
N
EU

RO
SC

IE
N

CE
CO

M
PU

TE
R

SC
IE

N
CE

S

Unsupervised neural network models of the ventral
visual stream
Chengxu Zhuanga,1 , Siming Yanb , Aran Nayebic , Martin Schrimpfd , Michael C. Franka , James J. DiCarlod , and
Daniel L. K. Yaminsa,e,f

aDepartment of Psychology, Stanford University, Stanford, CA 94305; bDepartment of Computer Science, The University of Texas at Austin, Austin, TX
78712; cNeurosciences PhD Program, Stanford University, Stanford, CA 94305; dBrain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139; eDepartment of Computer Science, Stanford University, Stanford, CA 94305; and fWu Tsai Neurosciences Institute, Stanford
University, Stanford, CA 94305

Edited by Marlene Behrmann, Carnegie Mellon University, Pittsburgh, PA, and approved December 9, 2020 (received for review July 7, 2020)

Deep neural networks currently provide the best quantitative
models of the response patterns of neurons throughout the
primate ventral visual stream. However, such networks have
remained implausible as a model of the development of the
ventral stream, in part because they are trained with super-
vised methods requiring many more labels than are accessible to
infants during development. Here, we report that recent rapid
progress in unsupervised learning has largely closed this gap.
We find that neural network models learned with deep unsuper-
vised contrastive embedding methods achieve neural prediction
accuracy in multiple ventral visual cortical areas that equals or
exceeds that of models derived using today’s best supervised
methods and that the mapping of these neural network models’
hidden layers is neuroanatomically consistent across the ventral
stream. Strikingly, we find that these methods produce brain-
like representations even when trained solely with real human
child developmental data collected from head-mounted cameras,
despite the fact that these datasets are noisy and limited. We
also find that semisupervised deep contrastive embeddings can
leverage small numbers of labeled examples to produce represen-
tations with substantially improved error-pattern consistency to
human behavior. Taken together, these results illustrate a use of
unsupervised learning to provide a quantitative model of a mul-
tiarea cortical brain system and present a strong candidate for
a biologically plausible computational theory of primate sensory
learning.

ventral visual stream | deep neural networks | unsupervised algorithms

The remarkable power of primate visual object recognition is
supported by a hierarchically organized series of anatom-

ically distinguishable cortical areas, called the ventral visual
stream. Early visual areas, such as primary visual cortex (V1),
capture low-level features including edges and center-surround
patterns (1, 2). Neural population responses in the highest ven-
tral visual area, inferior temporal (IT) cortex, contain linearly
separable information about object category that is robust to
significant variations present in natural images (3–5). Midlevel
visual areas such as V2, V3, and V4 are less well understood,
but appear to perform intermediate computations between sim-
ple edges and complex objects, correlating with sequentially
increasing receptive field size (6–14).

Recently, significant progress has been achieved in approxi-
mating the function of the adult primate ventral visual stream
through using deep convolutional neural networks (DCNNs), a
class of models directly inspired by many of these neurophysio-
logical observations (15, 16). After being trained to learn image
categorization tasks from large numbers of hand-labeled images,
DCNNs have yielded the most quantitatively accurate predictive
models of image-evoked population responses in early, interme-
diate, and higher cortical areas within the ventral visual stream
(17–20). The behavioral error patterns generated by these net-
works are also more consistent with those of humans and non-
human primates than alternative models (21). Notably, such

networks are not directly optimized to fit neural data, but rather
to solve behaviorally relevant tasks such as object recognition.
Strong neural and behavioral predictivity just “falls out” of these
“goal-driven” neural network models as a consequence of the
high-level functional and structural assumptions constraining
the networks’ optimization (22). Similar task-based neural net-
work optimization approaches have led to successes in modeling
the human auditory cortex (23) and aspects of motor cortex
(24). These results suggest that the principle of “goal-driven
modeling” may have general utility for modeling sensorimotor
systems.

Although this progress at the intersection of deep learning and
computational neuroscience is intriguing, there is a fundamen-
tal problem confronting the approach: Typical neural network
models of the ventral stream are built via supervised training
methods involving huge numbers of semantic labels. In particu-
lar, today’s best models of visual cortex are trained on ImageNet,
a dataset that contains millions of category-labeled images orga-
nized into thousands of categories (25, 26). Viewed as a technical
tool for machine learning, massive supervision can be accept-
able, although it limits the purview of the method to situations
with large existing labeled datasets. As a real model of bio-
logical development and learning, such supervision is highly
implausible, since human infants and nonhuman primates sim-
ply do not receive millions of category labels during development
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(27–29). Put another way, today’s heavily supervised neural-
network–based theories of cortical function may effectively proxy
aspects of the real behavioral constraints on cortical systems
and thus be predictively accurate for adult cortical neural rep-
resentations, but they cannot provide a correct explanation of
how such representations are learned in the first place. Identi-
fying unsupervised learning procedures that achieve good per-
formance on challenging sensory tasks and effective predictions
of neural responses in visual cortex would thus fill a major
explanatory gap.

Unsupervised Learning Algorithms
Substantial effort has been devoted to unsupervised learning
algorithms over several decades, with the goal of learning task-
general representations from natural statistics without high-level
labeling. We summarize these algorithms in Table 1, while more
details can be found in SI Appendix. Early progress came from
sparse autoencoding, which, when trained in shallow network
architectures on natural images, produces edge-detector–like
response patterns resembling some primate V1 neurons (30).
However, when applied to deeper networks, such methods have
not been shown to produce representations that transfer well
to high-level visual tasks or match neural responses in interme-
diate or higher visual cortex. More recent versions of autoen-
coders have utilized variational objective functions (31), with
improved task transfer performance. Unsupervised learning is
also addressed in the predictive coding framework (32), where
networks learning to predict temporal or spatial successors to
their inputs have achieved better task transfer (33) and improved
biological similarity (34).

In contrast, self-supervised methods are motivated by the
observation that high-level semantic features are implicitly cor-
related with a wide variety of nonsemantic “proxy” features,
many of which are accessible via simple image manipulations.
By learning explicitly to predict the proxy feature, the learned
representations end up creating representations that implicitly
capture higher-level features. For example, the “colorful image
colorization” objective (35) trains networks to infer per-pixel col-
ors from grayscale images in which the original color information
has been removed. While this objective might seem unrelated to
object categorization, to properly color a given pixel, the net-
work must implicitly learn how to distinguish the boundaries
and orientations of objects in an image, as well as external
scene variables such as lighting environment—building repre-
sentations that significantly outperform typical autoencoding ap-

proaches on categorization transfer. Other self-supervised proxy
objectives include image context prediction (36), in-painting
(37), and surface-normals/depth estimation (38). Self-supervised
methods are intriguingly powerful given their simplicity, but they
are also limited by the fact that low-level confounding infor-
mation can interfere (e.g., texture can often indicate color),
hurting the performance of the high-layer representations of
these networks in predicting semantic information. Moreover,
the specific choice of implicit proxy objective in any given self-
supervised method is somewhat ad hoc, and no clear frame-
work is available for generating and selecting improved proxy
objectives.

More recently, another family of unsupervised algorithms
has emerged with substantially improved transfer performance,
approaching that of fully supervised networks (39–44). These
contrastive embedding objectives optimize DCNNs to find good
embeddings of inputs into a lower-dimensional compact space.
The DCNN is treated as a function f :Rk×k→Sn , where Rk×k

is the high-dimensional Euclidean space containing k × k image
bitmaps (with k ∼ 103) and Sn is the n-dimensional unit sphere
(n =128). For any input x ∈X and any “view” v(x ) of x (typi-
cally generated by data augmentations such as image cropping),
the goal is to make the embedding f (v(x )) “unique”—that is,
far away in the embedding space from other stimuli, but close to
different views v ′of the original stimulus. Conceptually, this goal
can be achieved by optimizing a competitive loss function of the
form

L=−log
exp(f (v ′(x ))T f (v(x ))/τ)∑
i exp(f (vi(xi))

T f (v(x ))/τ)
, [1]

where τ is a small positive number and i enumerates over the
dataset.

Intuitively, by maximizing embedding distances between unre-
lated images while maintaining similarity between highly related
views, the contrastive objective achieves a form of mutual infor-
mation maximization (45). Features in higher network layers
learn to generically support any natural statistic that reliably dis-
tinguishes between sets of inputs that can be computed by the
deep network of a given depth (Fig. 1 C and D). By captur-
ing whatever natural correlations are present, the representation
is thus more likely to support any specific downstream visual
task that implicitly relies on creating distance-based boundaries
in that feature space (e.g., object recognition). This generic-
ity represents a significant contrast to the more ad hoc self-
supervised methods and underlies the improvement achieved by
the contrastive embedding methods.

Table 1. Short descriptions of optimization goals of unsupervised learning tasks

Method Description

AutoEncoder First embed the input images to lower-dimension space and then use the embedding to reconstruct the input
PredNet Predict the next frame as well some of the network responses to the next frame using previous frames
CPC Predict the embedding of one image crop using the embeddings of its spatial neighbors
Depth prediction Predict the per-pixel relative depth image from the corresponding RGB image
Relative position Predict the relative position of two image crops sampled from a 2× 2 image grid
Colorization Predict the down-sampled color information from the grayscale image
Deep cluster Embed all images into a lower-dimension space and then use unsupervised clustering results on these embeddings

as “category” labels to train the networks
CMC Embed grayscale and color information of one image into two embedding spaces and push together two corresponding

embeddings while separating them from all of the other embeddings
Instance recognition Make the embedding of one image unchanged under data augmentations while separating it from the embeddings of

all of the other images
SimCLR Aggregate the embeddings of two data-augmented crops from one image while separating them from the embeddings

of other images in one large batch
Local aggregation Aggregate the embeddings of one image to its close neighbors in the embedding space while separating them from

further neighbors

CPC represents contrastive predictive coding (33).
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Fig. 1. Improved representations from unsupervised neural networks based on deep contrastive embeddings. (A) Schematic for one high-performing deep
contrastive embedding method, the LA algorithm (41). In LA, all images were embedded into a lower-dimensional space by a DCNN, which was optimized
to minimize the distance to close points (blue dots) and to maximize the distance to the “farther” points (black dots) for the current input (red dot).
(B) (Left) Change in the embedding distribution before and after training. For each image, cosine similarities to others were computed and ranked; the
ranked similarities were then averaged across all images. This metric indicates that the optimization encourages local clustering in the space, without
aggregating everything. (Right) Average neighbor-embedding “quality” as training progresses. Neighbor-embedding quality was defined as the fraction
of 10 closest neighbors of the same ImageNet class label (not used in training). (C) Top four closest images in the embedding space. Top three rows show
the images that were successfully classified using a weighted K-nearest-neighbor (KNN) classifier in the embedding space (K = 100), while Bottom three
rows show unsuccessfully classified examples (G means ground truth, P means prediction). Even when uniform distance in the unsupervised embedding
does not align with ImageNet class (which itself can be somewhat arbitrary given the complexity of the natural scenes in each image), nearby images in the
embedding are nonetheless related in semantically meaningful ways. (D) Visualizations of local aggregation embedding space using the multidimensional
scaling (MDS) method. Classes with high validation accuracy are shown at Left and low-accuracy classes are shown at Right. Gray boxes show examples
of images from a single class (“trombone”) that have been embedded in two distinct subclusters. (E) Transfer performance of unsupervised networks on
four evaluation tasks: object categorization, object pose estimation, object position estimation, and object size estimation. Networks were first trained by
unsupervised methods and then assessed on transfer performance with supervised linear readouts from network hidden layers (Materials and Methods).
Red bars are contrastive embedding tasks. Blue bars are self-supervised tasks. Orange bars are predictive coding methods and AutoEncoder. Brown bar
is the untrained model and black bar is the model supervised on ImageNet category labels. Error bars are standard deviations across three networks
with different initializations and four train-validation splits. We used unpaired t tests to measure the statistical significance of the difference between
the unsupervised method and the supervised model. Methods without any annotations are significantly worse than the supervised model (P < 0.05), n.s.,
insignificant difference; ∗∗, significantly better results with 0.001 < P < 0.01; and ∗∗∗, significantly better results with P < 0.001 (SI Appendix, Fig. S2).

However, computing the denominator of Eq. 1 is intractable
for large datasets. Different contrastive methods differ from each
other in terms of the approach to resolving this intractability, the
definitions of what different views are, and the exact implementa-
tions of the contrastive loss form. Such methods include instance
recognition (IR) (40), contrastive multiview coding (CMC) (39),
momentum contrast (MoCo) (42), simple contrastive learning of
representation (SimCLR) (43), and local aggregation (LA) (41).
For example, the IR method involves maintaining running aver-
ages of embeddings for all inputs (called the “memory bank”)
across the training time and replacing f (v ′(x )) and f (vi(xi))
with the corresponding running-average embeddings m(x ) and
m(xi). A randomly subsampled set of items in the memory bank
is then used to approximate the denominator of Eq. 1. The Sim-
CLR algorithm uses another method to make the loss tractable,
sampling a large set of inputs (typically 4,096 examples) for
every step, and computes the loss treating the sampled set as

the whole dataset. The local aggregation method focuses more
on improving the loss formulation, encouraging uniqueness by
minimizing the distance to “close” embedding points (C(x )⊂X )
and maximizing the distance to “background” points (B(x )⊂X )
for each input (Fig. 1A). This is achieved by minimizing the
following loss:

LLA =−log

∑
xa∈C(x) exp(m(xa)

T f (v(x ))/τ)∑
xb∈B(x)∪C(x) exp(m(xb)T f (v(x ))/τ)

[2]

(See SI Appendix, Methods for more details on how the close
and background sets are defined.) After optimization for this
objective, the deep embedding forms local clusters (Fig. 1 B,
Left). These clusters meaningfully overlap with semantic con-
structs even though no labels were used to create them (Fig. 1
B, Right and C).
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Contrastive Embedding Methods Yield High-Performing
Neural Networks
To evaluate these unsupervised learning algorithms, we trained
representatives of each method described above, using a
standard ResNet18 network architecture (46). Training data
were drawn from ImageNet (24), a large-scale database of hand-
labeled natural images. We chose this combination of archi-
tecture and training set because, when trained in a supervised
manner, it has been previously shown to achieve high perfor-
mance on a variety of visual tasks (46, 47, 48), as well as neural
response predictivity (49). In our unsupervised training, the
category labels accompanying each ImageNet image were set
aside. We found that our unsupervised representations achieved
ImageNet test performance in line with previously reported
results (SI Appendix, Fig. S1), validating the soundness of our
implementations.

We then examined the power of these unsupervised represen-
tations for supporting a variety of visual tasks outside the domain
of images on which training took place. Using a dataset of images
that has previously been used to assess both neural and behav-
ioral consistency of (supervised) deep neural networks (17, 21),
we evaluated transfer performance on an object categorization
task, as well several object-centric visual tasks independent of
object category, including object position localization, size esti-
mation, and pose estimation. As all these tasks have proved to
be well supported by neural responses in the ventral visual cor-
tical areas (50), only those computation models that effectively
transfer to all these tasks are viable candidates for computational
models of the ventral visual pathway.

Transfer performance was assessed by adding a single fully
connected linear readout layer on top of any given layer of each
pretrained unsupervised representation and then training only
the parameters of that readout layer on the desired task. Softmax
outputs were used for categorization tasks, while raw regression
outputs were used for the continuous estimation tasks. We report
cross-validated performance values on held-out images not used
during either unsupervised training of the original deep network
or the supervised readout layer.

Across all evaluated objective functions, contrastive embedding
objectives (red bars in Fig 1E) showed substantially better trans-
fer than other unsupervised methods, including self-supervised
objectives (blue bars), predictive coding methods (orange bars),
and autoencoders, approaching the performance of the super-
vised model. In fact, the best of the unsupervised methods (Sim-
CLR and local aggregation) equaled or even outperformed the
category-supervised model in several tasks, including object posi-
tion and size estimation. Unsurprisingly, all unsupervised meth-
ods are still somewhat outperformed by the category-supervised
model on the object categorization task. (A gap between unsu-
pervised and category-supervised networks existed for the pose
estimation task, most likely due to the fact that the ground-truth
object pose is actually defined on a category-by-category basis
with respect to a category-specific “canonical pose.” See details
of the task definitions in SI Appendix.

Because different tasks could in theory be best supported by
different layers of the unsupervised networks, we report perfor-
mance for the best layer (Fig 1E) as well as all network layers
(SI Appendix, Fig. S3). However, we found that the higher lay-
ers of the trained networks achieved better performance in all
of the object-centric tasks compared to the lower layers (SI
Appendix, Fig. S3). This finding is consistent with that in Hong et
al. (50), where it is shown that decoding performance from neu-
ral responses is better in higher ventral visual for both category
and category-orthogonal tasks.

Taken together, these results suggest that the deep contrastive
embedding methods have achieved a generalized improve-
ment in the quality of the visual representations they create,

suggesting their potential as computation models for the ventral
visual cortex.

Contrastive Embedding Models Capture Neural Responses
throughout Ventral Visual Cortex
To determine whether the improvement of unsupervised meth-
ods on task transfer performance translates to better neural
predictivity, we compared each unsupervised neural network
described in the previous section to neural data from macaque
V1, V4, and IT cortex. In this analysis, we used a previously
established technique for mapping artificial network responses to
real neural response patterns (17, 51). Specifically, we fit a regu-
larized linear regression model from network activations of each
unsupervised model to neural responses collected from array
electrophysiology experiments in the macaque ventral visual
pathway (Fig. 2A). We then report the noise-corrected cor-
relation between model and neural responses across held-out
images, for the best-predicting layer for each model (Fig. 2B).
Comparison to area V1 was made using neural data collected
by Cadena et al. (19), while comparison to areas V4 and IT was
made using data collected by Majaj et al. (3, 52). Although these
two datasets were collected with different experimental designs,
they have both previously been used to evaluate (supervised)
deep neural network models, yielding consistent results (17, 19)
(see SI Appendix, Methods for more details). The image sets on
which V4 and IT neural responses are predicted are quite distinct
both in type and content from the training data for the unsuper-
vised networks (ImageNet), representing a strong generalization
test for the representations. We also compare the unsupervised
networks both to the supervised network, which represents a pre-
viously known positive control, and to an untrained model, which
represents an objective function-independent architecture-only
baseline. Given that network architecture remains fixed across
all objective functions, the outcome isolates the impact of choice
of objective function on neural predictivity.

Overall, the unsupervised methods that had higher task trans-
fer performance predicted neural responses substantially bet-
ter than less-performant unsupervised methods. In the first
cortical visual area V1, all unsupervised methods were signif-
icantly better than the untrained baseline at predicting neu-
ral responses, although none were statistically better from the
category-supervised model on this metric. In contrast, in inter-
mediate cortical area V4, only a subset of methods achieved par-
ity with the supervised model in predictions of responses. (Inter-
estingly, the deep autoencoder was not better than the untrained
model on this metric and both were widely separated from the
other trained models.) For IT cortex at the top of the ven-
tral pathway, only the best-performing contrastive embedding
methods achieved neural prediction parity with supervised mod-
els. Among these methods, the local aggregation model, which
has recently been shown to achieve state-of-the-art unsupervised
visual recognition transfer performance (41), also achieved the
best neural predictivity. In fact, LA exhibits comparable V1,
V4, and IT predictivity to its supervised counterpart (P = 0.10,
0.11, and 0.36 correspondingly, computed using bootstrapping
methods which repeatedly sampled neurons with replacement
for 10,000 times; see SI Appendix, Fig. S4 for details and other
significance results). Similarly, good neural predictivity is also
achieved by two other contrastive embedding methods, instance
recognition and SimCLR. More specifically, IR shows compara-
ble V1, V4, and IT predictivity to the supervised model (P =
0.45, 0.12, and 0.25 correspondingly), although LA surpasses it
on both V4 (P = 0.013) and IT (P = 0.021) predictivity, which
is consistent with the difference of these two methods in the
transfer task performance. Consistent with the result that Sim-
CLR achieves comparable or even better transfer task perfor-
mance compared to the LA, SimCLR also shows comparable IT
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Fig. 2. Quantifying similarity of unsupervised neural networks to visual cortex data. (A) After being trained with unsupervised objectives, networks were
run on all stimuli for which neural responses were collected. Network unit activations from each convolutional layer were then used to predict the V1, V4,
and IT neural responses with regularized linear regression (51). For each neuron, the Pearson correlation between the predicted responses and the recorded
responses was computed on held-out validation images and then corrected by the noise ceiling of that neuron (Materials and Methods). The median of
the noise-corrected correlations across neurons for each of several cortical brain areas was then reported. (B) Neural predictivity of the most-predictive
neural network layer. Error bars represent bootstrapped standard errors across neurons and model initializations (Materials and Methods). Predictivity of
untrained and supervised categorization networks represents negative and positive controls, respectively. Statistical significance of the difference between
each unsupervised method and the supervised model was computed through bootstrapping methods. The methods with comparable neural predictivity
are labeled with “n.s.,” and other methods without any annotations are significantly worse than the supervised model (P < 0.05) (SI Appendix, Fig. S5). (C)
Neural predictivity for each brain area from all network layers, for several representative unsupervised networks, including AutoEncoder, colorization, and
local aggregation.

predictivity to both the supervised (P = 0.49) and the LA (P =
0.37) models, but its V1 and V4 predictivities are significantly
worse than those of the supervised (P = 0.007 and 0.0001) and
the LA (P = 0.022 and P < 0.0001) models. This predictivity gap
might be due to the fact that SimCLR and LA differ significantly
in how the losses are defined (SI Appendix, Methods). To ensure
that our results are not specific to the chosen neural network
architecture, we also evaluated several alternative architectures
and found qualitatively similar results (SI Appendix, Fig. S10).

To further quantify the match between the computational
models and brain data, we also investigated which layers of
DCNNs best matched cortical brain areas (Fig. 2C and SI
Appendix, Fig. S5). Deep contrastive embedding models also

show good model-layer-to-brain-area correspondence, with
early-layer representations best predicting V1 neural responses,
midlayer representations best predicting V4 neural responses,
and higher-layer representations best predicting IT neural
responses. Although only the local aggregation model is shown
in Fig. 2C, other deep contrastive embedding models show
similar model–brain correspondence (SI Appendix, Fig. S5).
The colorization model, which represents unsupervised mod-
els with slightly lower task performance and neural predictivity,
shows good model–brain correspondence for both V1 and V4
areas, but its IT neural predictivity starts to drop at an ear-
lier layer compared to the deep contrastive embedding and the
supervised models. In contrast, the AutoEncoder model and
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other unsupervised models with much lower task performance
and neural predictivity exhibit even less accurate model–brain
correspondence, while the untrained baseline does not show
the correct correspondence at all. This conclusion is consis-
tent across multiple quantitative metrics of mapping consis-
tency including optimal layer match (Fig. 2C and SI Appendix,
Fig. S5) as well as best predicted layer ratio metric (SI Appendix,
Fig. S6).

In addition to the quantitative metrics described above, we
also assessed models qualitatively. DCNNs trained with different
unsupervised loss functions exhibit first-layer filters with Gabor
wavelet-like tuning curves like those observed in V1 data, con-
sistent with their good neural predictivity for V1 neurons (SI
Appendix, Fig. S7). The LA model, like the category-supervised
model, also exhibited color-opponent center-surround units con-
sistent with empirical observations (53, 54). Additionally, we
examined optimal stimuli driving neurons in intermediate and
higher model layers using techniques similar to those used in
recent model-driven electrophysiology experiments (55). Con-
sistent with qualitative descriptions of receptive fields in the
literature on V4 cortex (14), we found that unsupervised models
with good quantitative match to V4 data exhibit complex tex-
tural patterns as optimal stimuli for their most V4-like layers
(SI Appendix, Fig. S8). In contrast, the optimal stimuli driv-
ing neurons in the most IT-like model layers appear to contain
fragments of semantically identifiable objects and scenes and

large-scale organization (SI Appendix, Fig. S9), echoing qualita-
tive neurophysiological findings about IT neurons (56).

Deep Contrastive Learning on First-Person Video Data from
Children Yields Competitive Representations
Although we have shown that deep contrastive embedding
models learn ventral-stream–like representations without using
semantic labels, the underlying set of images used to train these
networks—the ImageNet dataset—diverges significantly from
real biological datastreams. For example, ImageNet contains sin-
gle images of a large number of distinct instances of objects in
each category, presented cleanly from stereotypical angles. In
contrast, real human infants receive images from a much smaller
set of object instances than ImageNet, viewed under much nois-
ier conditions (57). Moreover, ImageNet consists of statistically
independent static frames, while infants receive a continuous
stream of temporally correlated inputs (58). A better proxy of
the real infant datastream is represented by the recently released
SAYCam (59, 60) dataset, which contains head-mounted video
camera data from three children (about 2 h/wk spanning ages 6
to 32 mo) (Fig. 3B).

To test whether deep contrastive unsupervised learning is suf-
ficiently robust to handle real-world developmental videostreams
such as SAYCam, we implemented the video instance embed-
ding (VIE) algorithm, a recent extension of LA to video that
achieves state-of-the-art results on a variety of dynamic visual
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Fig. 3. Learning from real-world developmental datastreams. (A) Schematic for VIE method. Frames were sampled into sequences of varying lengths and
temporal densities. They were then embedded into lower-dimensional space using static (single image) or dynamic (multiimage) pathways. These pathways
were optimized to aggregate the resulting embeddings and their close neighbors (light brown points) and to separate the resulting embeddings and their
farther neighbors (dark brown points). (B) Examples from the SAYCam dataset (59), which was collected by head-mounted cameras on infants for 2 h each
week between ages 6 and 36 mo. (C) Neural predictivity for models trained on SAYCam and ImageNet. n.s., the difference is not significant (P > 0.05).
∗∗∗ and ∗, significant difference (P = 0.0008 for V4 and P = 0.023 for IT). Error bars represent bootstrapped standard errors across neurons and model
initializations. Statistical significance of the difference was computed through bootstrapping methods (SI Appendix, Fig. S12).
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tasks, such as action recognition (61) (Fig. 3A). This algorithm
extends LA through treating samples from the same temporal
scenario (typically a 10-s video) as different views of the input
stimuli. VIE also trains a dynamic model to better capture the
motion information in a short clip (dynamic stream in Fig. 3A),
in addition to a static model for a single frame (static stream
in Fig. 3A). These two streams are independently trained with
separate network weights and embedding space. Therefore, the
same video may be encouraged to cluster with different videos
by the two models (Fig. 3 A, Right). Indeed, it has been shown
that the static stream better captures object-related informa-
tion, while the dynamic stream better captures action-related
information (61). Moreover, combining both streams yields an
even better model on capturing both object- and action-related
information.

After training the two stream models on SAYCam, we
found that representations learned by VIE are highly robust,
approaching the neural predictivity of those trained on ImageNet
(Fig. 3C). The temporally aware VIE-trained representation was
significantly (although modestly) better than a purely static net-
work trained with LA on SAYCam frames, while both were
very substantially better than PredNet, a recent biologically
inspired implementation of predictive coding (34). These results
show that deep spatiotemporal contrastive learning can take
advantage of noisy and limited natural datastreams to achieve
primate-level representation learning.

A small but statistically significant gap between the SAYCam-
trained and ImageNet-trained networks remains in both neural
predictivity and task performance (SI Appendix, Fig. S11), pos-
sibly due to limitations either in the dataset (SAYCam was
recorded for only 2 h/wk, representing a small fraction of the
visual data infants actually receive) or in VIE itself. To inves-
tigate how this gap can be bridged, we also tested a VIE
model trained on Kinetics-400 (SI Appendix, Fig. S12), a video
dataset with short videos collected from YouTube for training
action recognition models (62). VIE-Kinetics showed signifi-
cantly better neural predictivity and task performance compared
to VIE-SAYCam and comparable performance to that of the
ImageNet-trained models (SI Appendix, Figs. S11 and S12). This
finding suggests that a substantial part of the remaining gap is
due to limitations in the SAYCam dataset.

Partial Supervision Improves Behavioral Consistency
While infants and nonhuman primates do not receive large num-
bers of semantic labels during development, it is likely that
they do effectively receive at least some labels, either from
parental instruction or through environmental reward signals.
For human infants, object labels are provided by parents from
birth onward, but the earliest evidence for comprehension of
any labels is at roughly 6 to 9 mo of age (27), and compre-
hension of most common object labels is low for many months
thereafter (28). However, visual learning begins significantly ear-
lier at, and indeed before, birth (63). This observation suggests
that a period of what might be characterized as purely unsu-
pervised early visual learning could be followed by a period of
learning partially from labels. To capture this idea, we turned
to semisupervised learning, which seeks to leverage small num-
bers of labeled datapoints in the context of large amounts of
unlabeled data.

As with unsupervised learning, the power of semisupervised
learning algorithms has developed dramatically in recent years,
benefiting from advances in understanding of neural network
architectures and loss functions. A state-of-the-art semisuper-
vised learning algorithm, local label propagation (64) (LLP),
builds directly on the contrastive embedding methods. Like those
methods, LLP embeds datapoints into a compact embedding
space and seeks to optimize a particular property of the data
distribution across stimuli, but additionally takes into account

the embedding properties of sparse labeled data (Fig. 4A). This
algorithm first uses a label propagation method to infer the
pseudolabels of unlabeled images from those of nearby labeled
images. The network is then jointly optimized to predict these
inferred pseudolabels while maintaining contrastive differenti-
ation between embeddings with different pseudolabels. As the
embedding updates, it leads to more accurate pseudolabels,
which in turn further improve the representation. Because pseu-
dolabels can be shared by images that are distant from each other
in the embedding space, LLP allows for global aggregation that
is unavailable in the purely unsupervised context. (See details of
the LLP loss function in SI Appendix.)

Here, we implemented both LLP and an alternative semisu-
pervised learning algorithm, the mean teacher (65) (MT) (SI
Appendix, Fig. S14). As precise estimates of the number of object
labels available to children and the proportion of these that
unambiguously label a specific object do not exist, we trained
both semisupervised models on the ImageNet dataset with 1.2
million unlabeled and a range of supervision fractions, corre-
sponding to different estimates of the number of the object
speech–vision copresentations infants perceive and comprehend
within the first year of life (29). We also implemented a simple
few-label control, in which standard supervision was performed
using only the labeled datapoints.

For each trained model, we then compared the object recog-
nition error patterns to those in humans and primates, following
the methods of Rajalingham et al. (21), who show that category-
supervised DCNNs exhibit error patterns with improved
consistency to those measured in humans. We first extracted
“behavior” from DCNNs by training linear classifiers from the
penultimate layer of the neural network model and measured the
resulting image-by-category confusion matrix. An analogous con-
fusion matrix was then independently measured from humans
in large-scale psychophysical experiments (Fig. 4B). The behav-
ioral consistency between DCNNs and humans is quantified as
the noise-corrected correlation between these confusion matri-
ces (SI Appendix, Methods). We evaluated behavioral consistency
for semisupervised models as well as the unsupervised models
described above. Using just 36,000 labels (corresponding to 3%
supervision), both LLP and MT lead to representations that are
substantially more behaviorally consistent than purely unsuper-
vised methods, although a gap to the supervised models remains
(Fig. 4D; see SI Appendix, Fig. S13 for t-test results). These
semisupervised models, especially the LLP model, also achieve
slightly better or comparable neural predictivity and task per-
formance results compared to the LA model (SI Appendix, Figs.
S11 and S12). Interestingly, although the unsupervised LA algo-
rithm is less consistent than either of the semisupervised meth-
ods that feature an interaction between labeled and unlabeled
data, it is more consistent than the few-label control. We find
broadly similar patterns with different amounts of supervision
labels (Fig. 4 E and F). These results suggest that semisuper-
vised learning methods may capture a feature of real visual
learning that builds on, but goes beyond, task-independent self-
supervision.

Although the best unsupervised model achieves comparable
neural predictivity to the supervised model, there is still a sig-
nificant gap between the human behavior consistency of the
unsupervised and the supervised models. One possible expla-
nation of this gap is that categorization behaviors are better
supported by a downstream area of IT, rather than area IT itself.
Testing this explanation is an intriguing subject for future work.

Discussion
We have shown that deep contrastive unsupervised embedding
methods accurately predict image-evoked neural responses in
multiple visual cortical areas along the primate ventral visual
pathway, equaling the predictive power of supervised models.
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Fig. 4. Behavioral consistency and semisupervised learning. (A) In the LLP method (64), DCNNs generated an embedding and a category prediction for
each example. The embedding (?) of an unlabeled input was used to infer its pseudolabel considering its labeled neighbors (colored points) with voting
weights determined by their distances from ? and their local density (the highlighted areas). DCNNs were then optimized with per-example confidence
weightings (color brightness) so that its category prediction matched the pseudolabel, while its embedding was attracted toward the embeddings sharing
the same pseudolabels and repelled by the others. (B) To measure behavioral consistency, we trained linear classifiers from each model’s penultimate layer
on a set of images from 24 classes (21, 49). The resulting image-by-category confusion matrix was compared to data from humans performing the same
alternative forced-choice task, where each trial started with a 500-ms fixation point, presented the image for 100 ms, and required the subject to choose
from the true and another distractor category shown for 1,000 ms (21, 49). We report the Pearson correlation corrected by the noise ceiling. (C) Example
confusion matrices of human subjects and model (LLP model trained with 36,000 labels). Each category had 10 images as the test images for computing
the confusion matrices. (D) Behavioral consistency of DCNNs trained by different objectives. Green bars are for semisupervised models trained with 36,000
labels. “Few-Label” represents a ResNet-18 trained on ImageNet with only 36,000 images labeled, the same amount of labels used by MT and LLP models.
Error bars are standard variances across three networks with different initializations. (E and F) Behavioral consistency (E) and categorization accuracy in
percentage (F) of semisupervised models trained with differing numbers of labels.

Moreover, the mapping from the layers of these unsupervised
networks to corresponding cortical areas is neuroanatomically
consistent and reproduces several qualitative properties of the
visual system. We have also shown that when trained on noisy
and limited datasets arising from the real developmental experi-
ence of children, deep contrastive embeddings learn strong visual
representations that achieve good neural predictivity on differ-
ent areas across the ventral visual stream and show reasonable
performance on downstream visual tasks, rivaling those cre-
ated from clean hand-curated data. These unsupervised models

represent a dramatic improvement compared to strong alter-
native models of biologically plausible learning, like PredNet
(34). Moreover, training with a semisupervised learning objective
allowing incorporation of small amounts of supervision creates
networks with improved behavioral consistency with humans and
nonhuman primates. Taken together, these results suggest that
an important gap in the promising but incomplete goal-driven
neural network theory of visual cortex may be close to resolution.

Contrastive embedding objectives generate image embeddings
that remain invariant under certain “viewpoints” while being
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distinguishable from others. By minimizing these objectives,
networks effectively discover nonprespecified high-level image
statistics that support reliable and generalizable distinctions
(45). This feature distinguishes the deep contrastive embedding
approach from earlier unsupervised models such as autoen-
coders or self-supervised objectives, which optimized low-level
or narrowly defined image statistics and, as a result, learned less
powerful representations. Because deep contrastive embedding
methods are quite generic, and do not require the implementa-
tion of strong domain-specific priors (e.g., the presence of visual
objects in three-dimensional scenes), the application of similar
methods might further the understanding in other sensorimotor
cortical domains where supervised neural networks have proved
useful as predictors of neural responses (23, 24).

Our results can be taken as a statement about the inductive
biases that are needed to build an effective high-performing
but biologically plausible visual learning system (66), suggest-
ing that some form of contrastive objective function might be
implemented by primates as a key “bias” shaping real learning
during development. Given the simplicity of the contrastive loss
formula, it is not hard to imagine that it could be implemented
by a real neural circuit driving plasticity based on both similar-
ity and differentiation (67). Conceptually, this neural learning
circuit would complement the neural system to be learned (e.g.,
the ventral pathway), computing and relaying errors back to the
system as learning occurs, either rapidly in real time (68) or
possibly with delayed batching as part of memory consolidation
(69). Following up on these possibilities will require the detailed
comparison of real-time empirical representation changes dur-
ing learning (67, 68) to fine-scale model updates during training.
Whether such a mechanism is anatomically separate from inter-
mingling with the learning system is also a key question for future
investigation.

Although our results help clarify a key problem in the mod-
eling of sensory learning, many major questions remain. The
neural predictivity of the best unsupervised method only slightly
surpasses that of supervised categorization models. Moreover,
the detailed pattern of neural predictivities across units of the
best unsupervised models also generally aligns with that of the
supervised models (SI Appendix, Fig. S15). One possible expla-
nation for these outcomes is that even if the organism cannot
know category labels explicitly, visual categorization might still
be a good description of the larger evolutionary constraint that
the primate visual system is under. If so, the unsupervised
algorithm is best understood as a developmentally accessible
proxy for how other inaccessible representational goals might
be “implemented” by the organism. A more prosaic alternative
explanation is that the neurophysiological data used in this study
may simply not have the power to resolve differences between
the supervised and best unsupervised models.

A third possibility is that better unsupervised learning meth-
ods yet to be discovered will achieve improved neural predictivity
results, substantially surpassing that of categorization models. It
is important to note that finding such improved models remains
necessary: Both for neural response pattern and behavioral con-
sistency metrics, our results show that there remains a substantial
gap between all models (supervised and unsupervised) and the
noise ceiling of the data: there is reliable neural and behavioral
variance that no model correctly predicts. These quantitative
gaps may be related to other qualitative inconsistencies between
neural network models and human visual behaviors, includ-
ing the latter’s susceptibility to adversarial and “controversial”
examples (70) and their different texture-vs.-shape biases (71).

How can these gaps be bridged? Deep learning systems in
neuroscience can be thought of as having several basic compo-
nents (22, 72): an architecture class capturing neuroanatomical
knowledge; an objective function capturing hypotheses about the
signals driving learning; a training dataset capturing the environ-

ment in which the system learns; and a learning rule for actually
converting learning signals into system updates, capturing neural
plasticity. Our work addresses only the second and third of these
four components—how the visual system might develop post-
natally via natural visual experience, replacing an effective but
implausible learning signal (heavily supervised categorization in
a curated dataset of still images) with one that an organism
might more plausibly compute in the real world (unsupervised
or semisupervised contrastive embedding loss operating on real
developmental videos).

To properly address these very important objective-function
and dataset questions in the present work, we limited our
investigation to previously validated feedforward network archi-
tectures to ensure that any results we obtained could be
directly attributable to the loss function rather than architec-
tural changes. However, while feedforward networks might be
sufficient to predict temporal averages during the first volley
of stimulus-evoked neural responses, they are insufficient to
describe the response dynamics of real neurons (73). Recent
work has begun to integrate into neural networks analogs of
the recurrences and long-range feedbacks that have been ubiq-
uitously observed throughout the visual system, toward better
modeling neural dynamics (74, 75). This work has been in the
supervised context, so a natural future direction is to con-
nect these architectural improvements with the unsupervised
objectives explored here.

As for the learning rule, our work still uses standard back-
propagation for optimization (albeit with unsupervised rather
than supervised objective functions). Backpropagation has sev-
eral features that make it unlikely to be implementable in real
organisms (76). Historically, the question of biologically plau-
sible unsupervised objective functions (e.g., learning targets) is
intertwined with that of biologically plausible learning rules (e.g.,
the mechanism of error-driven update). Some specific unsuper-
vised objective functions, such as sparse autoencoding, can be
optimized with Hebbian learning rules that do not require high-
dimensional error feedback (77). However, this intertwining may
be problematic, since the more effective objective functions that
actually lead to powerful and neurally predictive representations
do not obviously lend themselves to simple Hebbian learning. We
thus suggest that these two components—optimization target and
mechanism—may be decoupled and that such decoupling might
be a principle for biologically plausible learning. This hypothe-
sis is consistent with recent work on more biologically plausible
local learning rules that effectively implement error feedback
(78). It would be of substantial interest to build networks that use
these learning rules in conjunction with unsupervised contrastive-
embedding objective functions and recurrent convolutional archi-
tectures. If successful, this would represent a much more complete
goal-driven deep-learning theory of visual cortex.

Better training environments will also be critical. Although
SAYCam is more realistic than ImageNet, there are still many
important components of real developmental datastreams miss-
ing in SAYCam, including (but not limited to) the presence of in
utero retinal waves (63), the long period of decreased visual acu-
ity (79), and the lack of nonvisual (e.g., auditory and somatosen-
sory) modalities that are likely to strongly self-supervise (and
be self-supervised by) visual representations during development
(80). Moreover, real visual learning is likely to be at some level
driven by interactive choices on the part of the organism, requir-
ing a training environment more powerful than any static dataset
can provide (81, 82).

Ultimately, a theory of visual postnatal development should
go beyond just predicting neural responses in adult animals and
also provide a model of changes over the time line of postna-
tal development. The long-term learning dynamics of any model
generate trajectories of observables that could in principle be
compared to similar observables measured over the course of
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animal development. The concept of such developmental trajec-
tory comparison is illustrated in SI Appendix, Fig. S16, where we
show the trajectories of observables including orientation selec-
tivity, task performance, and an analog of neural maturation rate,
over the course of “in silico development.” Treating each dis-
tinct unsupervised objective function as a different hypothesis
for the learning target of visual development, the comparison
of these curves can be seen to successfully distinguish between
the various hypotheses, even when the final “adult” state may
not easily separate them. To the extent that measurements of
these (or other) observables can be made over the course of
biological development, it would then be possible to determine
which model(s) are closest to the true developmental trajectory
or to convincingly falsify all of them. The specific observables
that we measure here in silico may not be easily experimentally
accessible, as developmental neuroscience remains technically
challenging. However, our results suggest a strong motivation
for turning a recent panoply of exciting technical neuroscience
tools (83, 84) toward the developmental domain. In the con-
text of model-driven experimental designs, such measurements
would be of great value not only to provide insights into how
visual learning proceeds, but also to inspire better unsupervised
or semisupervised learning algorithms.

Materials and Methods
Neural Network Training. ResNet-18 was used as the network architecture
for all results reported in the main text, for all unsupervised objective func-
tions except the PredNet method, as a special architecture is required for
PredNet. Three networks with different initializations were trained for each
objective function. Most objective functions were trained by adding an addi-
tional header upon the visual backbone and then optimizing the whole
network with the sum of the objective-specific loss and a weight regular-
ization loss. Table 1 provides short summaries of the objective functions and
mathematical details of each can be found in SI Appendix. After training
the networks, we fixed the weights of the model and used them only in
the downstream task performance, neural predictivity, and human behavior
consistency evaluations.

Neural Response Datasets. The neural responses dataset for the V1 area
was collected by Cadena et al. (19) through presenting stimulus to two
awake and fixating macaques and recording the neural responses using a
linear 32-channel array. The stimulus consisted of 1,450 ImageNet images
and texture-like synthesized images matching the outputs of different lay-
ers of an ImageNet trained deep neural network toward these ImageNet
images. The images were presented for 60 ms each in one trial without
blanks and centered on the population receptive field of the neurons. Spike
counts between 40 and 100 ms after image presentation were extracted
and averaged across trials to get the final responses, as the response latency
of these neurons is typically 40 ms. The neural responses dataset for V4
and IT areas was collected by Majaj et al. (3) by presenting stimuli to two
fixating macaques, on which three arrays of electrodes were implanted
with one array in area V4 and the other two arrays in area IT. The stim-
uli were constructed by rendering one of 64 three-dimensional objects

belonging to eight categories at a randomly chosen position, pose, and size
on a randomly chosen naturalistic photograph as background. These images
were presented to the primates for 100 ms with 100 ms of gap between
images. From the three arrays, the neural responses of 168 IT sites and 88
V4 sites were collected. The averaged responses between 70 and 170 ms
after stimuli presentation were used as this window contained most of the
object category-related information (17). More details can be found in SI
Appendix.

Downstream Task Performance Evaluation. We sent the stimulus used for the
V4 and IT neural response datasets to the pretrained visual backbones as
inputs and collected the outputs from all intermediate layers. A principal
component analysis-based dimension reduction method was then applied
to the outputs of each layer to get a 1,000-dimensional output. For the cat-
egorization task, we fitted a linear support vector classifier for each layer to
predict the category of the object in the input image. For the other tasks,
a linear support vector regression model was fitted instead to predict the
corresponding targets. The fitting was done on the train splits and eval-
uated on the validation splits. The best performance across all layers was
reported for each method. The details about how the fitting was done and
the meanings of the prediction targets can be found in SI Appendix.

Neural Predictivity Evaluation. We sent the same stimulus used for the neural
response datasets to the pretrained visual backbones as inputs and col-
lected the outputs from all intermediate layers. A linear regression model
was fitted from the responses of each layer to predict the neural responses.
Following Klindt et al. (51), we reduced the number of regression weights
through factorizing the weight matrices into spatial and channel weight
matrices. The Pearson correlation was computed between the predicted and
the target neural responses. This correlation was further corrected by the
noise ceiling of that neuron. The median value of the corrected correlations
of all neurons within one cortical area was reported for one layer as its
neural predictivity for this area. The best predictivity across all layers was
reported for one method. More details can be found in SI Appendix.

Human Behavior Consistency Evaluation. The stimuli used in this evaluation
were generated by putting 24 objects in front of high-variant and indepen-
dent naturalistic backgrounds (21). For each pretrained network, a linear
classifier was trained from the penultimate layer on the training split to
predict the category. The resulting confusion matrix on the validation split
was compared to that of human subjects, collected by Rajalingham et al.
(21). The Pearson correlation between the matrices was computed and then
corrected by the noise ceiling. More details can be found in SI Appendix.

Data Availability. Codes and data have been deposited in GitHub (https://
github.com/neuroailab/unsup vvs).
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