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Introduction

The ability to perform precision genome engineering has a 
broad range of research and medical applications, for exam-
ple in food production, energy solutions, drug discoveries 
and medicine.1,2 Site-directed genome editing tools include 
zinc finger nucleases and TAL effector nucleases, which are 
based on the principles of DNA-protein recognition.3 Both 
zinc finger nucleases and TAL effector nucleases are chi-
meric proteins fusing a DNA-recognizing domain and the 
FokI nuclease catalytic domain. After heterodimerization of 
FokI, DNA double strand breaks at a targeted genomic locus 
will be generated. However, challenges in its design, syn-
thesis, and validation have prevented widespread adoption 
of these engineered nucleases for routine use.4,5 Clustered 
interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) system has emerged as rela-
tively simple and efficient genome editing method and is 
revolutionizing genomic engineering by equipping scientists 
with the ability to precisely modify the DNA of essentially any 
organism.2,6

CRISPR/Cas9 technology originates from Type 2 CRISPR/
Cas systems, which provide bacteria with adaptive immunity 
to viruses and plasmids. The Cas9 is a nuclease that uses a 
guide sequence within an RNA duplex, tracrRNA:crRNA, to 
form base pairs with DNA target sequences, enabling Cas9 

to introduce a site-specific double-strand breaks.2 Double 
strand breaks in a targeted genomic locus can be repaired 
via nonhomologous end joining, or homologous recombina-
tion (HR). In HR, oligonucleotides are commonly used as 
donors.7

Genome engineering with adeno-associated virus (AAV) 
vectors has been demonstrated in multiple human cell types, 
with targeting frequencies ranging from 10−5 to 10−2 per 
infected cell.8–11 These targeting frequencies are 1–4 logs 
higher than those obtained by conventional transfection or 
electroporation approaches. Through the use of AAV a wide 
variety of different types of mutations can be introduced 
into chromosomal loci with high fidelity and without geno-
toxicity. We hypothesized that if we introduce double strand 
breaks with CRISPR/Cas9 and then use AAV-based donor 
DNA-mediated homologous recombination, we could create 
a novel CRISPR/Cas9-AAV genetic tool for highly specific 
gene editing. Here we sought to study the use of CRISPR/
Cas9-AAV in the manipulation of human genome.

Human embryonic stem cells (hESCs) can undergo unlim-
ited self-renewal and retain pluripotency to differentiate into 
all cell types in the body, including photoreceptors.12,13 Degen-
eration of photoreceptors in the retina is a common cause of 
blindness. Age related macular degeneration, in which cone 
photoreceptors in the central retina degenerate, is the lead-
ing cause of blindness in the elderly, while many inherited 
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Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering 
technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks 
at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA 
repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in 
human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in 
multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-
mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined 
to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using 
CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor 
(NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies 
can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.
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diseases of the retina result in rod photoreceptor degenera-
tion.14,15 There are currently no effective treatments available 
to prevent the loss of photoreceptors in most of these disor-
ders. It has been reported that photoreceptor transplantation 
can restore vision after retinal degeneration in animal mod-
els, but cell replacement strategies will require a source of 
new retinal cells.13,16 NRL is one of the key transcription fac-
tors that determine rod photoreceptor cell fate.17Theoretically, 
if we edit the NRL gene and knock-in a fluorescent reporter 
gene (i.e., DsRed), it will be useful for the direct differenti-
ation of hESCs to a retinal cell fate. In another word, NRL 
DsRed knock-in cells could be facilitated to track the direct 
differentiation process. Specially, when NRL gene turn on, 
DsRed gene will be expressed under the endogenous NRL 
promoter. Therefore, here we sought to use CRISPR/Cas9-
AAV to manipulate NRL locus in hESCs.

Results
Optimization of hESC transfection conditions
Before we performed CRISPR/Cas9-mediated DNA cleavage 
with plasmids, we sought to optimize hESC transfection condi-
tions. Because enzymatic specificity and activity are often highly 
depending on reaction conditions, for example, high enzyme 
concentrations may increase off-target activity.18 In order to 
easily measure transfection efficiency, the plasmid pSin-eGFP 
was selected. The EF1a promoter in pSin-eGFP leads to robust 
promoter activity in hESCs.19 Transfection efficiency and cor-
responding survival rate of cells were observed using a fluo-
rescence microscope (Supplementary Figure S1). Notably, 
higher plasmid amounts reduced cell survival (Supplementary 

Figure S1 B-a,C-a, D-a,B-b,C-b, and D-b). With 1.25 μg plas-
mid DNA and a cell density of 5.0 × 105 cells/well in 12-well 
plates, we were able to achieve reliable and robust transfec-
tion with relative low levels of cell death. The heatmap (Supple-
mentary Figure S1a) shows the relationship between relative 
pSin-eGFP transfection efficiency and cell survival rate.

CRISPR/Cas9-AAV mediated homologous targeting in 
hESCs
As illustrated in Figure 1b, we designed and assembled an 
NRL knock-in vector, which includes two homologous arms 
specific to the human NRL gene, a reporter gene positioned 
with the endogenous ATG site and one antibiotic expression 
cassette (PGK-NEO). Before infection, hESCs (H9) were 
treated with dispase to obtain a cell, suspension, thus each 
colony grown from single cell represents a single individual 
colony. To improve single-cell survival, 10 µmol/l Rho-asso-
ciated kinase (ROCK) inhibitor Y-27632 was added 2 hours 
before treatment and post-treatment for 24 hours.20 On day 0, 
1.0 × 106 H9 cells/well were seeded in six-well plates. To mini-
mize off-target effects, a double nickase of SpCas9 (pX335) 
strategy was adopted and the corresponding double strand 
breaks were introduced.21 Specifically, sgRNA1 and sgRNA2 
were designed to target the human NRL locus (Figure 1a). 
AAV vectors have been shown to mediate gene targeting at 
high frequencies.8,22,23 Therefore, AAV2 vector, containing 
NRL homologous arms (5′ and 3′) and DsRed-PGK-NEO, 
was assembled (Figure 1b). We codelivered CRISPR/Cas9 
with sgRNAs 1 and 2 (Supplementary Table S2), which 
would trigger specific genome cleavage in human ESCs at 

Figure 1   Schematic representation of CRISPR/Cas9-AAV at human NRL locus. (a) Schematic of the human NRL locus. sgRNAs and 
PAMs are labeled with gray line and red line, respectively. (b) Schematic representation of the vector for gene targeting. Blank boxes represent 
the coding sequence of NRL gene. Blue boxes represent the left and right homologous arms. Red box represents DsRed gene, the white box 
represents the coding region of the neo gene (NEO) and PGK promoter. (c) Targeted allele with homologous recombination. One of primers 
F1/R1 and F2/R2 locates outside of the homologous arms, respectively. PCR products will be obtained (824 and 823 base pairs with F1/R1 
and F2/R2, respectively) with templates of genomic DNA from cells with homologous recombination. AAV, adeno-associated virus; CRISPR, 
Clustered interspaced short palindromic repeats; Cas9, CRISPR associated protein 9; PCR, polymerase chain reaction.
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NRL locus, and infected the corresponding hESCs with rAAV. 
Thus, Exon 2 in one of NRL alleles would contain a knock-
in DsRed-PGK-NEO through homology-directed repair 
(Figure 1c). After 16 hours it, fresh medium and rAAV was 
added again. On day 4, G418 was added. At day 14, G418 
resistant (G418r) colonies were picked (Figure 2a). 

To identify positive colonies, we designed primers (F1/R1 
and F2/R2) and screened them with gene specific PCR (Fig-
ure 1c). Because one primer (F1 or R2) anneals to sequences 
located outside of the homologous arms, all the positive colo-
nies screened with PCR should be homologous recombinant 
Ds-Red knock-in. The amplification products (5′ and 3′) were 
824bp, 823bp, respectively (Figure 3a). Colony 2 was identi-
fied as positive by PCR screening. As 5′ PCR products have 
an EcoR I site, we digested the corresponding PCR frag-
ments with EcoR I, which theoretically leads to differential pat-
terns of bands (546 bp and 274 bp) on agarose gels. As we 
expected, the NRL-knock-in candidate had two fragments with 
the desired size, compared with the wild-type with fragment of 
824 bp (Figure 3b, Colony 2). Not surprisingly, random inte-
gration of the gene targeting vector was also observed (Colony 
1). Taken together, these results showed that NRL knock-in 
hESCs can be obtained using the CRISPR/Cas9-AAV system.

Characteristics of CRISPR/Cas9-AAV edited hESCs
Next, we examined the morphology and proliferation charac-
teristics of the knock-in colony. No notable change has been 
observed between the parental and knock-in hESCs (Figure 2b).  
Then we asked whether the knock-in H9 colony could still 
maintain the characteristics of hESCs.24 Reverse transcrip-
tion PCR (RT-PCR) showed that the hESC specific express-
tion genes SOX2 (SRY (sex determining region Y)-box 2), 
OCT4 (Octamer-binding transcription factor-4), and NANOG 
were robustly expressed in parental H9 cells and the knock-in 
colony (Figure 4a). Immunostaining for OCT4 confirmed that 
the knock-in colony had the same OCT4 gene expression 
pattern as parental H9 cells (Figure 4b). Together, our data 
shows that after CRISPR/Cas9-AAV mediated gene editing, 

the knock-in hESCs has the same gene expression pattern of 
the specific stem cell markers both at the mRNA and protein 
level, Also, no clear differences were observed with the pas-
sage of these cells (Figure 4a).

Off-target analysis by whole exome sequencing
To address the potential off-target effects of CRISPR/Cas9-
AAV, we performed whole exome sequencing. Genomic DNA 
was isolated from the parental and knock-in hESCs with the 

Figure 2  Generation of H9 NRL knock-in. (a) Schematic of protocol for NRL-KI in H9. (b) Bright-field phase images of the H9 cells (Parental 
cells, P) and NRL knock-in cells.
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same passage. The whole exome libraries were constructed 
and then sequenced on an Illumina Solexa HiSeq 2000 
sequencer. Whole exon sequencing analysis identified 41 
genes with high confidence mutations, including six indels 
and 35 SNVs (Supplementary Table S1). To confirm these 
mutations, condidate deleterious mutation from 9 genes 
(MAP3K1, RDH12, TRAK1, ATXN1, FAM47A, TNFRSF10C, 
OR4Q3, ZCCHC2, and RS1) (Supplementary Table S3) 
were selected for confirmation. Primers (Supplementary 
Table S2) flanking the potential off-target sites were used 
to amplify the fragments harboring the potential mutations. 
The results of DNA sequencing showed that the 6 indel 
mutations identified by exome sequencing in knock-in cells 
were artifacts (Supplementary Figure S2 and Supplemen-
tary Table S3). While, one (ZCCHC2, exon13, c.2711C>A, 
p. A904E) of three SNV mutations (OR4Q3, ZCCHC2, and 
RS1) was present (Supplementary Figure S3; Supplemen-
tary Figure S4a and Supplementary Table S3). To deter-
mine whether the ZCCHC2 mutation is linked to sgRNA1 
and sgRNA2, we searched for corresponding potential 
homologous sequences in a 500 bp window around the 
mutation, this revealed that there was no homology in this 
region. Multiple-sequence alignment in ZCCHC2 from dif-
ferent species revealed that these mutations were located 
within a highly conserved region (Supplementary Figure 
S4b). While, we can’t exclude ZCCHC2 (p. A904E) is spon-
taneous mutation. These results demonstrated that CRISPR/

Cas9-AAV-mediated gene editing has very few off-targets 
effects.

Discussion

Human pluripotent stem cells, including hESCs and human 
induced pluripotent stem cells, hold great promise for cell 
therapy.25 However, efficient differentiation of these cells into 
some specific subtypes remains challenging.12,26 Generation 
of a specific reporter cell line is highly desirable for the direc-
tion of differentiation. However, manipulation of the human 
pluripotent stem cell genome has been technically challeng-
ing.27 The efficiency of existing gene targeting approaches 
to create reporter cell lines is very low.27,28 Gene targeting 
with AAV vectors has been demonstrated in hESCs with 
maximal targeting frequencies without engineered nucle-
ases. However, so far, methods to edit silent loci are not 
efficient (all published studies are on active loci). Recently, 
several groups have demonstrated the use of CRISPR/Cas9 
to modify the human pluripotent stem cell genome allowing 
precise temporal control of gene expression and elucida-
tion of gene functions in human pluripotent stem cells.29 For 
example, it has been shown that NEUROG3 is essential for 
human endocrine pancreas development by generation of 
NEUROG3−/− hESC lines.30 To dissect the function of ELA-
BELA, the evolutionarily conserved 54-amino acid hormone 

Figure 4  Characterization of NRL knock-in colony. (a) Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed the 
expression of SOX 2, OCT4, and NANOG in knock-in colony with different passages (5 and 10). (b) OCT4 immunostaining analysis of H9 and 
NRL knock-in colony at passage 10. P, parental cells.
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required for heart development in hESCs, CRISPR/Cas9 
was used and showed that ELABELA promotes the growth 
and pluripotency of hESCs.31 And high-fidelity CRISPR/Cas9 
nucleases32,33 have been discovered that would enhance the 
usage.

Photoreceptor derivation from hESCs and human induced 
pluripotent stem cells is possible.34–36 NRL is a photoreceptor 
cell fate determinant,37 and therefore CRISPR/Cas9 medi-
ated knock-in of a fluorescent reporter gene in hESCs at NRL 
locus will be helpful for tracking the process of photorecep-
tor differentiation. Further studies of photoreceptor differen-
tiation will be performed to taking advantage of the present 
reporter cell line.

Several types of DNA have been used as donors for homol-
ogous recombination (HR, or homology directed repair), 
including circular/linearized plasmids, PCR products and sin-
gle-stranded oligonucleotides. The integration of a CRISPR/
Cas9 mediated circular plasmid donor Drosophila DSH3PX1 
has been reported.38 The circular plasmid has been chosen 
as a donor template for CRISPR/Cas9 mediated genome 
editing in human iPSC lines.39 With linearized plasmid as 
the donor vector, homologous recombination was success-
fully achieved in 5% of human ESCs by CRISPR/Cas9 
mediated homology directed repair.39 In this study, 50% tar-
geting efficiency has been obtained with CRISPR/Cas9-AAV 
at NRL locus in human ESCs. In another approach, PCR-
product based homologous recombination was achieved 
with CRISPR/cas9 in Drosophila cells.41 Single-stranded 
oligonucleotides have also been used in HR with CRISPR/
cas9 cleavage of the zebrafish genome.42 Here we pro-
vided the proof of principle that CRISPR/Cas9-AAV, a new 
genome editing tool, offers a platform for the manipulation of 
human genome. Additional advantages of this tool includes, 
as the linearized single strand DNA genome of AAV, it can’t 
be selected as substrate for CRISPR/Cas9 cleavage. Thus, 
compared with double stands DNA HR template, AAV will 
be waived for CRISPR/Cas9 cleavage and then delivered 
as DNA HR template. Compared with single-stranded oligo-
nucleotides as homology directed repair template, AAV has 
capacity of about 4,300 nt and delivers as virus by different 
serotypes to achieve robust infection with different cell types.

Although the canonical PAM for SpCas9 is NGG, previ-
ous studies (including ours) demonstrated active off-target 
sites with NGA, and NAG PAM sequences have been identi-
fied.43,44 Mismatches as well as base insertions or deletions 
that form bulges between the target DNA strand and guide 
RNA sequences may also be tolerated. To minimize off-target 
effects, the double nickase SpCas9 strategy was adopted in 
the present study and corresponding double strand breaks 
were introduced. Specifically, a pair of offset sgRNAs 
(sgRNA1 and sgRNA2) positioned on the human NRL locus 
were designed. Other strategies has been reported, including 
an sgRNA-guided dCas9 fused to the FokI nuclease where 
two fused dCas9-FokI monomers can simultaneously bind 
target sites; and shorter sgRNAs truncated by two or three 
nucleotides at the distal end relative to the PAM that can be 
used with the double nicking strategy to further reduce off-
target activity. Recently, novel high-fidelity Cas9s have been 
reported, which may increase the fidelity of CRISPR/Cas9 
gene editing.32,33

Whole-genome sequencing of Cas9-edited human plu-
ripotent stem cells can lead to the identification of low fre-
quency yet potentially deleterious off-target events.45 Deep 
sequencing has confirmed a high rate of mutagenesis at tar-
geted loci, with a small subset of off-target sites exhibiting 
indels by genome-scale CRISPR/Cas9 knockout screening 
in human cells.46 In this study, we identified several DNA vari-
ants after NRL gene editing and we do not know the rea-
sons underlying this. Very few papers have been published 
about the off-targets issue of gene targeting with AAV. In this 
study, whether the off-target ZCCHC2 mutation comes from 
AAV mediated gene targeting or caused by CRISPR/Cas9 
mediated DNA cleavage or by spontaneous mutation is not 
known. Additional studies should been undertaken to ana-
lyze the potential genome modifications induced by off-target 
effects.

Materials and methods

Vector construction. The NRL donor vector was assembled 
with a 5′ homologous arm (675 bp), DsRed-PGK-NEO and 
3′ homologous arm (655 bp), as illustrated in Figure 1b. 
pX335-sgRNAs targeted to NRL locus were constructed 
as described online (http://www.genome-engineering.org/
crispr/).43 The oligonucleotide sequences are summarized in 
Supplementary Table S2.

Cell culture. Human H9 cells were cultured on plates coated 
with Matrigel (Matrigel Growth Factor Reduced (GFR) Base-
ment Membrane Matrix, Phenol Red-Free, Corning, Tewks-
bury, MA) with mTeSR medium (Stemcell Technologies, 
Vancouver, BC) supplemented with 5× supplement. Y-27632 
dihydrochloride (Sigma-Aldrich) was added during 1–2 days 
after thawing. After gene editing, 50 μg/ml G418 was added 
to the medium for the selection of resistant colonies.

Cell transfection and infection. The hESCs were digested 
by dispase (Roche, Mannheim, Germany) and seeded in 
12-well plates at a density of 1.0/2.5/5.0 × 105 cells/well 
and 0.5/1.25/2.5 μg plasmid were transfected respectively, 
as described in the manufacturer’s protocol (Roche). The 
relative efficiency of pSin-eGPF transfection was measured 
under a fluorescent microscope.

CRISPR/Cas9-AAV mediated knock-in at the human NRL 
locus was performed. Specifically, 1.0 × 106 H9 cells were 
seeded in one well of a six-well plate and cotransfected with 
2.5 μg CRISPR/Cas9 plasmids (sgRNA 1 and sgRNA 2). 
AAV2 was used as donor vector for homologous recombina-
tion at a multiplicity of infection of 10,000. Post-transfection of 
16 hours, fresh medium was added and the same amount of 
rAAV2 was added twice. At day 14, G418 resistant colonies 
were obtained.

Knock-in screening. Genomic DNA from G418 resistant 
colonies was extracted as previously described.43 Poly-
merase chain reaction (PCR) was used to screen the can-
didate knock-ins, using one primer (F1 or R2) annealing to 
sequences located outside of the homologous arms, and 
thus only homologous recombinant (knock-in) had specific 

http://www.genome-engineering.org/crispr/
http://www.genome-engineering.org/crispr/
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amplification. The amplification products (F1/R1 and F2/
R2) were 824 and 823 bp, respectively. Restriction frag-
ment length polymorphism was used for the confirmation of 
knock-in.

Off-target analysis. Off-target alterations were analyzed by 
whole exome sequencing. Sanger sequencing were used to 
confirm the results of whole exome sequencing. ABI genomic 
DNA from H9 and H9-NRL-knockin cells were used as the 
templates for the amplification. The PCR products were 
directly sequenced using one of the primers (Supplementary 
Table S2).

Reverse transcription-PCR. Total mRNAs from H9, H9-NRL-
KI (p5 and p10, two different passages) cells were extracted 
using TriZol (Invitrogen, Carlsbad, CA). cDNA was reverse 
transcribed by M-MLV Reverse Transcriptase (Promega, 
Madison, WI). Primer sequences for SOX2, OCT4, NANOG 
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
can be found in the Supplementary Table S2.

Immunostaining. Cells were fixed with 4% paraformaldehyde 
and immunolabeled as described previously.47 The primary 
antibody Oct4 (R&D Minneapolis, MN) was used for staining 
for OCT4 gene expression.

Supplementary material

Figure S1. Optimization transfection condition of hESCs us-
ing pSin-eGFP plasmid.
Figure S2. DNA sequencing analysis of indel mutations. 
Figure S3. DNA sequencing analysis of RS1 and OR4Q3 
mutations.
Figure S4. DNA sequencing analysis of ZCCHC2 mutation.
Table S1. Summary of whole exon sequencing with H9 and 
NRL knock-in cells. 
Table S2. Lists of oligo sequences used in this study. 
Table S3. Summary of off-targets analysis.
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