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The reduction of nitriles to primary amines is a useful transformation in organic synthesis, however, it often relies upon stoichio-

metric reagents or transition-metal catalysis. Herein, a borane-catalysed hydroboration of nitriles to give primary amines is re-

ported. Good yields (48-95%) and chemoselectivity (e.g., ester, nitro, sulfone) were observed. DFT calculations and mechanistic

studies support the proposal of a double B-N/B—H transborylation mechanism.

Introduction

Primary amines are prevalent throughout organic synthesis,
finding regular application in materials chemistry, pharmaceuti-
cals, and agrochemicals (Scheme 1a) [1-3]. Traditionally, the
reduction of nitriles to primary amines relied on stoichiometric
hydride reagents [4]. Current catalytic methods for nitrile reduc-
tion, hydrogenation [5,6] or hydroboration [7,8], generally rely
on metal catalysts, designer ligands, forcing reaction conditions
(such as elevated temperatures and pressures) or lack extensive
functional group tolerance. In particular, catalysed nitrile hydro-
boration strategies are still underdeveloped compared with
hydrogenation, but offer a nascent alternative to this estab-
lished field. The pursuit of sustainable chemical transformat-

ions has driven research into the development of new catalytic

methodologies, specifically those that use Earth-abundant and
low toxicity elements, as an alternative to transition-metal catal-
ysis [9,10]. Using metal-free catalytic systems, including boron-
based catalysts, circumvents some of the issues associated with
traditional metal catalysis, including trace metal contamination
[11,12] and volatility of supply.

Whilst there are several examples of main-group catalysed
nitrile hydroboration reactions [13-26], currently, there are only
two reported metal-free catalytic strategies [27]. Both of these
used non-commercially available catalysts prepared over
multiple steps, the first an N-heterocyclic olefin [22], and the
second a bicyclic (alkyl)(amino)carbine [23]. Both displayed
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Scheme 1: a) Derivatives of primary amines in materials chemistry,
pharmaceuticals, and agrochemicals; b) this work: borane-catalysed
nitrile hydroboration.

limited tolerance to reducible functionalities. NaHBEtj is the
only known boron-based catalyst for nitrile hydroboration [24].
Developed from the stoichiometric reactivity of [HBEt3]~, this
method displayed good reactivity but limited chemoselectivity.
Like [HBEt3]™, boranes are stoichiometric reducing agents, but
are considered to be milder than [HBEt3]™ [4]. Catalysis
enabled by B-N/B-H transborylation (a o-bond metathesis
turnover method) has been used for borane-catalysed reduc-
tions of N-heteroarenes [28,29], and the borane-catalysed
cyanation of enones [30]. Applying B—-N/B-H transborylation to
the hydroboration of nitriles would enable the development of a
borane-catalysed hydroboration of nitriles with broad chemose-
lectivity, raise the standing of metal-free catalysis in nitrile
hydroboration, and increase user accessibility by using commer-

cially available catalysts and turnover reagents (Scheme 1b).

Results and Discussion

Investigations began by screening a combination of commer-
cially available (H3B-SMe,, [H-B-9-BBN],, H3B-THF) and pre-
pared borane catalysts (dicyclohexylborane) in the hydro-
boration of heptanenitrile with HBpin as the turnover reagent
(see Supporting Information File 1 for details). All boranes
were catalytically active, with H3B-SMe,; displaying the highest
activity. As [H-B-9-BBN], shows limited stoichiometric activi-
ty in aromatic nitrile reduction compared with H3B-SMe, [31],
H3;B-SMe, was used as the catalyst for this transformation [32].
Reducing the catalyst loading from 10 mol % to 5 mol %

resulted in a marginal decrease in yield (92% to 80%, see Sup-
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porting Information File 1) and decreasing the loading further
(1 mol %) resulted in a significant reduction in the yield (<5%,
see Supporting Information File 1). In line with the principles of
sustainable synthesis [33], the reaction can be performed in the
absence of solvent and the reaction temperature can be adjusted
to maximise efficiency for yield or chemoselectivity. Reaction
of the turnover reagent, HBpin, in the absence of catalyst gave

no observable reduction (see Supporting Information File 1).

The optimised conditions were applied to a substrate scope,
where the hydroboration products were converted in situ to the
corresponding amine hydrochloride salt which can be isolated
without the use of column chromatography (Scheme 2). The
N.N-diborylamines have also been used directly in subsequent
transformations [34-37]. Heptanenitrile was reduced to
1-heptylamine hydrochloride (1a) in good yield (83%). This
catalytic protocol was applied to the reduction of other aliphat-
ic nitriles to their corresponding amine hydrochloride salts, such
as cyclopropyl-bearing (1b, 72%) and branched aliphatic
nitriles (1c, 91%). Hexane-1,6-diamine dihydrochloride (1d), a
monomer of nylon 6,6 [1], was generated in excellent yield
(92%).

The reaction was successfully applied to the hydroboration of
aryl nitriles; benzonitrile was reduced to benzylamine hydro-
chloride (1e, 92%) in good yield. The reaction tolerated substi-
tution in the ortho- (1f, 86%, 1g, 65%, 1h, 83%), meta- (1i,
82%, 1k, 75%), and para- (1j, 93%, 11, 74%) positions. An in-
creased temperature of 80 °C was required for the efficient
hydroboration for ortho-substituted aryl nitriles (1f, 1g, 1h), due
to increased steric encumbrance close to the nitrile bond. The
chloro-, bromo-, and iodo-substituted arenes provide a func-
tional handle for further derivatisation. 2-Chlorobenzylamine
hydrochloride, a precursor to the herbicide cumyluron, was iso-
lated in good yield (1g, 65%) [38]. Additionally, fluoro-substi-
tuted nitriles were also reduced with good efficiency (1m,
62%).

Both electron-withdrawing (1n, 95%) and electron-donating
(1o, 87%, 1p, 95%) groups were tolerated under the reaction
conditions. The presence of a primary amine in the substrate
was tolerated under the reaction conditions (10), undergoing
efficient hydroboration to give the dihydrochloride salt (87%),
although an increase in HBpin equivalents (5.5 equiv) was re-
quired due to dehydrocoupling of the turnover reagent, HBpin,
with the amine [39].

A range of nitriles containing functional groups were tested in
catalysis to investigate the chemoselectivity of the reaction.
Several reducible functionalities were tolerated by the catalytic

protocol, including ester (1q, 48%), nitro (1r, 67%), and sulfone
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Scheme 2: Substrate scope of borane-catalysed nitrile hydroboration with HBpin. Conditions: nitrile (0.50 mmol), HBpin (3.5 equiv), H3B-SMe»
(10 mol %), Ar atm., 60 °C, 18 h, unless otherwise noted. Isolated yields are reported. 21.0 mmol scale. ®°HBpin (5.5 equiv). ¢80 °C. 940 °C.

(1s, 48%). The 'H NMR spectra of the crude reaction mixtures
displayed no reduction of these functional groups. Such func-
tional group tolerance was not exhibited by the other non-metal
and boron-based catalytic nitrile hydroboration systems [22-
24,27]. It should be noted that the borohydride-catalysed reduc-
tions generally proceed at lower reaction temperatures using 5
mol % NaBHEt3 [24]. Esters undergo stoichiometric reduction
by H3B-SMe, (see Supporting Information File 1) [32]; there-
fore, chemoselective nitrile hydroboration highlights the benefit
of this catalytic method over stoichiometric reduction. Howev-

er, chemoselectivity was not observed for ketone bearing sub-

strates, resulting in the reduction of both the carbonyl and nitrile
functionalities, although the resulting hydrochloride salts could
be isolated in good yields (1t, 62%, 1u, 60%). This is compa-

rable to the stoichiometric reactivity of boranes [32].

Nitriles containing heterocycles underwent hydroboration in
moderate yield (52-58%), with furan and thiophene groups
tolerated (1v, 1w). Furan-2-ylmethanamine hydrochloride 1v
can be converted into furosemide, a diuretic on the WHO list of
essential medicines with over 28 million prescriptions per

annum, in one step [40].
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The reaction is proposed to proceed through a hydroboration
and B-N/B-H transborylation mechanism, supported by compu-

tational analyses (Scheme 3a). The nitrile undergoes hydro-

boration with H3B-SMe, to form an N-borylimine species 2.

This can undergo B—N/B—H transborylation with HBpin to give
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Scheme 3: a) Proposed mechanism; b) H-B-9-BBN-catalysed hepta-
nenitrile hydroboration (yield determined by 'H NMR spectroscopy
using 1,3,5-trimethoxybenzene as an internal standard); c) key steps in
the DFT-computed free energies (energies calculated at M06-2X/6-
311++G(d,p) on M06-2X/6-31+G(d,p)-optimised structures).
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the N-Bpin imine 3, followed by a second hydroboration and
B-N/B—H transborylation to give the N,N-bis-Bpin amine prod-
uct 4. Alternatively, the imido-boryl intermediate 2 undergoes a
second hydroboration to form the N,N-bis-borylamine S prior to
B-N/B-H transborylation.

Given the multiple mechanistic pathways for the reaction,
DFT analysis [M06-2X/6-311++G(d,p)] [41,42] was used to
differentiate between these two pathways. 9-Borabi-
cyclo[3.3.1]nonane ([H-B-9-BBN],) was chosen as the catalyst
for the calculations due to its comparable activity to H3B-SMe;
(Scheme 3b) and the reduced number of reactive B-H sites to
reduce complexity. Following hydroboration of the nitrile by
H-B-9-BBN to give the N-B-9-BBN imine 6, the reaction can
proceed by two routes to give the N,N-bis-Bpin amine 4a: A) a
second hydroboration by H-B-9-BBN to give N,N-bis-B-9-BBN
amine 7 and two B—N/B-H transborylation reactions with
HBpin; B) B-N/B-H transborylation with HBpin to give
N-Bpin imine 8 and a further hydroboration by H-B-9-BBN and
B-N/B-H transborylation (Scheme 3c). Route A was found to
have a highest energy barrier of 25.5 kcal mol~! for the B-N/
B-H transborylation step (7 to 9). In contrast, the highest energy
barrier in route B was found to be the second B—N/B-H transbo-
rylation step (9 to 4a), which is also present in route A as the
two routes converge, with a barrier of 24.8 kcal mol~!. The
similarity in these energy barriers and the reaction temperature
of 60 °C means both routes are viable under the reaction condi-
tions. It should be noted that treatment of a nitrile with excess
H-B-9-BBN has been shown to form an N-B-9-BBN iminyl
H-B-9-BBN adduct [43], suggesting route B may be favoured.
Experimental calculation of the reaction activation energy sup-
ported the proposed routes (see Supporting Information File 1
for details).

Conclusion

In summary, a borane-catalysed hydroboration of nitriles to
give primary amines has been developed, transforming the pre-
viously stoichiometric reagent H3B-SMe, into a catalyst. B-N/
B-H transborylation is proposed to serve as the key turnover
step in catalysis, supported by computational mechanistic
studies. This approach uses both a commercially-available cata-
lyst and turnover reagent, providing good user accessibility, and
displays comparable chemoselectivity to current state-of-the-art
catalysed hydroboration methods [7].
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