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As whole-genome sequencing (WGS) becomes the gold standard tool for studying popula-
tion genomics and medical applications, data on diverse non-European and admixed indivi-
duals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed
elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2
million are absent from large public databases. WGS enables identification of ~2,000 pre-
viously undescribed mobile element insertions without previous description, nearly 5 Mb of
genomic segments absent from the human genome reference, and over 140 alleles from HLA
genes absent from public resources. We reclassify and curate pathogenicity assertions for
nearly four hundred variants in genes associated with dominantly-inherited Mendelian dis-
orders and calculate the incidence for selected recessive disorders, demonstrating the clinical
usefulness of the present study. Finally, we observe that whole-genome and HLA imputation
could be significantly improved compared to available datasets since rare variation represents
the largest proportion of input from WGS. These results demonstrate that even smaller
sample sizes of underrepresented populations bring relevant data for genomic studies,
especially when exploring analyses allowed only by WGS.

A full list of author affiliations appears at the end of the paper.
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hole-genome sequencing (WGS) of a large number of
W individuals can reveal rare variants in known disease
genes!~4, improve identification of novel genes and
pathways associated with phenotypes® and identify genomic regions
not represented on reference genomes®. Ancestry diversity is critical
to elucidate differences in disease’s genomic architecture and
improve signals detected by previous studies since non-European
and admixed populations harbor-specific variants’—?, which are still
vastly underrepresented in genomic studies'?. The lack of diversity
leads to a significant bias on the primary resource for precision
medicine and consequently less accurate tests on non-European
descent individuals, potentially increasing health disparities!0-12,
Knowledge about allelic frequencies from multiple populations is
also crucial when prioritizing candidate clinical variants. For rare
Mendelian disorders, the frequency of a pathogenic variant in any
given population cannot be higher than the incidence of its associated
disease, considering compatibility with a mode of inheritance and
penetrance!3-1>. Moreover, the penetrance of variants may vary
across backgrounds!'®!”. For variants associated with monogenic
early and adult-onset disorders, unaffected elderly individuals serve as
a proper control group to improve diagnosis accuracy. Since many
diseases manifest later in life, datasets composed by adults can
include carriers that may express some or full clinical phenotypes.
Even studies on late-onset diseases can be powered by a control
group of verified unaffected status when aged older than the average
age at onset. This rationale was previously explored by us using
whole-exome sequencing of elderly Brazilians!8, and by others using
a European-descent whole-genome dataset of Australian elderly!®.
Here we present a high-coverage WGS of a Latin American
census-based cohort composed of 1171 unrelated elderly from
Séo Paulo, Brazil’s largest metropolis. Among the residents, there
are immigrant descendants from different continents, individuals
from various Brazilian states?%-21, and 66 individuals born abroad,
mostly in Europe and Japan. These individuals aged 60 or older
have been comprehensively phenotyped by the longitudinal
Health, Well-Being, and Aging (SABE - Satuide, Bem-estar e
Envelhecimento) study?l. By carrying out WGS on this
population-based cohort, we identified genomic variation absent
from public databases, including single nucleotide substitutions,
insertion/deletion variants (indels), chromosomal haplotypes,
accurate HLA varijant calls, mobile element insertions, and non-
reference sequences (NRS). Additionally, we explored patho-
genicity assertions in disease-related genes of clinical relevance.
We also created reference imputation panels for the whole-
genome and HLA alleles, which improved imputation accuracy.
Lastly, we provide variants and respective allelic frequencies in a
public resource, ABraOM (http://abraom.ib.usp.br).

Results
Cohort description. SABE is a longitudinal study initiated in 2000,
with a follow-up occurring every 5 years (see Supplementary
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Information and Supplementary Fig. 1 for details on study design).
After quality control, 1171 unrelated individuals composed the WGS
dataset, with an average age of 71.86 (+7.94) years and 1.74 female to
male ratio (Supplementary Table 1). Data collection?! involves at-
home interviews with 11-section questionnaires, including cognitive
screening, self-reported race/ethnicity status and standard tests of
over 20 health conditions, habits and phenotypes, medication
inventory, and functional measurements, such as frailty, dexterity,
balance, and mobility summarized in Supplementary Table 2.
High-coverage WGS data (average 38.6 + 6x) was generated
using a previously described protocol* and analyzed (Supple-
mentary Fig. 2, Supplementary Data 1). Nearly 76 million single
nucleotide variants (SNVs) and indels were identified with their
predicted consequences, including over 22 thousand potential loss
of function (pLOF) variants annotated by LOFTEE3 (Supple-
mentary Table 3). After filtering out low confidence variants
(Methods, Supplementary Fig. 3), we obtained a dataset of over
61 million variants, among which ~2 million are not described in
gnomAD, dbSNP, or 1000 Genomes (Supplementary Fig. 4).
The average global ancestries for SABE are 0.726 +0.263
European, 0.178 £ 0.209 African, 0.067 + 0.066 Native American,
and 0.028 +0.162 East Asian (Fig. 1, Methods, Supplementary
Table 4). There is considerable variation in individual ancestries,
ranging from a single ancestry to admixture involving two or
more ancestries (~75% of the cohort). Individuals with East Asian
ancestry have virtually 100% of this parental component,
consistent with the historical information as the first generation
of Japanese immigrants (Fig. 1 and Supplementary Fig. 5). As part
of the interview process, all individuals were asked to self-report
to one of the ethnoracial groups routinely used by the Brazilian
Institute of Geography and Statistics in the national census??
(White, Black, Yellow, Pardo—translated as Mixed, or Indigen-
ous). The average proportions of genetic ancestry significantly
vary among self-reported ethnoracial groups (one way ANOVA
p-value <0.0001; Supplementary Fig. 5A). Yet, 37% of the
variation in European ancestry among individuals is not
explained by self-reported ethnoracial groups (r?=0.63;
p-value < 2.2e-16; fit linear model d.f. 1083). Thus, although
there is a correlation between genetic ancestry and self-reported
ethnoracial groups, they are not able to capture accurate
information about the heterogeneity and proportions of indivi-
duals’ genetic ancestry. In addition, three individuals self-
reported as Indigenous had a high degree of admixture but were
removed from Fig. 1 due to the small sample size of the group.

Clinically relevant findings. Although SABE participants are not
affected by severe monogenic disorders, they might carry
pathogenic variants related to recessively inherited disorders,
mild phenotypes, or incomplete penetrance. Moreover, it is
known that many pathogenic assertions are misclassified!®, and
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Fig. 1 Global ancestry inference of SABE cohort. Individual ancestry bar plots of SABE cohort (N =1168) using supervised admixture analysis (K= 4).
Africans (AFR), Europeans (EUR), East Asians (EAS), and Native Americans (NAM) samples are used as parental populations. SABE cohort individuals are
distributed by self-reported ethnoracial groups (according to the Brazilian Institute of Geography and Statistics categories?2 Asian, White, Mixed, and

Black; see Supplementary Fig. 5). NA not available.
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cohorts with individual genotypes and phenotypes can aid
reclassification.

We analyzed ‘Pathogenic’ or ‘Likely Pathogenic’™ (P/LP)
ClinVar asserted variants carried by SABE individuals across
4250 genes associated with monogenic disorders (Online
Mendelian Inheritance in Man—OMIM disease genes, Supple-
mentary Data 2) and manually curated the variants in genes
associated with dominant inheritance using ACMG guidelines!3
and in-depth literature support, performed by clinical geneticists
(complete workflow on filtering, annotation and counts are
described in Supplementary Information Note 4, Supplementary
Figs. 6-9, Supplementary Tables 5-8 and Supplementary
Data 3-6. In total, out of 394 variants asserted as either P/LP
in genes annotated to have at least one phenotype with dominant
inheritance, curation resulted in the reclassification due to
pathogenicity downgrade (116 or 29% of variants; Supplementary
Table 8, Supplementary Data 4), or compatible categories with
unaffected phenotypes due to inheritance mechanism (53%) or
incomplete penetrance (14%), with only 3% of variants associated
with a matching detectable phenotype (Supplementary Table 8,
Supplementary Data 7).

It has been reported that large datasets contain pathogenic
mutations that can be harbored by unaffected individuals, as
shown by Chen and colleagues after deeply screening genes
associated with monogenic early-onset disorders?3. Healthy
elderly individuals from Australia are reportedly depleted of
disease-causing variants but still carry clinically relevant
mutations!®. It is noteworthy that pathogenicity misclassification
itself can alter estimations of disease prevalence!®. Manual
curation promotes the downgrading of P/LP assertions when
larger sample sizes and diverse ancestries are added to databases,
which may increase the frequency of some variants, allowing
updates of older assertions that are likely to have an inflated
proportion of P/LP assertions!>24, Reclassification of variants is
improved when based on standardized criteria and reports of
reduced penetrance!%1>. Moreover, variants’ penetrance may
differ according to different genetic or environmental
backgrounds!?, observable in well-established monogenic muta-
tions that segregate in families?® that can be modified by rare
variants?® or a polygenic profile?’. This explains why population-
specific genomic architecture reduces GWAS replication?8 and
affects the distribution of polygenic risk scores®2°. Therefore,
pathogenicity assertions must be interpreted based on specific
population datasets. Also, regarding P/LP asserted variants in the
59 ACMG actionable genes list®* (Supplementary Data 6), 14
were found in 1.2% of individuals compared to the 1.1% found in
the Australian elderly cohort!®, demonstrating that clinically
relevant variants are detectable at low but equivalent proportions.

Common pathogenic variants in genes associated with selected
recessively inherited Mendelian disorders were manually curated
using locus-specific databases and ACMG. Common and rare
P/LP variants in CFTR, HBB, GJB2, MEFV, and HFE were
accounted for incidence estimates after calculating, from carrier
frequencies, the expected offspring number of homozygotes and
compound heterozygotes (Supplementary Data 7). We showed
that cystic fibrosis and hemoglobinopathies have similar expected
incidences when compared to gnomAD, respectively, about one
cystic fibrosis affected newborn in ten thousand births and one
hemoglobinopathy affected newborn in three thousand. Estima-
tions were calculated from CFTR pathogenic variant carrier
frequencies of 1.8% in SABE and 2% in gnomAD (Chi-squared
0.26, 1 d.f. =1, p=0.63) and HBB of 3.9% in SABE and 3.4% in
gnomAD (Chi-squared 0.26, 1 d.f. =1, p = 0.35). Other diseases
appear more frequently in Brazilians (G/B2-related deafness, one
in 5.7 thousand in SABE versus one in 19 thousand in gnomAD
and MEFV Familial Mediterranean fever, one in 55 thousand

versus one in 353 thousand in gnomAD). These disparities
observed for GJB2 and MEFV between Brazilians and global
gnomAD, but similar to gnomAD Latinos (one in 66 thousand
for MEFV) and PAGE Study samples of Cubans, Puerto Ricans,
and Central Americans are probably due to the Iberian,
Mediterranean, and Middle Eastern contributions?!-33 in Brazil,
but we cannot exclude that penetrance of such variants may be
lower than previously estimated.

Estimating the incidence of recessive disorders is challenging
due to the ascertainment of unrelated individuals within a given
population-based sample and classification of pathogenicity, since
most pathogenic variants are rare and the distribution of variants
within a population is not known a priori*%. Our results are
limited to known alleles curated by locus-specific databases to
provide a comparison of expected individuals in homozygous and
biallelic states for selected recessive disorders.

Finally, regarding the potential loss of function variants
(pLOFs) within the OMIM disease genes, we identified 3704
non-benign variants (Supplementary Fig. 7), most absent from
ClinVar with frequencies comparable to gnomAD. The few but
very discrepant frequencies are mostly false positives due to
calling or annotation from either dataset (Supplementary
Figs. 8, 9).

Mobile elements insertions (Meis). We investigated structural
variations caused by insertions of mobile elements (MEIs), which
constitute a rich and underexplored source of genetic variation.
MEISs here identified are insertions to the human reference gen-
ome (GRCh38) occurring in at least one out of 1171 SABE
genomes. First, we found a set of 7490 nonredundant MEIs,
including 5971, 1131, 375, and 13 events of Alu, L1, SVA (SINE-
R, VNTR, and Alu composite), and Human Endogenous Retro-
virus K (HERV), respectively (Fig. 2A, variants deposited in
http://abraom.ib.usp.br). As expected, Alu, and L1 insertions
are the prevalent events (94.7%). Next, we classified these MEIs
into (i) Shared (i.e., MEIs present in two or more unrelated SABE
individuals and also in individuals from gnomAD); (ii) SABE-
private events (present in two or more SABE genomes, but absent
in other genomes from Database of Genomic Variation - DGV?3°,
which include gnomAD data); and (iii) Singletons (present in
only one SABE individual and absent from DGV. Shared is the
most frequent class, corresponding to 5571 (74.3%) MEIs
(Fig. 2B). SABE-private MEIs constitute 1501 (20.1%) events
(Fig. 2B) and comprise ~0.97 kbp potentially polymorphic and
still unreported events in other databases. We also found 418
insertions classified as Singletons (5.6%; Fig. 2B), which are either
somatic or germinative MEIs. On average, each individual carries
869 MEIs (Fig. 2C), among which the vast majority (97.0%) are
Alu (758 events, on average) and L1 (85 events, on average),
Fig. 2C. As expected, most MEIs per individual are Shared (774
(89.0%); Fig. 2C). Furthermore, individuals from our cohort carry
10.9% of events classified as SABE-private (Fig. 2C), which pre-
sented a lower allele frequency in comparison to the class of
common events (Fig. 2D; p-value = 1.4e-0.7; Mann-Whitney
test). Even though we expected Shared MEIs to have a higher
allele frequency, 103 (7.3%) of SABE-private events presented an
unexpected high allele frequency (>20%). Further validations are
required to confirm if these MEIs are enriched events in our
cohort (and absent in other populations) or calling artifacts.
Next, we examined the insertion profile of MEIs regarding
their genomic locations. We observed: (i) a positive correlation
between the number of MEIs and the chromosome length
(Supplementary Fig. 10); (ii) that L1 and Alu insertions are
skewed to AT-rich regions, while HERVs are biased to GC-rich
regions (Supplementary Fig. 11); (iii) an enrichment of MEIs into
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Fig. 2 A landscape of mobile element insertions (MEls) into SABE genomes. A Total of MEls in SABE genomes. As expected, Alu and L1 elements are
predominant elements. B Proportion MEls in Shared (present in DGV genomes), in two or more genomes from SABE cohort (SABE-private) and present in
only one SABE genome (Singletons) € Number of MEls per individual. The lower and upper hinges correspond to the 25th and 75th percentiles,

respectively, and the whiskers represent the 1.58 x interquartile range (IQR) extending from the hinges. D Distribution of allele frequencies of Shared and
SABE-private MEls. E Number of MEls into genes and in intergenic regions. F Number of MEls in the coding region (CDS), untranslated regions (UTR), or

intronic and flank (2 kbp near genes).

intergenic regions (Fig. 2F; two-sided p-value <0.00001; chi-
square = 72.608; d.f. =1). Out of the 2836 MEIs within genic
regions, intronic regions have significantly more (2743) MEIs
than untranslated (UTRs: 86) and protein-coding (CDS: 7)
regions (p-value < 0.00001; chi-square = 62.3; d.f. = 1), suggesting
selection against insertions in coding (CDS) or regulatory (UTR)
regions. Even though 26 events fall within exonic regions of
clinically relevant genes (Supplementary Table 9; Supplementary
Data 8), none are described to have phenotypic manifestations in
one copy or with loss of function mechanism (Supplementary
Information).

Non-reference sequences (Nrs). WGS data from diverse human
populations can contribute with genomic insertions that are not
part of the current reference genome, so-called non-reference
segments®37. These mostly uncharacterized sequences contain
gene exons and full genes, and may modulate susceptibility and
prevalence of different diseases. We characterized these ‘missing’
segments by performing de novo assembly of high-quality reads
that do not map to current reference using a pipeline of assem-
blers, aligners and mappers, with parameters set to reduce false
positives (Methods, Supplementary Fig. 12).

The total lengths of NRS per individual ranged between 11.3
and 23.4 Mbps, with an average of 15.4 Mbps (Supplementary
Fig. 13A). The nonredundant non-reference segments library of
the SABE dataset contains 192,183 sequences (67.4Mbps), from
which 428 NRS (0.43Mbps) were observed in all individuals
(Supplementary Fig. 13B). Although most NRS (92.5%, totaling
56.4 Mbps) are shorter than 500 bps, we observed 40 contigs
larger than 10kbps, up to a maximum length of 34.5 Kbps
(Supplementary Fig. 13C).

Comparison with NRS from the Chinese HAN population®’,
African pan-genome®, Genome of the Netherlands®¢, and NCBI
nonredundant database revealed a sizable fraction of 28,264 NR-
contigs (totaling 9 Mbps) is unique to the SABE dataset.
Simultaneously, as much as 15 Mbps of NR-contigs are shared
with the HAN and African Pangenome data (Fig. 3A).

In total, we were able to localize 78,831 contigs (28.2 Mbps) to
the most recent reference assembly GRCh38, from which 12,617
localized contigs (4.9 Mbp) are unique to our dataset (Fig. 3B).
We have mapped three randomly selected samples and
compared results of mapping against GRCh38 and GRCh38
appended with SABE non-reference segments (GRCh38+
SABE_NRS). Expectedly, aligning against extended reference
decreased the number of unmapped reads by 2.6% (range from
2.4 to 2.8%). Further, the primary alignments of the reads against
GRCh38 + SABE_NRS showed an increased proportion of
mapped bases, by 0.3% (0.2-0.3%) and decreased number of
soft-masked (8.4%, 7.0-9.8%), deleted (9.9%, 8.4-11.0%), and
inserted bases (34.4%, 29.1-39.6%), indicating that an extended
reference reduces the number of misalignments. Additional
investigation is required, including calling variants in Brazilian
samples using the GRCh38 reference appended with SABE.

The reported population frequency and genomic location of
these non-reference segments will assist future functional studies
that characterize their contribution to protein isoforms, gene
regulation, and their potential link to human diseases®.

An improved Latin American imputation panel. Previous stu-
dies have shown that using a reference panel composed of indi-
viduals with a similar genetic background to the target sample
improves imputation accuracy, especially for rare variants*?, We
created an imputation panel by merging SABE and the public
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1000 Genomes Project Phase 3 dataset (IKGP3)%l, hereafter
called the SABE 4 1KGP3 reference panel (Supplementary
Table 10). Data from chromosomes 15, 17, 20, and 22 were used
to test the usefulness of the SABE 4+ 1KGP3 reference panel
compared to the 1KGP3 alone. We imputed a dataset of Omni
2.5M Illumina array genotyped on 6487 Brazilians from the
EPIGEN initiative, which is composed of three different cohorts
across the country (Salvador, Bambui, and Pelotas), that vary in
admixture levels and demographic histories*2. When using the
SABE + 1KGP3 reference panel, we imputed the largest number
of variants, ~20% of which were added exclusively by the SABE
dataset (Fig. 4A). There was a gain of ~8% of high-confidence
imputed variants (info score > 0.8) by the SABE + 1KGP3

reference panel compared to 1KGP3 alone (Fig. 4B), driven
mainly by very rare variants (Fig. 4B), which also mainly con-
tributed in improving imputation accuracy measured by r?
increase (Fig. 4C). We also evaluated the improvement of the
SABE + 1KGP3 panel independently in each EPIGEN cohort and
in two other admixed Latin American populations from Peru
(N=391 Mestizos?3) and Guatemala (N =640 individuals,
unpublished dataset) and also observed a general improvement of
imputation (Supplementary Tables 11-16, Supplementary
Figs. 14-36), although reduced for Peruvians and Guatemalans
when compared to the gain observed for Brazilian EPIGEN
cohorts. This improvement was also observed regardless of the
chromosome tested.
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Fig. 5 HLA polymorphism in the SABE cohort. SABE and TKGP3 samples were processed with the same HLA workflow, as described in the Supplementary
Information. A Average gene diversity across SABE and the TKGP3 populations considering haplotypes of all SNVs, i.e., the 2064 SNV from six HLA class |
genes, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G. SABE all samples from SABA dataset, SABE-ADM samples with at least 30% of both European and
African global ancestry, SABE-EUR samples with 100% European global ancestry. B The proportion of previously and newly described SABE HLA SNVs
according to different minor allele frequency classes. € HLA imputation accuracy when using the TKGP3 (blue), SABE (green), and combining both
(orange). Imputation was performed on 146 highly admixed Brazilians previously genotyped on Axiom Human Origins array and HLA genotyping by

sequence-based typing methods.

Diversity of HLA genes. We previously developed hla-mapper#4
to optimize mappings for HLA genes, providing high-confidence
genotype and haplotype calls for this unusually polymorphic
region®®, with complex structure involving duplications. We
applied hla-mapper in the SABE dataset, detecting 2.4x more
variants in the HLA class I genes than with the computational
workflow for genotype calling used in the entire genome. We
identified an abundance of rare variants not previously described
(Fig. 5B) and haplotypes (Supplementary Fig. 37), defining 143
HLA alleles without previous descriptions, mostly rare.

While only 1% of the SABE individuals carry sequences that
code for previously undescribed HLA proteins for at least one
HLA class I locus, 33% have at least one new sequence
comprising introns, exons, and UTRs. Moreover, 2.9% of variants
detected in the HLA class I loci are described here and absent
in dbSNP, concentrated in introns and regulatory sequences.
The list of HLA variants and their frequencies are available in the
ABraOM database (http://abraom.ib.usp.br).

To contextualize our findings, we compared polymorphism for
the full sequence of HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and
HLA-G in the SABE to 26 populations from the 1000 Genomes
Project (1IKG3P), processed through the hla-mapper pipeline. A
highly admixed subset of SABE individuals (with at least 30% of
both European and African global ancestry, n=207, SABE-
ADM, Fig. 5A) presented the third-highest worldwide gene
diversity, and second-highest allele richness and mean number of
observed haplotypes. The subset of individuals with 100%
European global ancestry (n =152, SABE-EUR, Fig. 5A) had
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the lowest diversity among subsets we explored within SABE,
although still higher than that of individual European populations
from 1KGP3. These results highlight not only the contribution of
non-European admixture to HLA polymorphism in Brazilians,
but also the presence of European ancestries (such as Iberic and
Mediterranean) that are likely to be underrepresented in major
databases.

Finally, we used SABE as part of a reference panel to impute
HLA alleles in a sample of 146 highly admixed Brazilians from
another study?®. As for the whole-genome imputation, the
SABE + 1KG3P combined reference panel (Supplementary
Table 17) provided higher accuracy than the 1IKGP3 panel alone
(Fig. 5C), particularly for HLA-B (an increase of 5.87%).

Discussion

Sdo Paulo is the largest city in Latin America, with over 12 million
individuals, and captures the Brazilian population’s main struc-
ture. Since WGS will become the standard genomic tool for
research purposes and the future of precision medicine, providing
a reference for admixed populations is critical. Genomic datasets
such as gnomAD and TOPMed have recently included Latin
American samples, but this is the first study to include more than
1000 high-coverage WGS in any Latin American census-based
cohort. Moreover, Brazil is not represented in these databases,
although it is the only Latin American country colonized by
Portugal and the destination of the largest contingency of indi-
viduals brought by the slave trade from the East, Central, and
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West regions of Africa?’, and homeland of hundreds of Native
American groups. During the 19th and 20th centuries, Sao Paulo
was the destination of other Europeans (Italian, German, Dutch,
Polish, Spanish), Middle Eastern (Syrians and Lebanese), and East
Asian (Japanese) immigrants20,

Even though the SABE sample size is modest compared to
other initiatives, we have identified over 76 million short variants
(SNVs and indels), of which ~2 million are absent from major
public databases (Supplementary Fig. 4). We highlight that those
elderly individuals unaffected by rare genetic disorders are useful
controls and support pathogenicity classification. Regarding
structural variation, we found a large set of ~2000 mobile element
insertions not previously described and nearly 5 Mb of genomic
segments absent from human genome reference (version
GRCh38). Additionally, over 140 HLA alleles were inferred in our
sample but not found in other databases. Whole-genome and
HLA imputation were improved by the dataset when combined
with 1KG3P, pointing that sample size can be, to some extent,
compensated by diversity and representativeness. All results
emphasize how WGS of admixed populations contribute as
resourceful assets for population medical genomic studies, as well
as for improving the human reference genome and the develop-
ment of precision medicine.

Methods

Samples. SABE is a census-based longitudinal study of elderly individuals that
reside in the city of Sao Paulo, Brazil. Details on sampling and study design can be
found in Supplementary Information and Supplementary Fig. 1. All subjects in the
genomic dataset have agreed on participating in this study on written consent
forms approved by CEP/CONEP (Brazilian local and national ethical committee
boards).

Sequencing and quality control. Whole-genome sequencing was performed at
Human Longevity Inc. following protocols previously described®. Library pre-
paration was carried out using the TruSeq Nano DNA HT kit, and whole-genome
sequencing was targeted at 30X and performed in Illumina HiSeqX sequencers
using a 150 base paired-end single index read format. Reads were mapped to
human reference GRCh38 using ISIS analysis software?. The sex of the samples was
checked against proportions of reading pairs concordantly mapped to the X
chromosome and male-specific part of Y chromosomes (MSY) related to those
mapped to autosomes. As expected, females showed around 55,000 CPM X
chromosomal reads and below 200 CPM, while genomic data from males showed
these values being around 27,500 CPM and above 550 CPM, respectively.

Following GATK’s Best Practices for germline short variant discovery (single
nucleotide substitutions and insertion/deletions) and using GATK software (3.7
release)*8, we first generated individual GVCF (HaplotypeCaller) and then
combined the GVCFs of all individuals (CombineGVCFs) to jointly call variants
(GenotypeGVCFs) and perform Variant Quality Score Recalibration (VQSR-AS).
Further, we used an in-house script to split the multiallelic variants into multiple
lines and BCFtools*® to standardize variants by left alignment. Annovar®? and an
in-house script were used to cross-reference the variants with dbSNP, 1000
Genomes Project, and gnomAD. The VEP-plugin LOFTEE? (v0.3-beta [https://
github.com/konradjk/loftee]) was used to identify putative loss of function (pLOF)
variants in at least one transcript irrespectively of confidence labeling.

We have previously developed an in-house two-step algorithm, CEGH-Filter, to
evaluate the quality of called variants and genotypes!®, by directly flagging
genotypes based on the depth of coverage and allele balance using hard cutoffs.
Variants are flagged based on proportions of flagged genotypes, to provide insight
into site-context batch effects (Supplementary Fig. 3). All analyses involving SNVs
and indels resulted from filtering out GATK VQSR-AS non-PASS variants and
lower confidence flags from the in-house CEGH-Filter v1 [https://github.com/
cegh/SABE1171/blob/master/SABE_VCEF_filter.pl] (Supplementary Information).
A summarized table of computational steps, software, versions, packages, and
datasets used throughout this article can be found in Supplementary Data 1.

Initial related analysis using KING®! identified 28 pairs of relatives (sibships
and duos), and only one individual from the pair was selected as proband by the
following order of criteria: having brain MRI, oldest age, and being male. We used
PC-Relate implemented in the GENESIS software>? and the same dataset used for
Admixture (see topic below) to confirm that no first degree relatives remained in
the sample. verifyBAMID?? identified one sample with over 3% of contamination,
leading to its exclusion. A final dataset of 1171 unrelated participants was used in
downstream analyses (Supplementary Fig. 1). Samples reached a minimum mean
depth of coverage of 31.3x up to 64.8x, with an average depth of coverage of 38.65x
and a median of 36.6x (Supplementary Fig. 2).

Ancestry analyses. We used ADMIXTURE v.1.3.0% to perform global ancestry
inference through supervised analysis (K = 4) and 2000 bootstrap replicates, which
uses a maximum likelihood framework, based on multilocus SNP genotypes.
African (AFR, N = 504), European (EUR, N = 503), and East Asian (EAS, N = 400)
non-admixed samples from 1KGP3%°, and Native Americans (NAM, N = 221)
from recently published datasets®®, were used as parental populations (Supple-
mentary Table 4). The Native American samples were genotyped on the Illumina
Omni 2.5 M array; thus the genetic variants of the IKGP3 and SABE samples
(dataset of PASS (GATK) and vSR (CEGH-Filter, Supplementary Fig. 3) variants
with genotypes flagged by CEGH-Filter as FD or FB set as missing) were filtered to
overlap with this array, totaling 1,842,125 SNPs. LD-pruning on this subset of
markers was performed with PLINK v.1.9%7, with an r2 threshold of 0.1 within a
sliding window of 50 Kb and a shift step of 10 Kb, resulting in 372,527 SNPs. We
also used the same LD-pruned dataset to perform PCA analysis with R package
SNPRelate®® (Supplementary Fig. 5B). Our choice of parental populations to
maximize ancestry inference accuracy was based on the tri-hybrid model (AFR,
EUR, and NAM) previously used by other authors*?, which converges with his-
torical evidence. We added EAS due to the high proportion of Asian immigrants
(mainly from Japan) settled in Sio Paulo?’. Before running ADMIXTURE in the
SABE sample, we performed unsupervised runs using only parental populations to
check if they formed distinct clusters and if there were any admixed individuals
between them. In this way, we can use these contemporary individuals as a proxy
for ancestral populations.

Clinical analyses. To evaluate the occurrence and clinical significance of patho-
genic variants in genes associated with Mendelian disorders, a comprehensive
panel containing 4250 OMIM disease genes (Supplementary Data 2) was retrieved
and used for filtering SNVs and indels annotated with ClinVar pathogenic asser-
tions (Pathogenic, Likely Pathogenic and Conflicting containing Pathogenic) and/
or pLOFs identified by LOFTEE?. Classification of modes of inheritance was based
initially on OMIM references, and upon manual curation with ClinGen®® (https://
clinicalgenome.org/) and PanelApp® (https://panelapp.genomicsengland.co.uk/).
Manual curation was performed using ACMG recommendations!>30, with current
literature and evaluation of the most recent phenotypes collected in SABE follow-
up, when available. The incidence of selected recessive disorders was calculated
using the direct count of pathogenic alleles after manual curation and verification
of pathogenicity in Locus Specific Databases (Supplementary Information 4.6). We
have calculated the expected incidence based on the mode of inheritance pattern
and assuming panmixia, all within cohorts (SABE versus gnomAD). Summary of
steps and workflows can be found in Supplementary Information and Supple-
mentary Figs. 4, 5.

Mobile elements insertions. Mobile Elements Insertions (MEIs) were detected
using Mobile Element Locator Tool®! (MELT; ver. 2.1.4). Specifically, MEIs (Alu,
LINE-1, HERVs, and SVA) absent from the reference genome (GRCh38) were
called with the MELT-SPLIT program and reference MEIs were genotyped using
the MELT-Deletion program using the recommended standard calling procedures
(https://melt.igs.umaryland.edu/manual.php). Next, additional filters were used to
obtain a high-quality call and genotyping of MEIs. We filtered out (i) candidates
not classified as “PASS” by MELT; (ii) candidates inserted in a low complexity
genomic region; (iii) candidates presenting more than the expected number of
discordant read pairs at the insertion site. For SABE-private and singletons events,
we also applied additional filters. We selected only MEIs with MELT ASSESS score
equal five, with a defined Target Site Duplication (TSD) domain and with minimal
support (>2) split reads defining the insertion point. The assignment of LINE-1,
Alu, and HERVs events to families and subfamilies was also performed using
MELT. SVAs insertions were not subclassified in families.

MEIs (Alu, LINE-1, HERVs, and SVA) discovered among SABE samples were
compared to MEIs present in the Database of Genomic Variation (DGV?3°), which
includes Genome Aggregation Database (gnomAD) WGS samples. SABE events
found in DGV were classified as Shared MEIs and are potentially polymorphic in
humans. Only the same mobile element (e.g., Alu-Alu, L1-L1, HERV-HERYV, or
SVA-SVA) in the same genomic region was considered to be the same event,
considering a 20 bp window of positional tolerance. Different classes of mobile
elements falling in the same position are considered separate events. This overlap
tolerance was based on the following possibilities: if there was a single ancestral
event in the parental population followed by lineage-specific rearrangements, or
calling discrepancies, or if there were independent events; regarding functional
consequences and context interpretation, the overlapping events could be treated
similarly. Manual examinations of the MEIs coordinate differences between our
and public data revealed that the differences could be the result of variation in the
TSD length or alignment adjustments.

To classify the genomic locations of MEI identified in the SABE genomes into
genic (CDS, UTR, Intronic + flank) or intergenic, we matched the event
coordinates against the GENCODE database. GENCODE (version 32) was used to
define the set of transcribed regions. Exonic (CDS and UTR) and intronic regions
(including 2k bp up and downstream the transcription start/end site) were defined
as genic regions; all other genomic locations were defined as intergenic. In-house
scripts were used to match MEIs coordinated to these regions aforementioned. In
order to investigate the GC or AT composition of mobile elements insertion region,
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first, we randomly selected 10,000 windows of length 100 bp from the human
reference genome (GRCh38) and calculated their GC content (control). Second, we
made the same for all mobile element insertion regions, discriminating by Alu, L1,
SVA and HERV. Finally, we tested with the Kolmogorov-Smirnov test (KS test) the
random windows distribution (control) against the distribution of mobile element
insertion point.

Non-reference nonredundant DNA segments library. Unmapped (to GRCh38)
paired reads from each individual were filtered for low-quality reads (average base
quality below 20) and assembled using Megahit de novo assembler®2. Non-
reference sequence contigs (NRS) from the 1171 individuals were cross-assembled
again with Megahit, and sequences longer than 200 bp were retained as non-
redundant DNA segments. We aligned nonredundant segments against GRCh38
(including alternative haplotypes and decoy segments), using minimap263, and we
filtered out sequences with an identity of 95% or higher. We checked for bacterial
and viral contaminations by blasting NRS against NCBI nonredundant database®*.

To determine the presence/absence of NRS in each individual, we aligned
unmapped reads from each individual to GRCh38 extended with NRS, using
bowtie2%>. We discarded NRS for which none of the individuals showed read
coverage in the range of 7.5-100x as potential contaminants or misassembled
contigs. For coverage calculation, we considered only reads with mapping quality
above 20.

Three sources of data were used for determining the genomic positions of
NRS. (i) For contigs where the only part of it mapped to GRCh38, and the
remaining portion (at least 200 bp) did not, the mapping coordinate of the
former was used for anchoring the non-reference part of the contig to
chromosomal location. (ii) Discordantly aligned read pairs (when mapped
against GRCh38 4 NRS) in which one read is aligned to NRS and its pair mate is
aligned to a chromosomal location. (iii) We used publicly available 10x
Chromium linked-reads data® from 26 Human Genome Diversity Project
individuals (HGDP)®7 and nine Human Genome Structural Variation
Consortium individuals (HGSVC)%8 to find overlap between barcodes mapped
to NRS and chromosomal regions. Using bowtie2, we aligned 10x Chromium
Genomes Linked Reads data to extended GRCh38 + NRS reference and
extracted barcodes for reads uniquely mapped to NRS. The best target location
for each NRS was defined as a location with the highest cross-sample number of
linked reads with matching barcodes (per 1 kb window). NRS was considered as
reliably localized if the best target location was discovered by at least two
chromium barcodes (in the same or different individuals). Mapping reads to
GRCh38 and GRCh38 + NRS was done bwa-mem mapper v.0.7.17%°. Mapping
positions of NRS anchored to mitochondrial DNA or decoy sequences were not
reported. In cases when multiple mapping information was available, the
preference was given to coordinates obtained by partial mapping or discordant
paired reads giving more precise genomic coordinates. The outline of the NRS
assembly pipeline steps and tools used are given in Supplementary Fig. 12.

Whole-genome imputation. To create the SABE reference panel, we used only
variants flagged as PASS (GATK) and vSR (CEGH filter), we set genotypes flagged
as FD or FB (by CEGH filter) as missing and removed variants with >5% of missing
genotypes. We used SHAPEIT27 to infer the chromosome phase using the
extractPIRs tool, which incorporates the phase information contained in sequen-
cing reads, improving phasing quality, particularly at rare variants’!. We used the
public 1000 Genomes Project Phase 3 haplotypes (IKGP3), version 27022019,
including phased biallelic variants for 5248 unrelated samples, that were directly
aligned against GRCh384!. The SABE + 1KGP3 reference panel was obtained by
the merge of the SABE and 1KGP3 reference panels using the IMPUTE2
program”2.

To evaluate imputation performance, we used the EPIGEN-2.5 M dataset
comprising 6,487 Brazilians from three population-based cohorts from Brazil
genotyped on the Illumina Omni 2.5 M array:!3 (i) 1,309 children from Salvador
with 51% of African, 43% of European, and 6% of Native American ancestry; (ii)
1442 elderly from Bambui with 16% of African, 76% of European, and 8% of Native
American ancestry; and (iii) 3736 young adults from Pelotas with 14% of African,
79% of European, and 7% of Native American ancestry. In addition, we evaluated
imputation performance in two other admixed Latin American populations: (i) 391
Mestizos from Peru genotyped with Illumina Omni 2.5 M array®?, and (ii) 640
admixed individuals from Guatemala genotyped with Infinium OncoArray-500K
BeadChip (unpublished dataset). We used CrossMap’? to convert genome
coordinates from hgl9 to GRCh38 assembly, and removed SNPs with more than
5% missing.

We checked the consistency of the SNP’s strand of the target and each reference
panel with SHAPEIT2 using the human genome reference sequence GRCh38, and
we used PLINK software’4 to flip the strands in case of inconsistencies. We phased
the target EPIGEN-2.5 M, Peruvian and Guatemalan datasets using (1) the SABE
haplotypes as phasing references, for the imputation with the SABE reference
panel; (2) the IKGP3 haplotypes as phasing references, for the imputation with the
1KGP3 reference panel; and (3) the 1KGP3 haplotypes as phasing references, for
the imputation with the SABE + 1KGP3 reference panel.

We used IMPUTE2 to perform the imputation for chromosomes 15, 17, 20, and
22, on chromosome chunks of 7 Mb, with an additional 250 kb of buffer on both

sides (these were used for imputation inference but omitted from the results) and
set the effective size parameter (Ne) to 20,000. We used IMPUTE2 info score as a
metric of imputation quality, in which a value of 0 indicates that there is complete
uncertainty about the imputed genotypes, and 1 indicates certainty about the
genotypes.

To test imputation accuracy, we used the squared correlation (r2) obtained by
internal cross-validation performed by IMPUTE2. To this, IMPUTE2 masks the
genotypes in the target panel, one by one, imputes the masked genotypes, and then
compares the original genotypes with the imputed genotypes for each masked
variant.

HLA variants and haplotypes processing. WGS reads from the SABE cohort
were processed as described earlier. For the 1000 Genomes dataset, we obtained
high-coverage BAM files using the ASPERA protocol. We processed these BAM
files using hla-mapper version 4** [www.castelli-lab.net/apps/hla-mapper], as
described elsewhere>7>.

We used GATK HaplotypeCaller*® version 4.1.7 to call genotypes in the
genome confidence model (GVCF), concatenating all samples together in a VCF
file using GenotypeGVCFs. We processed each HLA locus separately. For variant
refinement and selection, we used the vcfx checkpl, checkad, and evidence
algorithms to introduce missing alleles in genotypes with low likelihood and
annotate each variant with a series of quantitative parameters*> (www.castelli-
lab.net/apps/vcfx). Each variant that has not been approved by the vcfx evidence
algorithm was evaluated manually. The hla-mapper/GATK/vcfx workflow
allowed the detection of 2257 high-quality variants considering 6 HLA class I
loci, HLA-A, HLA-B, HLA-C, HLA-G, HLA-E, and HLA-F, against only 910
(40%) when using the regular workflow applied to the entire genome. We also
calculated gene diversity, allele richness, and the mean number of different
haplotypes across the 1000 Genomes populations and SABE using a local Perl
script, resampling 50 samples in 5000 batches. This dataset was used in the
analysis presented here.

For haplotype inference, we combined both physical phasings using GATK
ReadBackedPhasing (RBP) and probabilistic models, as described in the
supplementary material. After, we exported the phased data to complete sequences
(exons + introns) and CDS sequences (only exons), comparing them with the ones
described in the IPD-IMGT/HLA Database version 3.4.07°. Allele, genotype, and
haplotype frequencies were calculated by direct counting. Please refer to the
supplementary material for other details regarding the HLA workflow.

HLA imputation. Multi-ethnic imputation models for each of the class I classical
HLA genes (HLA-A, -B, and C) were fitted using as reference panel: (a) SABE
(1171 samples); (b) 1KGP3 (2503 samples); and (c) SABE + 1KGP3 (3674 sam-
ples). The imputation models were built with Attibute Bagging method imple-
mented on HIBAG v.1.477, based on overlapping SNPs with the Axiom Human
Origins array (Affymetrix), with HLA allelic resolution at the protein level (HLA—
2 fields), 100 classifiers, and other default settings (Supplementary Table 25). To
assess the accuracy of the models, imputation was performed on a sample of 146
highly admixed Brazilian individuals (43% AFR, 41% EUR, and 16% NAM) pre-
viously genotyped on Axiom Human Origins array and had HLA genotyped by
standard methods (see details in Nunes et al., 201646). To verify the accuracy of the
imputation in each locus, the number of chromosomes with the correct HLA call
was quantified over the total number of imputed chromosomes. The empirical
cumulative distribution function (ECDF) was performed to access the posterior
probability frequency distribution associated with the different reference panels
(Supplementary Fig. 38)

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The publicly available genomic dataset analyzed on this study is aggregated as a cohort
and presented as short variants and frequencies deposited at the ABraOM [https://
abraom.ib.usp.br], where they can be consulted and downloaded for academic research
purposes via direct request at the website. ABraOM does not issue datasets with DOIs.
Variants and frequencies were also submitted to dbSNP (to be published in the b156
release). Like the detection of short variants, class I HLA alleles and annotated mobile
element insertions were detected using published software. Their lists of variants and
respective frequencies are also available at ABraOM [https://abraom.ib.usp.br].
Imputation panels can be requested to corresponding authors. Individual-level sequence
datasets (BAM files) and variant calling datasets (gVCF files) have been deposited at the
European Genome-phenome Archive (EGA)78, which is hosted by the EBI and the CRG,
under EGA Study accession number EGAS00001005052. Further information about
EGA can be found on https://ega-archive.org. All requests shall be made through EGA, to
be evaluated and approved by the appointed Data Access Committee (DAC). SABE
individual-level phenotypic data are not authorized by IRB to be uploaded to a public
repository, although a direct collaboration is possible. Requests for phenotypic data use
can be made directly through EGA, in which the DAC will evaluate each request. The
timeframe for final approval is 180 days.
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Code availability

Most steps of the pipelines and datasets used on this study are publicly available and
described within Methods and Supplementary Information are published and cited
accordingly (Methods, Supplementary Data 1). Specific scripts developed to perform this
study, such as quality assessment flags (CEGH-Filter) are detailed by an algorithm
scheme (Methods, Supplementary Fig. 3); in-house codes are available at GitHub cegh/
SABE1171. They can be obtained upon request until then.
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