Data in Brief 20 (2018) 1917-1923

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on evaluation of AQI for different season in Kerman, Iran, 2015

Zoha Heidarinejad^a, Ali Kavosi^b, Hassan Mousapour^a, Mohammad Reza Daryabor^a, Majid Radfard^c, Anna Abdolshahi^{d,*}

^a Department of Environmental Health Engineering, Faculty of Health. Hormozgan University of Medical Sciences, Bandar Abbas, Iran

^b Nursing Research Center, Faculty Member Golestan University of Medical Sciences, Gorgan, Iran

^c School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran

^d Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran

ARTICLE INFO

Article history: Received 7 March 2018 Received in revised form 21 August 2018 Accepted 29 August 2018 Available online 12 September 2018

Keywords: Air pollution AQI Season Kerman Iran

ABSTRACT

The purpose of this data, was to evaluate the air quality index of Kerman city in different season of 2015. The data showed that the PM_{10} and O_3 were highest in the winter season and $PM_{2.5}$, CO, SO_2 and NO_2 in the spring season as the air quality indexes. The highest number of unhealthy days was observed in spring in relation to $PM_{2.5}$ and PM_{10} pollutants. The data showed that 33 and 9 days of the spring season had unfavorable conditions in relation $PM_{2.5}$ and PM_{10} pollutants respectively. Therefore, the pollutant responsible for air pollution in Kerman was $PM_{2.5}$. By comparing the air quality index in different seasons of 2015 in terms of different pollutants, it was found that in most of the seasons, Kerman has a desirable air quality index.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.

E-mail address: dr.aabdolshahi@gmail.com (A. Abdolshahi).

https://doi.org/10.1016/j.dib.2018.08.216

^{2352-3409/© 2018} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Subject area	Environmental health engineering
More specific subject area	Air pollution
Type of data	Tables, Figures
How data was acquired	Collect raw data of air pollutants concentration from a Kerman
	Environmental Protection Agency
Data format	Raw, Analyzed
Experimental factors	Processing Concentration measurement of pollutants by using air quality index
Experimental features	The momentary concentration of air contaminants was detected by
	analyzers Ecotec and Horiba in 2015.
Data source location	Kerman, Iran
Data accessibility	The data are within this paper

Specifications table

Value of the data

• The data can be used for policy maker in environmental management and ministry of health in Iran.

The data showed that particulate matter were the responsible pollutant in the city Therefore, the essential actions must be taken to control such pollution and to minimize the community exposure to this pollutant.

• The data showed that precautionary measures be taken to control air pollution in terms of particle size and to reduce the level of contact with dust particles in the city of Kerman.

1. Data

Data presented here describe the air quality index for CO, PM₁₀, O₃, PM_{2.5}, SO₂ and NO₂ in different season of 2015 in Kerman, Iran (Tables 2–7). Fig. 2 shows the study area and the sampling points. Table 8 shows Kerman Meteorological Data by Month in 2015. Source of the particle in the Kerman city (NOAA hysplit model) presented in Fig. 1.

Due to the Alborz mountain range in the West of Kerman so often dust originating from the north of the town of Dasht-e Kavir Lut is. The following figure is taken from the US meteorological model that determines the source of dust.

2. Experimental design, materials and methods

2.1. Study area description

Kerman is located in the southeastern and central parts of Iran. Kerman city is located between 30° 17′ 2.176″ north latitude and 57° 5′ 0.106″ east Longitude. Kerman city is limited to the provinces of Yazd and southern Khorasan, south of Hormozgan province, east to Sistan and Baluchistan province and west to Fars province. The city is influenced by various external and local winds. These winds make a lot of climate change in the city of Kerman [Fig. 2].

2.2. Data collection

At first, the pollutant concentrations obtained from the Environmental Protection Agency (EPA) of Kerman city were validated and data with sufficient validity according to the Environmental

Table 1			
Breakpoints	for	the	AQI.

Breakpoints	eakpoints							AQI category
O ₃ (ppm) 8 h	O ₃ (ppm) 1 h	PM _{2.5} (µg/m ³) 24 h	$PM_{10}(\mu g/m^3)24h$	CO (ppm) 8 h	SO ₂ (ppm) 24 h	NO ₂ (ppm) 1 h		
0–0.059	-	0-15.4	0–54	0-4.4	0-0.034	0-0.053	0-50	Good
0.060-0.075	-	15.5-35	55-154	4.5-9.4	0.035-0.144	0.054-0.1	51-100	Moderate
0.076-0.095	0.125-0.164	35.1-65.4	155-254	9.5-12.4	0.145-0.224	0.101-0.360	101-150	Unhealthy for Sensitive Groups
0.096-0.115	0.165-0.204	65.5-150.4	255-354	12.5-15.4	0.225-0.304	0.361-0.64	151-200	Unhealthy
0.116-0.374	0.205-0.404	150.5-250.4	355-424	15.5-30.4	0.305-0.604	0.65-1.24	201-300	Very Unhealthy
	0.405-0.504	250.5-350.5	425-504	30.5-40.4	0.605-0.804	1.25-1.64	301-400	Hazardous
*	0.505-0.604	350.5-500.4	505-604	50.5-50.5	0.805-1.004	1.65-2.04	401-500	

* When the 8-h ozone concentration exceeds 0.374 ppm, the AQI, 301 or higher should be calculated using a 1 h ozone concentration.

1	9	2	0

Table 2

Compariso	on of hea	lth quality o	distribution for air CO in Kerman c	ity in differe	nt seasons of 2015	(Per day).	
Season	Good	Moderate	Unhealthy for sensitive groups	Unhealthy	Very unhealthy	Hazardous	Missing data
Spring	88	0	0	0	0	0	5
Summer	35	0	0	0	0	0	58

0

0

0

0

0

0

32

28

0

0

Table 3

Autumn

Winter

57

62

0

0

Comparison of health quality distribution for air PM₁₀ in Kerman city in different seasons of 2015 (Per day).

Season	Good	Moderate	Unhealthy for sensitive groups	Unhealthy	Very unhealthy	Hazardous	Missing data
Spring	16	65	9	0	0	0	3
Summer	29	6	0	0	0	0	58
Autumn	40	16	1	0	0	0	32
Winter	50	11	1	0	0	0	28

Table 4

Comparison of health quality distribution for air O₃ in Kerman city in different season of 2015 (Per day).

Season	Good	Moderate	Unhealthy for sensitive groups	Unhealthy	Very unhealthy	Hazardous	Missing data
Spring	39	51	0	0	0	0	3
Summer	29	33	0	0	0	0	31
Autumn	64	26	0	0	0	0	1
Winter	88	2	0	0	0	0	0

Table 5

Comparison of health quality distribution for air PM_{2.5} in Kerman city in different seasons of 2015 (Per day).

Season	Good	Moderate	Unhealthy for sensitive groups	Unhealthy	Very unhealthy	Hazardous	Missing data
Spring	5	43	33	8	0	0	4
Summer	3	29	15	5	1	0	9
Autumn	1	49	28	4	0	0	8
Winter	2	19	20	5	0	0	44

Table 6

Comparison of health quality distribution for air SO₂ in Kerman city in different seasons of 2015 (Per day).

Season	Good	Moderate	Unhealthy for sensitive groups	Unhealthy	Very unhealthy	Hazardous	Missing data
Spring	90	0	0	0	0	0	3
Summer	33	0	0	0	0	0	60
Autumn	49	8	0	0	0	0	32
Winter	32	29	0	0	0	0	29

Protection Agency (EPA) and the guideline calculation, determining and declaration of the quality index of the Iranian Ministry of Health, using software Excel converted to standard concentrations.

The concentration of particulate matter in the air by Horiba, Japan was measured by direct reading.

Season	Good	Moderate	Unhealthy for sensitive groups	Unhealthy	Very unhealthy	Hazardous	Missing data
Spring	90	0	0	0	0	0	3
Summer	35	0	0	0	0	0	58
Autumn	57	0	0	0	0	0	32
Winter	32	0	0	0	0	0	58

Table 7Comparison of health quality distribution for air NO2 in Kerman city in different seasons of 2015 (Per day).

Table 8

Kerman meteorological data by month in 2015.

Month	Average temperature	Total pre- cipitation	Average wind speed		Maximum temperature		Minimum temperature		Direction and max- imum wind speed		
				Day	Temperature	Day	Temperature	Speed	Direction	Day	
January	7.1	19.4	3.6	7	24.4	15	-9.5	18	250	8	
February	9.2	14.4	4.4	12	23	25	-5	27	210	21	
March	10.4	49.8	3.6	30	26.2	1	-6.5	19	340	10	
April	19.9	0.4	3.9	24	32.6	10	6	25	250	14	
May	23.1	3.4	3.9	15	35.8	12	9	15	290	25	
June	28	0	3.9	23	39.1	11	12	14	60	9	
July	27.6	1.5	4.1	13	37.4	8	13.5	15	340	16	
August	26.2	0	3.8	27	37.5	12	9.9	20	290	24	
September	21.6	0.9	3.5	1	35.6	24	6	17	270	17	
October	19.3	0.1	3	12	32.6	26	1.6	19	300	1	
November	10.3	26.5	3.1	17	27.8	26	-5.4	11	290	8	
December	5.7	29.3	2.8	2	26	11	-8.9	17	230	31	

The standard is for ozone (O_3) and Nitrogen dioxide (NO_2) from the maximum concentration of 1 h, for particulate matter and sulfur dioxide (SO_2) than the average 24-h maximum concentration for carbon monoxide (CO) 8-h concentration is used.

The concentrations of carbon monoxide gas were averaged by moving method, so that concentrations of 8 h to 8 h of this pollutant were determined and then the highest concentration of 8 h was used to convert the Air Quality Index (AQI).

The amount below the daily index for all concentrations standardized pollutants using the Table 1 and equation 1 were determined. The highest value among sub-indicators as the final and pollutant indicator that represents the highest sub-index, as the pollutant responsible for introducing it turned out.

After calculating the final daily indicators and according to Table 1, the number of days and then the 2015 season in the five classes of standard pollution index were also determined [1-15].

$$I_{\rm p} = \frac{I_{\rm Hi} - I_{\rm Lo}}{\rm BP_{\rm Hi} - \rm BP_{\rm Lo}} (C_{\rm P} - \rm BP_{\rm Lo}) + I_{\rm Lo}$$

 $\begin{array}{l} I_{\mathbf{P}} = \text{The Air Quality Index} \\ C_{\mathbf{P}} = \text{The pollutant concentration} \\ C_{\mathbf{Lo}} = \text{The concentration breakpoint that is} \leq C_{\mathbf{P}} \\ C_{\mathbf{Hi}} = \text{The concentration breakpoint that is} \geq C_{\mathbf{P}} \\ I_{\mathbf{Lo}} = \text{The index breakpoint corresponding to } C_{\mathbf{Lo}} \\ I_{\mathbf{Hi}} = \text{The index breakpoint corresponding to } C_{\mathbf{Hi}} \end{array}$

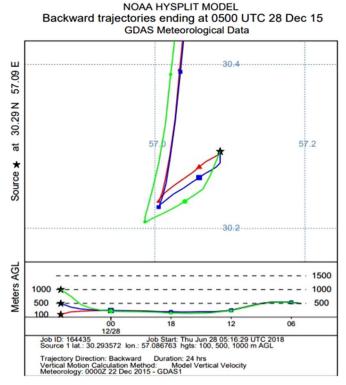


Fig. 1. Source of the particle in the Kerman city (NOAA hysplit model).

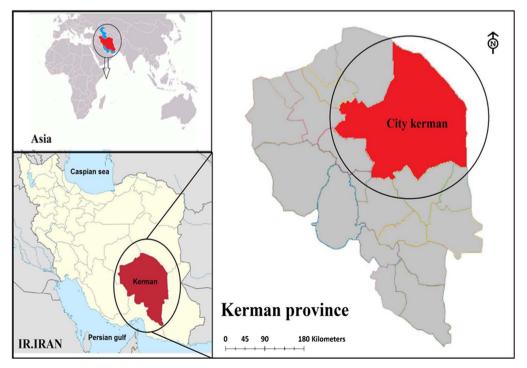


Fig. 2. Geographical map of the site study.

Acknowledgements

The authors would like to acknowledge Kerman Environmental Protection Agency for providing the raw information.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/ 10.1016/j.dib.2018.08.216.

References

- [1] WHO, Air Quality Guidelines, 2006.
- [2] M. Ahmadi, M. Dastorian, N. Jafarzadeh, S. Jorfi, B. Ramavand, Data on greenhouse gases emission in condensate separation unit of a petrochemical company in Iran, Data Brief 8 (2016) 750–754.
- [3] M. Kermani, M. Dowlati, A. Jonidi Jaffari, R. Rezaei Kalantari, A study on the comparative investigation of air quality health index (AQHI) and its application in Tehran as a Megacity since 2007 to 2014, Iran J. Res. Environ. Health 4 (2015) 275–284.
- [4] R. Lanzafame, P. Monforte, G. Patanè, S. Strano, Trend analysis of air quality index in Catania from 2010 to 2014, Energy Procedia 82 (2015) 708–715.
- [5] M. Habil, D.D. Massey, A. Taneja, Personal and ambient PM2. 5 exposure assessment in the city of Agra, Data Brief 6 (2016) 495–502.
- [6] A. MohseniBandpi, A. Eslami, M. Ghaderpoori, A. Shahsavani, A.K. Jeihooni, A. Ghaderpoury, et al., Health risk assessment of heavy metals on PM2. 5 in Tehran air, Iran, Data Brief 17 (2018) 347–355.
- [7] M. Miri, Z. Derakhshan, A. Allahabadi, E. Ahmadi, G.O. Conti, M. Ferrante, et al., Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach, Environ. Res. 151 (2016) 451–457.
- [8] B. Kamarehie, M. Ghaderpoori, A. Jafari, M. Karami, A. Mohammadi, K. Azarshab, et al., Quantification of health effects related to SO2 and NO2 pollutants by using air quality model, J. Adv. Environ. Health Res. 5 (2017) 44–50.
- [9] M.H. Dehghani, M. Salari, K. Naddafi, Sh Nazmara, E. Ahmadi, P. Kumar, Evaluation of formaldehyde concentration in the ambient air of a most populated Iranian city, Tehran, J. Air Qual., Atmosphere Health 10 (2017) 763–772.
- [10] M.H. Dehghani, D. Sanaei, R. Nabizadeh, Sh Nazmara, P. Kumar, Source apportionment of BTEX compounds in Tehran, Iran using UNMIX receptor model, J. Air Qual., Atmosphere Health 10 (2017) 225–234.
- [11] M. Miri, M.R.A. Shendi, H.R. Ghaffari, H.E. Aval, E. Ahmadi, E. Taban, et al., Investigation of outdoor BTEX: concentration, variations, sources, spatial distribution, and risk assessment, Chemosphere 163 (2016) 601–609.
- [12] M. Fazlzadeh Davil, R. Rostami, A. Zarei, M. Feizizadeh, M. Mahdavi, A. Mohammadi, et al., A survey of 24 h variations of BTEX concentration in the ambient air of Tehran, J. Babol Univ. Med. Sci. 14 (2012) 50–55.
- [13] B. Hashemzadeh, E. Idani, G. Goudarzi, K.A. Ankali, M.J.Z. Sakhvidi, A.A. Babaei, et al., Effects of PM2. 5 and NO2 on the 8-isoprostane and lung function indices of FVC and FEV1 in students of Ahvaz city, Iran, Saudi J. Biol. Sci. (2016), https: //doi.org/10.1016/j.sjbs.2016.11.008.
- [14] R. Rostami, K. Naddafi, A. Aghamohamadi, Survey of peanut fungal contamination and its relationship with ambient conditions in the Bazar of Zanjan, J. Environ. Health Sci. Eng. 6 (2009) 295–300.
- [15] S. Hazrati, R. Rostami, M. Fazlzadeh, F. Pourfarzi, Benzene, toluene, ethylbenzene and xylene concentrations in atmospheric ambient air of gasoline and CNG refueling stations, Air Qual., Atmosphere Health 9 (4) (2016) 403–409.