy con-
trols, T2DM patients had significantly higher fasting glucose,
HbA1c, and lower high-density apolipoprotein (HDL).

3.2. Serum Lipidomic Profiles. Samples were analyzed with
UHPLC-MS in a data-dependent scan mode, and a number
of lipid classes and subclasses was detected, including free
fatty acids (FFA), phosphatidylcholine (PC), lysophosphati-
dylcholine (LPC), phosphatidylethanolamine (PE), lysopho-
sphatidylethanolamine (LPE), phosphatidylserine (PS),
phosphatidylinositol (PI), sphingomyelin (SM), monoglyc-
eride (MG), and triacylglycerol (TG). Typical base peak ion
chromatograms of the healthy controls (Figure 1(a)) and
T2DM group (Figure 1(b)) in positive ion mode are shown.
The analytical performance of the LC-MS-based lipidomics
method was evaluated using pooled QC samples. All samples
were run in a single sequence and QC samples were inserted
every 10 sample injections. The QC samples were gathered
together in PCA score plot, as shown in Figure 2(a). The
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Figure 1: Full scan base peak mass chromatograms in positive mode: (a) healthy controls and (b) T2DM group.
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Figure 2: (a) PCA score plot of positive ion mode. (b) Clustering heat map by Pearson correlation of the samples. The rows and columns
represent metabolites and sample hierarchical clustering, respectively. For group name, red reflects DM and green represents healthy
controls. For the lipid expression, red indicates upregulation and blue reflects downregulation.
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retention time variation was within 0.2minute (see Figure S1
in supporting material). These data reflected stability and
reliability of our serum lipidomics instrument method.

3.3. Multivariate Analysis. Raw data were processed on MS-
DIAL software for peak integration, retention time align-
ment, and chemical identification. The m/z values, retention
times, and peak abundances were extracted and then
exploited for multivariate analysis. The PCA score plot con-
taining the T2DM, HC, and QC groups in positive ion mode
is shown in Figure 2(a). Figure 2(b) illustrates the heat map
via Pearson correlation, and the rows and columns represent
metabolites and sample hierarchical clustering, respectively.
Generally, samples were clustered in consistent with health
status, which reflected a profound disturbance of lipid
metabolism in these two statuses. To further differentiate
the T2DM and HC groups and find potential biomarkers,
we performed OPLS-DA, which is a supervised statistical
algorithm, to classify and differentiate the T2DM and HC
groups. In the OPLA-DA score plot (Figure 3(a)), a sound
clustering tendency was observed between T2DM and HC
groups. The over-fitting was validated by permutation test-
ing, as shown in Figure 3(b). The predicted residual sum of
squares Q2 (cum) was 0.861, and the fraction of the sum
of squares R2Y was 0.979. The p value < 0.01 is at 100 per-
mutations. These results indicated good predictive perfor-

mance and there was no over-fitting in the model. Thus,
substantial metabolic differences existed in the T2DM
patient compared to healthy people.

3.4. Significantly Changed Lipids. The detected lipids were
chemically attributed using MS-DIAL software by matching
the measured MS and MS2 spectra with the lipidmap data-
base. In total, 222 lipids in positive ion mode and 145 lipids
in negative were identified, which belonged to 15 lipid clas-
ses. Among them, the most significantly dysregulated lipids
are listed in Table 2 with both p value < 0.05 and fold change
> 2 or < 0.5. Cholesteryl esters, PC, LPC, PE, plasmenyl-PC,
SM, and TG were downregulated in T2DM patients with p
value < 0.05. For other lipid classes, some species were
upregulated and others were downregulated in T2DM
patients. The trend and fold change of each lipid was illus-
trated in Figure 4, in which each lipid class was assigned to
a unique color.

To pinpoint the pathways that are dysregulated in
T2DM patients compared to HC, the identified and signifi-
cantly changed lipids detected in both positive and negative
ion mode were input for KEGG-based pathway analysis. As
illustrated in Figure 5(b), the pathways including the metab-
olism of glycerophospholipid and arachidonic acid were per-
turbed in T2DM patients compared with healthy controls.
The relevance among important clinical variables and
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Figure 3: (a) OPLS-DA score plots based on metabolomics data. (b) Validation for over-fitting by permutation test. The predicted residual
sum of squares Q2 (cum) was 0.861, and the fraction of the sum of squares R2Y was 0.979. The p value < 0.01 is at 100 permutations. These
results indicated good predictive performance and there was no over-fitting in the model.

5Disease Markers



selected lipid species was revealed by correlation analysis in
Figure 5(a). As expected, HbA1c was highly correlated with
fasting glucose, and CER was negatively correlated with

eGFR. Interestingly, ceramide 34 : 1 was also strongly nega-
tive relevant to fasting glucose and HbA1c, with correlation
coefficient 0.47 and 0.52, respectively.

Table 2: Significantly changed lipids.

Metabolites m/z RT (min) p value Fold change Change trend

LPC 24 : 0 608.4461 10.5 3.77E-06 0.456 ↓

Ceramide 34 : 1 538.5197 14.6 3.68E-06 2.30 ↑

PE 36 : 3 740.5366 14.4 2.16E-03 0.417 ↓

PE 36 : 4 738.5082 8.8 5.45E-05 3.09 ↑

PS 38 : 4 810.5299 13.9 3.08E-04 0.444 ↓

FFA 16 : 0 255.2328 6.1 4.54 E-08 3.28 ↑

LPC: lysophosphatidylcholine; PE: phosphatidylethanolamine; PS: phosphatidylserine; FFA: free fatty acid.
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4. Discussion

Lipidomic profiling is a useful and powerful method in a
variety of diseases, and it has been progressively employed
in finding potential biomarkers, discovering therapeutic tar-
gets, and revealing traditional Chinese medicine mechanism
[9, 10, 24]. T2DM, as a common metabolic disorder, is
mainly characterized by hyperglycemia and insulin resis-
tance (IR). In our study, the observed changes in lipid
metabolism in serum are summarized in Table 2 and
Figure 4. Moreover, our results uncovered the possible asso-
ciation between the traditional risk factors and key lipid spe-
cies, as shown in Figure 5. We also try to find out and
ascertain the dysregulation of lipid metabolism in serum of
diabetic patients and to further clarify the potential biologi-
cal mechanisms underlying the risk of diabetes.

Genetic studies demonstrated that human subjects in
insulin resistant showed abnormal accumulation of cer-
amide [25]. Other clinical studies on American Indians
indicated that higher concentrations of Cer-18, Cer-20, and
Cer-22 were associated with a higher risk of diabetes [11].
Similarly, in our study, one of the most significant differ-
ences in serum lipidome between healthy controls and
T2DM patients was also ceramide. Ceramide is a central
molecule and a major second messenger in the sphingomye-
lin signaling pathway. It was reported that ceramide-rich
low-density lipoprotein (LDL) had been shown to cause
increased proinflammatory status of macrophages and insu-
lin resistance in skeletal muscle aggregation [26]. It is
believed that interleukin 6 (IL-6) played a part in the meta-
bolic link among ceramides, inflammation, and IR [27].
Although the mechanistic basis of observed elevated serum
ceramide levels in T2DM has not been fully established, cer-
amide is considered to be a proinflammatory lipid. A study
showed that obese mice with hypoxia induce insulin resis-
tance through the HIF-2α-NEU3-ceramide pathway [28].
In the current study, the concentration of Cer 34 : 1 was
higher in T2DM and positively correlated to fasting glucose
and HbA1c, reflecting the development of type 2 diabetes.
We also found that there is a positive correlation between
FFA 16 : 0 and ceramide 34 : 1, indicating that the saturated
fatty acids and ceramide have potential biological activity
against insulin resistance in diabetic patients.

Recently, several reviews considered the association
between T2DM risk and lipid classes [29–31]. Free fatty
acids (FFA) are the basic nutrients of the human body and
play an essential role in human health. They could induce
endoplasmic reticulum (ER) stress in pancreatic beta cells,
which promotes inflammation, secretory dysfunction, and
apoptosis [32, 33]. Shetty and Kumari summarized that
FFA could lead to insulin resistance by inhibiting the activity
of PI3K [34]. A consistent finding was reported that fatty
acids associated with de novo lipogenesis (DNL), especially
16-carbon fatty acids, were significantly related to the inci-
dence of T2DM [35]. Polyunsaturated fatty acids (PUFA),
such as arachidonic acid (FFA 20 : 4), are composed of more
than two double bonds. Arachidonic acid is one of the most
important components of cell membrane, and it could
protect RIN-5F (pancreatic β-cell) cells in T2DM from

streptozotocin-induced cytotoxicity [36]. Endogenous ara-
chidonic acid is mainly produced by cell membrane phos-
pholipids catalyzed by enzymes of the phospholipase A2
(PLA2) superfamily [37]. Seyfarth et al. reported that the
increase in average glucose concentration of T2DM adoles-
cents was related to the decrease of lipoprotein-associated
phospholipase A2 (Lp-PLA2) activity [38]. In our study,
we found that arachidonic acid was negatively associated
with T2DM, which was consistent with their work. In this
way, FFA disrupts insulin signaling through toll-like recep-
tor 4 (TLR4) pathway, resulting in insulin resistance (IR)
[39, 40]. Pathway analysis also showed that arachidonic acid
metabolism was dysregulated in T2DM (Figure 5). Palmitic
acid (FFA16 : 0) may trigger the expression of interleukin-1
β and interleukin-6 in human coronary artery endothelial
cells [41, 42]. In our study, we found that FFA 16 : 0 was
upregulated in the T2DM group. Moreover, FFA 16 : 0 was
positively associated with fasting glucose and HbA1c. Fatty
acid with shorter chain and saturated CC bonds may stimu-
late the triggering development of T2DM. Conversely, fatty
acids containing longer chain and unsaturated double bonds
play protective function.

PE is an utmost structural lipid in the membrane, even it
is a minor species in plasma. PE is synthesized via de novo
and salvage pathways [43], and it is converted by ER-
derived phosphatidylserine (PS) via decarboxylase phospha-
tidylserine decarboxylase 1 (Psd1) [44]. Previous studies have
shown that PE was associated with high fasting blood glucose
and T2DM [45, 46]. We reported that PE 36 : 4 was increased
in T2DM compared with the healthy group and tended to be
positively related to fasting glucose and HbA1c, which con-
firmed their studies. However, on the contrary, PE 36 : 3
was decreased in T2DM patients and inversely related to fast-
ing glucose and HbA1c. This may be attributed to the differ-
ent synthesis paths of these PEs. Decreased abundance of
plasmalogen in the T2DM group indicated an increased in
oxidative imbalance possibly caused by systemic inflamma-
tory response. As an endogenous antioxidant medium for
kinetics and membrane structure, plasmalogens could pro-
tect lipoproteins and membranes from oxidation [47, 48].
In our study, we also found that 5 species of plasmenyl-PE
were decrease in T2DM, indicating the reduced antioxidant
capacity in T2DM patients. Interestingly, our study reported
that there was a strong positive correlation between PE 36 : 4
and FFA 16 : 0, although the mechanism underlying was not
fully understood.

Acylcarnitines (ACCs) are the catabolic end products of
fatty acids and several branched-chain amino acids that are
utilized to generate cellular energy [49]. ACCs could be pro-
duced by shifting the activated fatty acids to carnitines at
mitochondrial membrane [50]. A number of studies have
reported an association between the accumulation of acyl-
carnitines and IR [51–53]. The mechanism involved may
be that high level of glucose activates carnitine palmitoyl-
transferase I (CPT1) through oxidative stress. In detail, a
slight increase in the rate of β-oxidation could lead to
incomplete oxidation of fat, impaired conversion to carbo-
hydrate oxidation, partial depletion of tricarboxylic acid
(TCA) cycle intermediates, and accumulation of ACC and
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ultimately IR [54–57]. The upregulated acylcarnitine metab-
olism may play a causal role in insulin resistance. In our
study, we confirmed the upregulated acylcarnitine (16 : 0
and 18 : 0) in the T2DM group, which is in line with previous
researches [58, 59]. We expect that ACCs could be used to
restraint IR and treat T2DM as a potential therapeutic strat-
egy in future.

Frankly speaking, the changes in concentrations of some
of the listed lipids may be due to the different diets and drug
administration between the two groups, which is an ever-
present problem in this field [60], and the exact mechanism
still needs more exploration; however, this work provided to
us a different view, from which the metabolism of glycero-
phospholipid and arachidonic acid was associated to diabe-
tes mellitus. These pathways may be essential players in
the development of diabetes mellitus, and this view may be
helpful in the diagnosis, treatment, and prognosis of diabetes
mellitus in future.

5. Conclusion

In summary, our study provides a better understanding on
recessive progression of diabetes from the perspective of
lipids. Lipidomic analysis demonstrated that dyslipidemia
associated with T2DM was featured by the boosted levels
of FFA (16 : 0), ceramides (34 : 1), and PE (36 : 4) and the
reduced levels of lysoPC (24 : 0), PE (36 : 3), and PS (38 : 4).
Their significance in pathophysiology was addressed accord-
ingly. Beyond the traditional clinical risk factors, these lipids
provided improved assessment of T2DM. Since the particu-
lar lipidomics pathway is disrupted, specific lipids could be
used as markers for the assessment of severity, course, and
prognosis of diabetes, making it possible to implement per-
sonalized prophylactic and therapeutic strategies. Neverthe-
less, in order to better realize its value in individualized
treatment, it is warranted to understand the role of these
biomarkers in lipid metabolism more deeply. In addition,
our study proves that LC-MS-based lipidomics is a powerful
approach for the discovery of clinical biomarkers in various
diseases.
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