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A systematic model identification 
method for chemical 
transformation pathways – the case 
of heroin biomarkers in wastewater
Pedram Ramin1,2, Borja Valverde-Pérez1, Fabio Polesel1, Luca Locatelli1 & Benedek Gy. Plósz1,3

This study presents a novel statistical approach for identifying sequenced chemical transformation 
pathways in combination with reaction kinetics models. The proposed method relies on sound 
uncertainty propagation by considering parameter ranges and associated probability distribution 
obtained at any given transformation pathway levels as priors for parameter estimation at any 
subsequent transformation levels. The method was applied to calibrate a model predicting the 
transformation in untreated wastewater of six biomarkers, excreted following human metabolism of 
heroin and codeine. The method developed was compared to parameter estimation methods commonly 
encountered in literature (i.e., estimation of all parameters at the same time and parameter estimation 
with fix values for upstream parameters) by assessing the model prediction accuracy, parameter 
identifiability and uncertainty analysis. Results obtained suggest that the method developed has the 
potential to outperform conventional approaches in terms of prediction accuracy, transformation 
pathway identification and parameter identifiability. This method can be used in conjunction with 
optimal experimental designs to effectively identify model structures and parameters. This method 
can also offer a platform to promote a closer interaction between analytical chemists and modellers to 
identify models for biochemical transformation pathways, being a prominent example for the emerging 
field of wastewater-based epidemiology.

Models are mathematical representations of real systems that are able to predict their performance under defined 
conditions. Many chemical and biological systems can be described with stoichiometry and kinetic models. These 
include differential equations that describe the dynamics of chemical mass or concentrations according to trans-
formation or transfer rates for substrates and products. To predict behaviour of a real system with as small devia-
tion as possible, model structure selection and model parameters estimation should be performed in a systematic 
procedure referred to as model identification1.

Model parameters can be estimated through formal mathematical optimization problems by defining suitable 
decision variables, namely parameter estimates, objective functions and constraints on, e.g., model parameter 
values. For the calibration of biochemical pathway models, different types of optimization problems have been 
defined in systems biology2, such as metabolic flux balance analysis for bioprocess optimization3 or optimization 
for biochemical pathways and estimation of kinetic parameters4. Moreover, the optimization output (e.g., param-
eter estimates) could be subject to a significant variability as a result of optimization settings such as parameters 
uncertainty range. For instance, local optimization methods, such as the flexible Simplex method5, can lead to 
different parameter values depending on the initial guess given as input6.

Parameter identification approaches are used to assess uniqueness of a model parameters set, which would 
result in high prediction accuracy. Parameter identifiability for biological models has been widely studied7–9. 
Typical drawbacks are over-parametrization of models and poor data availability and quality. To overcome 
parameter identifiability issues the use of effective experimental design has been proposed such as increasing the 
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number of monitored chemicals to improve the parameters identifiability10. Additionally, the tasks requires com-
plex parameter estimation protocols, combining several steps, such as sensitivity analysis, parameter correlation, 
or iterative procedures7, 11, 12.

Most water quality models suffer from over-parametrization13. Therefore, more recently, a wealth of studies 
propose robust parameter estimation methodologies and uncertainty analysis in the areas of urban drainage14, 15 
and wastewater treatment7, 11, 12, 16. Techniques proposed for uncertainty and identifiability assessment of model 
parameters include (i) methods based on local analysis (e.g., Brun et al.7), which have been demonstrated to be 
sensitive to the initial parameter value choice17, 18; and (ii) global methods, including Monte Carlo-based (MC) 
methods such as Generalized Likelihood Uncertainty Estimation (GLUE)19, or Markov chain- Monte Carlo 
(MCMC)20, 21 based methods. Following model calibration, it is suggested to assess the impact of parameter 
uncertainty on model outputs. This task can be carried out via MC simulations22, 23. However, the propagation of 
uncertainty between model parameters is not considered in any calibration protocols12, 24, 25.

Nevertheless, standardized model identification and calibration procedures are not reported for all biolog-
ical systems or water quality models. For example, despite the increasing popularity of trace organic micropo-
llutant fate models and their applications in wastewater treatment plants26–29 and urban drainage models29–32, 
model parameter uncertainty and parameter identifiability analysis is less well understood. Meanwhile, increased 
knowledge of transformation pathways has been achieved as a result of extensive experimental efforts33, 34. These 
challenges are particularly relevant when the combined identification of transformation pathways and estimation 
of transformation rates are required. More specifically, in the emerging field of wastewater-based epidemiology 
(WBE) – in which concentrations of drug biomarkers measured at sewer outlets are used to back-calculate drug 
consumption in urban areas – fate models have been only recently introduced31, 35–37 to account for in-sewer 
transformation of drug biomarkers. In these approaches, back-calculation of drug consumption is directly linked 
to the in-sewer transformation rates of drug biomarkers during transport. Biased prediction of transformation 
rates or associated uncertainties can result in inaccurate drug consumption estimates.

Estimation of reliable uncertainties is even a bigger challenge once more complex fate models are used, such 
as those combining primary (e.g., fate of organic carbon fractions or microbial growth) and secondary metabolic 
processes (transformation of trace organic chemicals, e.g., drug biomarkers or pharmaceuticals)38–40. A knowl-
edge gap exists in identifying metabolic transformation pathways in complex biological matrices – a focal area 
chosen for the present study. For instance, cocaine in wastewater is transformed to benzoylecgonine and other 
metabolites, different from those undergoing through human metabolism. The task is even more challenging, 
for newly synthetized drugs, for which limited or no information about their human and in-sewer bacterial 
metabolism exists. The identification of major drug transformation pathways is necessary to close mass-balances 
in multi-level transformation routes. We note that measuring drug biomarkers, at the ng L−1 to µg L−1 range, is a 
labour-intensive and costly task, which involves quantitative analysis of target compounds that have to be selected 
prior to experiments. The selection should be performed through proper and efficient assessments.

The main goal of this study was to develop a model identification method for biochemical transformation 
pathways by employing sound parameter uncertainty propagation. The method was benchmarked against 
selected conventional techniques in terms of prediction accuracy, transformation pathway identification effi-
ciency and parameter correlation. The method is applied to identify transformation pathways for the human 
biomarkers of the illicit drug heroin in wastewater, accounting for both biotic and abiotic transformations.

Results and Discussion
Model identification methodology. An overview of identification methodology is presented in Fig. 1a. 
The method involves three stages: (I) estimation of parameters at defined levels; (II) evaluation of model structure 
(i.e., kinetic and/or pathway) at each level; and (III) propagation of parameters uncertainty to the subsequent 
levels. The estimation methodology consists of n levels, defined according to assumed abiotic (A) and biotic (B) 
reaction pathways. The chemical pathways are represented by m chemicals (from X1 to Xm) transformed via abi-
otic (e.g., hydrolysis) and microbially-mediated reactions. Kinetic model parameters thus include m + 1 abiotic 
transformation rates, represented by kabio,1 to kabio,m (d−1) and k′abio,2 (d−1), and m + 1 biotic transformation rate 
constants, represented by kbio,1 to kbio,m (L gTSS−1 d−1) and k′bio,2 (L gTSS−1 d−1). To simplify the representation, the 
number of transformation rates for abiotic and biotic processes are considered the same.

Model parameters at each level are considered to be either primary, subsidiary or combinatorial. Primary 
parameters are the ones introduced at any level for the first time by employing priors in the form of even param-
eter probability distributions set with arbitrary or e.g., literature-informed ranges. Subsidiary parameters are the 
ones previously estimated at upstream levels and which are relevant to parameter estimation at downstream levels 
in terms of uncertainty propagation. Combinatorial parameters are similar to primary ones, and are associated 
with chemicals, exhibiting two transformation pathways. In other words, combinatorial parameters define the 
overall transformation rate of the chemical and are equal to the sum of transformation rates to each product. 
Each of the transformation rates are turned into primary parameters in the following level. For instance, from the 
example shown in Fig. 1, at level 1(A) kabio,1 (arbitrary boundaries, uniform distribution) is a primary parameter. 
At level 2 (A) previously estimated kabio,1 (known boundaries and distribution inferred at level 1) is a subsidi-
ary parameter and “kabio,2 + k′abio,2” (arbitrary boundaries, uniform distribution) is a combinatorial parameter. 
At level 3 (A), kabio,1 (boundaries and distribution inferred at level 1) remains as subsidiary parameter whilst 
kabio,2 (known upper boundary inferred from previous combinatorial parameter estimation, uniform distribution), 
k′abio,2 (known upper boundary inferred similar to kabio,2, uniform distribution) and kabio,3 (arbitrary boundaries, 
uniform distribution) are all primary parameters, in case there is no extra branch for X3.

Each level consists of a three-step parameter estimation approach: (i) Prior settings: prior model parameter 
distribution ranges are defined by either considering uniform distribution for primary parameters or a distribu-
tion function for subsidiary parameters, as indicated in Fig. 1; (ii) Global optimization: global optimum parameter 
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values are estimated using an iterative/adoptive algorithm, e.g., DREAM(ZS)
41 in present study; (iii) Post processing: 

The range of uncertainty and type of distribution of posterior primary parameters are determined, Supplementary 
Table S3. Once a unique set of parameter is estimated, deviations of model predictions from measurements are 
assessed. In the case of systematic error in model prediction, the structure of kinetic model (e.g., second-order 
or of first-order kinetics) and the chemical transformation pathways (e.g., new transformation products) are 
re-evaluated (Fig. 1b). This iterative approach ensures that uncertainty of parameters would only propagate when 
the model structure is adequately described.

In Fig. 1, the arrows represent the information flow. Whilst the distribution from abiotic to biotic model is 
considered for all calibration levels (blue arrows), the biotic calibration levels only distribute the information 
(orange arrows) within the calibration levels for biotic processes (e.g., the information does not pass from Level 
1(B) to Level 2(A)). Although Fig. 1 presents the methodology for a simple chain pathway, the method can be 
applied for multi-branched pathways including parallel or consecutive transformations.

Case study of heroin and codeine transformation pathways. The transformation pathway 
for heroin (HER) and its human metabolites 6-monoacetylmorphine (6-MAM), morphine (MOR), and 
morphine-3-β-D-glucuronide (MORG), and codeine (COE) and its human metabolite norcodeine (NCOE) are 
depicted in Fig. 2. The pathway model was derived based on former studies38, 42 employing pathways primar-
ily based on human metabolism, including the transformation of COE to MOR. Following the kinetic model 
calibration, the overall transformation pathway was extended with two additional pathways/branches for HER 
and MORG (dashed arrows). A kinetic model based on Activated Sludge Modelling framework for Xenobiotics 
(ASM-X)31 was used to describe the drug transformations (Supplementary Table S1). In the present study, the 
assumption of accurate kinetic model to predict removal or formation of each individual drug biomarkers, has 
simplified the task of identification of model structure to only pathway identification.

New pathways were initially hypothesized by checking the mass balances in the pathway at any given time 
(i.e., the amount of transformation of a compound to another should correspond to formation of the second 
compound). To apply the model identification methodology, the concentration profiles of these chemicals from a 
targeted batch experiment in wastewater were used38.

Estimation of transformation rates for the case study. Applying the novel parameter estimation 
method to the case of heroin and its biomarkers resulted in a four-level model identification problem, including 
seven abiotic model parameters (A) and nine biotic model parameters (B) (Fig. 2). As compared to the pathway 
elucidated in Fig. 1, this pathway has an unequal number of kabio and kbio parameters (as a result of pathways 

Figure 1. (a) Overview of the proposed identification method, referred to as Method 1 in this study, to estimate 
transformation rate constants in metabolic pathway models for both abiotic and biotic processes. The method 
includes n calibration levels for m number of metabolites (i.e., X1 to Xm) and m + 1 number of parameters for 
abiotic model (i.e., kabio,1 to kabio,m and k′abio,2) and biotic model (i.e., kbio,1 to kbio,m and k′bio,2). The method starts 
from Level 1 (abiotic) and ends at Level n (biotic). Each level includes 2–3 calibration steps. Arrows indicate 
the information flow, i.e., parameter uncertainty propagation, among the levels. Blue and orange arrows pass 
the information from abiotic (A) and biotic (B) model parameters, respectively. (b) Additional evaluation 
step between any two levels to assess the accuracy of model structure by detecting systematic deviations from 
experimental results.
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adopted from human metabolism and also two new additional pathways). The posterior distributions (histo-
grams) of estimated primary parameters (Fig. 2; Supplementary Fig. S1) are presented along with the transforma-
tion pathways, thereby indicating the information flow direction. Four additional histograms for combinatorial 
parameters are also shown separately for COE (abiotic and biotic), HER (biotic) and MORG (biotic) (Fig. 2). 
Model calibration was initiated by the estimation of kabio for chemicals not formed from other chemicals – HER 
and COE (Fig. 2, denoted by 1(A)). Below, each identification level is briefly described, with ranges and distribu-
tions of all parameters reported in Supplementary Table S3.

Level 1(A). To estimate kabio,HER, a uniform probability distribution and an arbitrary range were considered as 
prior information. Measured concentrations of MORG during abiotic experiments showed no transformation, 
hence kabio,MORG was set to zero. In parallel, combinatorial parameter kabio,COE (kabio,COE,1 + kabio,COE,2) was estimated.

Level 2(A) and 2(B). This level includes the estimation of the primary abiotic parameter for 6MAM  
(kabio,6MAM), involving the subsidiary parameter, kabio,HER. Additionally, for COE and NCOE, the estimation involves 
(kabio,COE,1, kabio,COE,2 and kabio,NCOE) that includes the subsidiary parameter kabio,COE. Biotic combinatorial parameters 
for overall MORG biotransformation, kbio,MORG (kbio,MORG,1 + kbio,MORG,2), overall HER biotransformation, kbio,HER 
(kbio,HER,1 + kbio,HER,2), and overall COE biotransformation, kbio,COE (kbio,COE,1 + kbio,COE,2), were also estimated at this 
level.

Level 3(A) and 3(B). Abiotic primary parameter, kabio,MOR, and the rest of abiotic model parameters were 
considered subsidiary. Biotic primary parameters were also estimated (i.e., kbio,HER,1, kbio,HER,2 and kbio,6MAM). 
Additionally, the biotic primary parameters kbio,COE,1, kbio,COE,2 and kbio,NCOE were estimated. Relevant subsidiary 
parameters from previous levels were considered at each estimation.

Level 4(B). The remaining three biotic model parameters, i.e., kbio,MORG,1, kbio,MORG,2, and kbio,MOR, were estimated 
using all the other model parameters as subsidiary.

Figure 2. The identified transformation pathway of heroin (HER) and codeine (COE) drug biomarkers, 
including abiotic and biotic processes. Posterior distribution of estimated parameters (histograms) for proposed 
methodology – Method 1 (in red), Method 2 (dotted blue line, upper X axis) and Method 3 (solid black line) at 4 
different calibration levels. For Method 2 and 3, distributions are shown with linear interpolations between pairs 
of distribution data points. Abbreviations: T.P. - unknown transformation product (TP); A - Abiotic model, B - 
Biotic model. Stoichiometry and process rates are according to transformation pathway of HER and COE drug 
biomarkers and are shown in the Supplementary Table S1. Solid arrows are pathways identified from literature 
and new identified pathways are shown with dashed arrows.
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Comparison with conventional model parameter estimation methods. Two parameter estimation 
methods, referred to as Method 2 and Method 3, were used to benchmark Method 1, and to assess the impact of 
different uncertainty propagation approaches on parameter estimates.

Method 2: The method, also referred to as the lumped approach, comprises the estimation of all model param-
eters using a single objective function, in which all seven kabio were estimated simultaneously using only the 
abiotic experimental data and all nine kbio were estimated simultaneously using only the biotic experimental data. 
Examples of the application of Method 2, whereby a parameter subset is calibrated to fit several experimental data 
series, are common in literature6, 12, 16, 24, 43. To apply this method in this case study, we propagated uncertainties 
from the abiotic model to biotic ones (i.e., by employing abiotic parameters as subsidiary). Therefore we consid-
ered the 95% credibility interval of the abiotic estimated parameters as uncertainty range for the estimation of all 
nine kbio corresponding to the biotic model.

Method 3: The method consisted of the estimation of parameters in a sequential order, similar to Method 1. 
However, the propagation of parameter uncertainties was omitted, i.e., at each level, fixed values of the already 
estimated parameters were used as priors (see, e.g., Insel et al.44). Thus, all parameters in Method 3 are treated as 
primary. This is a common approach for the calibration of, e.g., nitrous oxide (N2O) production models, in which 
parameters only related to N2O are estimated and the remaining parameters are fixed45. However, it has been 
demonstrated that by ignoring the uncertainties introduced by fixing parameter values may lead to significant 
underestimation of the uncertainty in emissions of N2O46.

The histograms from Method 1 and Method 3 (Fig. 1, red bars and solid black lines) show that for most param-
eters the posterior distribution are skewed (e.g., significant positive skewness for MOR (B1)). A comparison of the 
estimated parameter values (median) and uncertainty of parameter estimates reported as 95% credibility interval 
is presented in Fig. 3. These results indicate comparable range and similar distribution for parameter sets obtained 
with Method 1 and Method 3. This is not the case for most of the parameters subsets obtained using Method 2, 
which leads to comparably higher parameter values and predominantly wider uniform distributions. We note, 
however, that the wider parameter ranges are a result of the wider boundaries considered for Method 2 (Fig. 2), 
thereby ensuring no restriction of solution space that could potentially include a global optimum. Using Method 
2, the uniform posterior distribution shows poor parameters identifiability as different combination of parameter 
values could result in similar prediction accuracy.

The discrepancy between ranges of parameter estimates obtained using Method 1 and Method 3 is at maxi-
mum for kbio,6MAM in which range of this parameter from Method 3 is more than twice of the width of the range 
estimated by Method 1. However, the range of kbio,COE,2 estimated by Method 1 is almost twice of that estimate by 
Method 3. In addition, for some parameters the posterior distribution from Method 1 and Method 3 are different 
(Fig. 2), especially for the primary parameters that are estimated based on a combinatorial parameter e.g., kabi-

o,COE,1 and kabio,COE,2 at level 2.
Following parameter estimation, the impact of parameter uncertainty on model outputs (i.e., drug concen-

trations) was assessed through uncertainty analysis using Monte Carlo simulations (Fig. 4). These results suggest 
that Method 2 can lead to estimates with higher uncertainties for both abiotic and biotic model parameters. 
Notably, estimated parameter values and associated uncertainties obtained using Method 2 are highly dependent 
on the choice of the parameter ranges used in the optimization, i.e., higher ranges would result in higher estimates 
calculated as the mean of often uniform posterior distributions.

The accuracy of model predictions derived using the three different calibration methods was assessed using 
statistical tests (Table 1). Values obtained for the Root Mean Squared Error (RMSE) and the Mean Absolute 
Error (MAE) are related to model prediction accuracy: the lower the RMSE and MAE are the more accurate the 
model prediction is. Additionally, the average relative Interval Length to Coverage of measurements by prediction 
bands (ILTC) was used for accuracy assessment. Lower ILTC is an indication of lower prediction uncertainty 
together with higher coverage of measured values by uncertainty band. Results obtained using these statistical 
tests (Table 1) suggest that, for the abiotic and biotic model, Method 2 was the least accurate for all parameters, 
reporting, on average, 8 times higher RMSE and MAE values and 5 times higher ILTC values compared to Method 
1 and Method 3. We note that comparably high coverage of measurements were obtained using Method 2, which 
does not necessary translate into high accuracy. Results obtained for HER using Method 1 showed similar param-
eter estimation accuracy to that obtained with Method 3. For abiotic model, higher accuracy was obtained using 
Method 1 for NCOE and MOR. Interestingly, Method 3 showed slightly higher accuracy for COE and 6MAM 
compared to Method 1 for the abiotic model. As for the biotic model, the prediction accuracy obtained using 
Method 1 and Method 3 showed comparable performance except for MOR and 6-MAM, for which Method 1 
resulted in higher accuracy, and for MORG, Method 3 showed a better performance.

To assess the significance of uncertainty propagated via subsidiary parameters to primary parameter esti-
mates, a global sensitivity analysis (GSA) was performed according to standardized regression coefficients (SRC) 
method47 (Supplementary Fig. S2). These results show the importance of propagated uncertainty at each calibra-
tion level. It was found that less uncertainty propagation can be expected from the subsidiary parameters located 
at the further upstream of a calibration level. Nevertheless, since in present case study all chemicals in the pathway 
and their formation or transformation kinetics are required for back-calculation in WBE studies, no parameter 
subset selection was performed based on GSA results, common practice in most calibration protocols8.

We note that the choice of SSE as objective function may have had significant impact on the convergence of 
the optimization algorithm for parameter estimation as we used equal weight factors in all methods. There are 
methods proposed to assess the impact of weights combinations on optimization resuts48. The effect of selection 
of the objective function on parameter estimation is not further analysed in this study, as it has been previously 
reported by Hauduc et al.49.

http://S2
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Analysis of parameter correlation. To assess the impact of the parameter estimation methods on 
parameter collinearity, correlation analysis was performed on the posterior parameter distributions using 
Methods 1–3 (Supplementary Figs S3–5). According to the linear correlation coefficients (LCC) obtained and 
considering a collinearity threshold for identifiability to be 0.750, all estimated parameters from all methods 
were identifiable except for parameters related to the chemicals with two transformation branches in Method 3 
(i.e., HER and MORG transformation pathways, Fig. 2). Figure 5 shows the collinearity index for those param-
eters that are highly correlated according to Method 3 together with the collinearity index from Method 1 and 2  
for further comparison. The sign of correlations indicates whether the parameters are positively or negatively 
correlated.

Results suggest that Method 1 typically resulted in increased values of LCC compared to Method 2, which 
results from incorporating uncertainties propagated from other upstream model parameters. Using Method 3 
maintained a good model-fit for the corresponding chemicals (HER abiotic; COE, NCOE, abiotic and biotic) 
by fixing the sum of kinetic parameters from each branch (a hard optimization constraint, e.g., kbio,HER,1 =  
kbio,HER − kbio,HER,2). However, perfect inverse linear relationship (correlation: −1) was obtained for the transfor-
mation rate constants for abiotic HER as well as for abiotic and biotic COE, NCOE transformation, implying that  
kbio,HER,1 can be compensated by decreasing kbio,HER,2. This non-identifiability problem did not appear in the 

Table 1. Assessment of simulation accuracy of models calibrated using Methods 1–3. Abbreviations: RMSE, 
root mean squared error; MAE, mean absolute error; ILTC, interval length to coverage. For better comparison 
among the three methods following color code is used: boldface – high accuracy; underlining- moderate 
accuracy; italic type – low accuracy.

Figure 3. Values of estimated parameters — kabio (d−1) in abiotic model and kbio (L gTSS−1 d−1) in biotic 
model—using Method 1 (proposed methodology), Method 2 (lumped approach) and Method 3 (no propagation 
of uncertainties). Marks are estimated values (median) and error bars represent 95% credibility interval (lower 
bound, upper bound). Abbreviation: T.P. = transformation product(s).

http://S3
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Method 1 by optimizing kinetic parameter of each transformation at the same time, whilst the optimization is 
constrained to maintain the sum of the primary parameters within the 95% credibility interval of combinatorial 
parameter (a soft optimization constraint). All parameters obtained using Method 2 showed very weak correla-
tions, as the optimizer could not converge to any particular optimal point.

Identifying new transformation pathways. The transformation pathway network illustrated in Fig. 2 
includes two newly identified pathways for HER and MORG via biocatalysis in wastewater as compared to human 
metabolism42, 51. These pathways were identified using mass balance calculations over the transformation of 
6MAM and MOR, and were compared with available rule-based data base52. If the biomarker transformation 
pathways in wastewater would follow human metabolism, i.e., no additional transformation for HER and MORG, 
a significant discrepancy would be obtained between measured and predicted data (Fig. 6). Only based on meas-
ured data, one cannot infer the existence of another pathway with sufficient evidence, since net accumulation 
of chemicals depends on both transformation and formation rates. Hence, one way to assess whether an addi-
tional pathway exist, is to estimate transformation rates before pathway modification and assess the uncertainty 
of transformation rates on predictions. Figure 6 attempts to assess if the information on additional pathway can 
be inferred using Methods 1–3.

If 6MAM is the sole transformation product of HER, rapid transformation of HER should be followed by 
the formation of 6MAM in the first 3 hours of experiment. However, the measurements for 6MAM do not show 
accumulation (Fig. 6a). Model predictions for MORG and MOR simulation results following calibration using 
Method 1 and Method 3 showed rapid net formation of MOR during the simulation time (Fig. 6b). However, this 
trend does not agree with measured data. In contrary, Method 2 suggests very high removal rate. Figure 6 addi-
tionally reports the distribution of posterior parameter values obtained using Methods 1–3. Histograms indicate 
that parameters estimated using Method 1 and 3 are identifiable (clear peak shape), whilst Method 2 failed to show 
any particular distribution. Following this assessment, the model structure (i.e., the pathways) was modified to 
eliminate the systematic deviation imposed by inaccurate pathway model.

By comparing parameter ranges from Method 1 and Method 3 (Fig. 3), for the newly identified pathways, it 
emerges that Method 3 resulted in 14% higher uncertainty range for transformation rate kbio,HER,2, whilst 28% 
higher uncertainty range was estimated for kbio,MORG,2 using Method 1. It is reported that for identifiable parame-
ters, the relative parameter estimation error, such as 95% confidence interval, should be less than 50% of an esti-
mate50. Based on this criterion, none of the parameters related to the new pathways were identifiable i.e., lowest 
confidence interval was 52.5% (for lower bound) for kbio,HER,2 using Method 1.

High uncertainty ranges reported in Fig. 3 correspond to significant skewedness of the histograms. 
Nevertheless, the two additional pathways found in this study are in agreement with existing literature, in which 
incomplete deconjugation of glucuronide metabolites to the respective parent substance was shown in wastewater 
for morphine53, lamotrigine54 and sulfamethoxazole55.

Outlook. The main objective of this study was to develop an identification method for reaction kinetics and 
multi-branched chemical transformation pathways models. The proposed approach employs uncertainty propa-
gation between model parameters. Based on the results obtained, the prediction accuracy, transformation path-
way identification and parameter identifiability, the benefits of sound uncertainty propagation using Method 1 
seem to be significant compared to the other two methods. The results show that sound uncertainty propagation 
may lead to even more accurate model prediction.

It is not certain that model parameters can be estimated unambiguously, if the dynamic model is only partially 
observable (e.g., undetermined concentrations in the pathway) due to technical limitations56. Therefore, mod-
ifying existing transformation pathway models to find pathway gap is often necessary. Results obtained in this 

Figure 4. Measured and simulated biomarker concentration data with uncertainty bands obtained using 
Method 1–3. Markers are measured data and lines are simulation results. The shaded area reflects 95% credibility 
interval of model prediction (red area and full line: Method 1, grey area and dashed line: Method 2, blue area and 
dotted line: Method 3).
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study indicate that the proposed parameter estimation method can be useful to identify transformation pathway 
branching and the associated reaction kinetics. New transformation pathways proposed based on the method 
should be now confirmed by analytical chemists by characterizing the transformation product.

As for the practical aspects, to effectively select biomarkers to be used in targeted experiments, identifying 
transformation pathways of xenobiotics in complex biological matrices, such as wastewater, has a particular rel-
evance for WBE57. The present study can serve as an input for optimal experimental design (e.g., stability tests 
or pathway identification), as currently there is little information available to address this issue. It can be used 
to assess the inclusion of all the necessary chemicals presented in the pathway, which would facilitate the identi-
fication of model parameters. Moreover, estimated transformation rates could be helpful to re-define sampling 
strategy during batch experiment. For reliable back-calculation of substance (e.g., drugs) consumption rates in 
urban areas, WBE engineering approaches will be required to employ biokinetics and transport models. In this 

Figure 5. Linear correlation coefficients for model parameters following parameter estimation in calibration 
Method 1–3. Correlation threshold for identifiability defined at 0.7 according to Frutiger et al.50. Positive and 
negative correlations are designated with + and − respectively.

Figure 6. Biomarker transformation pathway identification considering human metabolism as prior 
knowledge. Pathways for HER and 6MAM (a) and MORG, MOR (b) are highlighted. Simulation results 
are demonstrated for highlighted chemicals using calibration Method 1–3. Posterior parameter probability 
distributions (i.e., histograms) were obtained using Method 1 (in red), Method 2 (dotted blue line, upper X axis) 
and Method 3 (solid black line).
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context, biased kinetic rate uncertainty can lead to unreliable predication uncertainty. Overall, our method can 
fill such a gap by providing a practical approach to identify potential transformation pathways and transforma-
tion kinetics models. Model validation, which is an essential step to verify the accuracy of a calibrated model, is 
not presented here as part of the model identification procedure. In fact if the model fails to be validated with an 
independent dataset, the experimental design, model structure analysis and model parameters should be eval-
uated or estimated again. Nevertheless, model validation results for 6MAM have already been presented in our 
previous study38. It should be noted that, back-calculation for WBE studies is performed at sewer catchment level, 
and this requires identification of a reactive transport sewer model to reliability estimate chemicals conversions 
in the sewer during their hydraulic residence time. Hence, inclusion of uncertainties related to sewer predictions 
should be also accounted for36.

Methods
Parameter estimation method. In this study, a method is developed to propagate information through 
transformation pathway levels, including a priori parameter probability ranges and distribution. For Level 
1, a uniform prior distribution is assumed with an arbitrary parameter range based on preliminary assess-
ments. For subsequent levels, the 95%-credibility interval of the parameter estimates identified at each Level 
(e.g., kabio,HER,1 at Level 1(A1)) is considered as the uncertainty range for all subsequent Levels (e.g., Level 2(A)1 
and Level 2(B1)). The distributions of posterior parameters were identified by testing different distribution 
functions including beta, birnbaumsaunders, exponential, extreme value, gamma, generalized extreme value, 
generalized pareto, inversegaussian, logistic, loglogistic, lognormal, nakagami, normal, rician, tlocationscale and 
Weibull distributions. To identify probability distributions, the closest fit was found using allfitdist in Matlab 
R2014a (Mathworks, US).

Optimization method. Model parameters were estimated using the Bayesian optimization method 
Differential Evolution Adaptive Metropolis (DREAM(ZS))41, employing the normalized sum of squared error 
(SSE) as the objective function:
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where n is the number of measurements series, m the number of the data points in each series, ŷ is the measured 
data and y the model predictions. ŷi jmax,  and ŷi jmin,  indicate maximum and minimum of measurements, respec-
tively. Objective function included all the model outputs (i.e., simulated concentrations) and measured values up 
to each level. DREAM(ZS) was employed using 5 Markov chains in parallel with 20000–50000 maximum number 
of function evaluation for each estimation. Following optimization, only the posterior parameters that resulted in 
good agreement between model output and measured data were selected for further analysis based on Theil ine-
quality coefficient (TIC), with acceptable threshold of 0.358. Besides the DREAM algorithm - used in this study, 
other optimization approaches can also be used to estimate model parameters such, e.g., Latin Hypercube 
Sampling based Simplex (LHSS)6.

Benchmarking the model identification method developed. We benchmarked the developed 
approach (Method 1) by comparing it with two methods based on literature studies:

Method 2: Parameters are estimated in a concerted way and by omitting a priori information regarding the 
range and the parameter probability distribution – also referred to as the “lumped” estimation method. To esti-
mate the biotic model parameters, a priori information related to the abiotic parameter range is considered as 95% 
credibility interval of already estimated ones.

Method 3: Parameter values are estimated using a step-wise approach (similar as Method 1), whereby parame-
ter values in upstream levels are fixed when estimating parameters at downstream levels.

Comparison between different model calibration procedures was performed based on the statistical tests and 
criteria adopted from other studies59, 60: (i) goodness-of-fit, using the root mean squared error (RMSE) and mean 
absolute error (MAE); (ii) a measure to combine model prediction uncertainty and coverage of measurements. 
This is defined as Length to Coverage of measurements by prediction bands (ILTC). This measure is the ratio of 
average relative interval length (ARIL)59 and coverage of measurements by model uncertainty bands15; and (iv) 
parameter identifiability via parameter uncertainty and parameter correlation analysis50.

Case study of HER and COE drug biomarkers. For the development of the identification method, the 
transformations of HER and COE drug biomarkers and their respective human metabolites, 6MAM, MORG, 
MOR and NCOE were used as case study. Specific details regarding the experimental assessment and process 
model development are presented by Ramin et al.38. Briefly, the fate of drug biomarkers (partitioning to sol-
ids, abiotic and biotic transformation) was assessed in water and untreated wastewater by means of targeted 
batch experiments (14.3 °C, pH = 8.8) under anaerobic conditions. The chemical transformation kinetics were 
described by identifying process models (Supplementary Table S1) based on the Activated Sludge Modelling 
framework for Xenobiotics (ASM-X)31. The model includes kinetic parameters, namely abiotic transformation 
rates, kabio (d−1), and biotic transformation rate constants, kbio (L gTSS d−1), for each selected drug biomarkers. 
Fate model and model parameters are presented in Supplementary Tables S1 and 2.

http://S1
http://S1
http://2
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