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Although ChIP-seq has become a routine experimental approach for quantitatively characterizing the genome-wide binding

of transcription factors (TFs), computational analysis procedures remain far from standardized, making it difficult to com-

pare ChIP-seq results across experiments. In addition, although genome-wide binding patterns must ultimately be deter-

mined by local constellations of DNA-binding sites, current analysis is typically limited to identifying enriched motifs in

ChIP-seq peaks. Here we present Crunch, a completely automated computational method that performs all ChIP-seq analysis

from quality control through read mapping and peak detecting and that integrates comprehensive modeling of the ChIP

signal in terms of known and novel binding motifs, quantifying the contribution of each motif and annotating which com-

binations of motifs explain each binding peak. By applying Crunch to 128 data sets from the ENCODE Project, we show that

Crunch outperforms current peak finders and find that TFs naturally separate into “solitary TFs,” for which a single motif

explains the ChIP-peaks, and “cobinding TFs,” for which multiple motifs co-occur within peaks. Moreover, for most data

sets, the motifs that Crunch identified de novo outperform known motifs, and both the set of cobinding motifs and the

top motif of solitary TFs are consistent across experiments and cell lines. Crunch is implemented as a web server, enabling

standardized analysis of any collection of ChIP-seq data sets by simply uploading raw sequencing data. Results are provided

both in a graphical web interface and as downloadable files.

[Supplemental material is available for this article.]

The advent of high-throughput sequencing technologies and the
associated reductionof cost for sequencinghave led toa spectacular
increase in the use of a variety of methods, including RNA-seq,
ChIP-seq, DNase-seq, ATAC-seq, and CLIP-seq, that combine
high-throughput sequencing with other molecular biology tech-
niques to quantitatively characterize internal states of cells on a
genome-wide scale (Buenrostro et al. 2013; Soon et al. 2013). As
one of the most prominent of these technologies, ChIP-seq
(Johnson et al. 2007) combines chromatin immunoprecipitation
with high-throughput sequencing to quantify the genome-wide
binding patterns of any molecule that associates with the DNA.
Apart fromlarge-scale efforts, suchas theENCODEProject inwhich
ChIP-seq was used to systematically map the binding patterns of
many transcription factors (TFs) (The ENCODE Project Consor-
tium 2012), many individual laboratories are now using ChIP-seq
to characterize thebindingpatternsofparticularDNA-bindingpro-
teins in their specific system of interest, for example, particular
tissues or specific biological conditions.

The result of a ChIP-seq experiment is a collection of short
DNA sequence reads, that is, typically tens of million reads that
are a few tens of base pairs long each. Like for other high-through-
put experimental techniques, extractingmeaningful biological in-
formation from such large data sets is a nontrivial computational
task that involves a significant number of separate steps, including

read quality control and preprocessing; mapping the reads to the
genome; estimating the typical length of the DNA fragments
from which the reads derive; identifying binding peaks, that is,
identifying genomic regions that are statistically significantly en-
riched for immunoprecipitated fragments; and downstream analy-
ses such as identification of sequence motifs enriched within the
peak sequences. Over the last decade, a large number of bioinfor-
matic tools have been developed to perform each of these tasks
(e.g., for a review of read mapping tools, see Schbath et al. 2012;
for a review of methods for detecting binding peaks, see Wilbanks
and Facciotti 2010; for an overview of algorithms for finding se-
quence motifs overrepresented among a set of short sequence seg-
ments, see Das and Dai 2007). A number of tools have also been
presented that allow researchers to combine individual tools into
a workflow, namely, by allowing users to manually execute one
tool after another or by constructing a pipeline that runs the tools
automatically. These include commercial solutions such as Avadis
NGS (https://www.strand-ngs.com/avadis-platform), Chipster
(Kallio et al. 2011), CLCbio Genomics Workbench (https://www
.qiagenbioinformatics.com/), Genomatix Mining Station (https://
www.genomatix.de/solutions/genomatix-mining-station.html),
and Partek Genomics Suite (http://www.partek.com/partek-
genomics-suite/), as well as free-to-use solutions such as HOMER
(Heinz et al. 2010), CisGenome (Ji et al. 2008), seqMINER (Ye
et al. 2011), ChIPseeqer (Giannopoulou and Elemento 2011), Gen-
eProf (Halbritter et al. 2013), andGalaxy/Cistrome (Liu et al. 2011).

However, current ChIP-seq analysis methods are highly un-
satisfactory in a number of respects. First, although the ENCODE
Projects have developed basic practices and guidelines for ChIP-
seq data (Landt et al. 2012), there is still little consensus on what
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tools are most appropriate for each step in the ChIP-seq analysis,
let alone regarding details of their parameters and implementa-
tion. Consequently, there is large variability in the way ChIP-seq
data are currently analyzed. The main challenge, especially for ex-
perimental researchers that wish to perform ChIP-seq analysis but
lack computational biology expertise, is that there are no standard-
ized pipelines that are widely accepted to give satisfactory perfor-
mance. A private survey that we performed among colleagues
suggests that every group with expertise in processing ChIP-seq
data uses a different combination of tools that they have individ-
ually customized to deal with various issues that are not addressed
by the publicly available versions. A consequence of this situation
is that it is extremely difficult to compare results of ChIP-seq data
fromdifferent experiments. That is, in order to compare one’s own
results with those of other ChIP-seq experiments, it is necessary to
reanalyze the raw data from these experiments using one’s own
customized analysis pipeline.

Another unsatisfactory aspect of current analysis practices is
that popular peak finders, for example, MACS (Zhang et al.
2008), assume statistical models for the fluctuations in ChIP-seq
read densities that do not match those that are observed in the
data. Consequently, the interpretation of the enrichment statistics
(i.e., P-values) that suchmethods provide is problematic, and other
methods, such as the analysis of the reproducibility of peaks across
replicates (Landt et al. 2012), are necessary to determine cutoffs on
the statistical significance of peaks.

Probably the most unsatisfactory aspect of current ChIP-seq
analysis practices concerns the analysis of DNA sequence motifs.
Although the entire genome-wide ChIP signal should ultimately
be determined by local constellations of binding sites for DNA-
binding factors, current ChIP-seq analyses do not attempt to
directlymodel the observed ChIP signal in terms of the underlying
DNA sequence. Instead, downstream sequence analysis is typically
limited to simply running standard motif–finding algorithms on
the sequences of the top binding peaks.

To address all these issues, we here present Crunch, a
completely automated procedure that performs all steps of the
ChIP-seq analysis and integrates comprehensive modeling of the
genome-wide ChIP signal in terms of binding sites for both known
and novel motifs, which Crunch identifies de novo. Crunch is im-
plemented as a web server at crunch.unibas.ch and only requires
the upload of the raw sequencing reads, allowing any researcher
to perform comprehensive ChIP-seq analysis of any number of
data sets in a completely standardized manner. Besides flat files
for download, all results of Crunch’s analysis are available through
an easily navigable graphical web interface.

Results

In a typical ChIP-seq experiment, the protein that is immuno-
precipitated is a DNA-binding protein or a protein that forms com-
plexeswithDNA-binding proteins, and the aims of the experiment
include identifying the genomic loci where the protein is binding
(either directly or indirectly) and the genes that are potentially reg-
ulated by these binding events. For DNA-binding proteins that
bind DNA in a sequence-specific manner, additional aims are to
characterize the sequence specificity of the protein and to identify
other DNA-binding proteins that are colocalizing with the im-
munoprecipitated factor, possibly through direct interactions.
Crunch provides answers to all of these questions and makes its
analysis results accessible through an interactive graphical web in-
terface and downloadable files.

The web server at crunch.unibas.ch only requires the user to
provide raw ChIP-seq data in the form of FASTQ or FASTA files
and to indicate the organism fromwhich the data derived (current-
ly human, mouse, and Drosophila have been implemented).
Although a single immunoprecipitation data set suffices, users
are advised to also upload “background” samples, that is, input
DNA, whenever these are available. Multiple replicate data sets
can be analyzed either separately or jointly. Optionally, more ad-
vanced users can choose to edit a number of options (see
Methods), including the possibility to upload BED files of already
mapped data instead of raw sequence data. Users can specify an e-
mail address to get an automatic notification with a link to the re-
sults when the analysis has finished.

We applied Crunch to a large set of ChIP-seq experiments
from the ENCODEConsortium (The ENCODE Project Consortium
2012), including all experiments performed on the cell line
GM12878 and all experiments that were performed on the HeLa
S3 cell line by the laboratory ofMichael Snyder at Stanford Univer-
sity. In total, we analyzed 128 experiments in which 93 different
TFs were immunoprecipitated. The full reports that result from
submitting the raw FASTQ data of all these ChIP-seq data sets to
Crunch are available at crunch.unibas.ch/ENCODE_REPORTS. Be-
lowwewill first use one data set to illustrate all parts of the Crunch
analysis and results.

Analysis overview and quality control summary

To illustrate Crunch’s results, we chose the ENCODE experiment
in which the BRCA1 protein was immunoprecipitated from
GM12878 cells. Two replicate foreground (immunoprecipitation)
samples and two replicate background (input DNA) samples were
jointly analyzed.

Crunch’s analysis is structured into three parts, as shown in
Figure 1A, and the analysis report is structured accordingly. In the
preprocessing part, reads are filtered for quality and mapped to
the genome, and the average size of theDNA fragments in the sam-
ple is estimated. Depending on the size of the input data, this pre-
processing stage typically takes 2–6 h for the ENCODE data sets
analyzed here (Supplemental Fig. S1A). In the second part, peaks
are identified and annotated. This stage typically takes between
2.5 and 4 h (Supplemental Fig. S1B). In the third “motif analysis”
part, novel binding motifs are inferred de novo, and the peak se-
quences are then modeled in terms of these novel and a library of
knownregulatorymotifs. Inparticular, a set of complementarymo-
tifs is identified that jointly best explains the peak sequences. This
stage takes <3 h for most data sets, but can take >12 h in rare cases
(Supplemental Fig. S1D). Thus, the overall processing time of a typ-
ical data set is 10–14 h on the current version of our server.

To provide users a summary of the quality of the results on
their data set, Crunch’s report starts with a quality-control sum-
mary that lists a number of key statistics and indicates how these
statistics compare with the full reference set of ENCODE data
sets (Fig. 1B). For the mapping part, the fraction of all sequencing
reads that passed quality control and were successfully mapped to
the genome is reported. For the analysis of the ChIP signal, an
overall measure of the noise level and the error in the fit to a refer-
ence distribution are reported. For the peak calling, the total num-
ber of peaks and the fraction of reads mapping to peaks are
reported. And finally, for the motif finding, the enrichment of
the topmotif and the enrichment of the full set of complementary
motifs are reported. To the right of each statistic is a bar plot that
shows how this statistic compares with all data sets. For example,
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85.8% of all reads in the immunoprecipitated sample passed QC
and were successfully mapped, and this corresponds to the 73rd
percentile; that is, for 73% of all ENCODE data sets we analyzed,
a smaller fraction of reads was mapped. The bar runs from green
to red to give an immediate visual indication whether these statis-
tics are in a relatively high-quality regime (green) or low-quality re-
gime (red).

Sequence quality control, mapping, and fragment size estimation

The raw read quality control, mapping, and estimation of the DNA
fragment lengths are performed separately for each submitted sam-
ple and use relatively standard procedures as described in the
Methods. An extensive report with detailed statistics regarding
the quality control, adapter removal, and mappings is provided
as a PDF for download (Supplemental Fig. S2). For each sample,
Crunch also provides a BED file with the mappings and a WIG
file that allows visualization of the read density along the genome.

In many ChIP-seq protocols, reads are obtained only from ei-
ther the 5′ or 3′ end of the immunoprecipitated fragments, such
that a single binding event on the genome will lead to two peaks
in read density on opposite strands, shifted by approximately
the average fragment length (Schmid and Bucher 2007; Landt
et al. 2012). To correctly infer the locations of binding events,
Crunch estimates fragment length from the correlations of read oc-
currences at opposite strands (Methods; Supplemental Fig. S3).

Binding peak identification and annotation

Crunch first calculates the observed read densities in sliding
windows along the genome for both the ChIP and background
samples. A very small fraction of windows, typically ∼0.1% associ-
ated with repeat regions, shows aberrantly high read density in the
background (Fig. 2A), and these regions are removed by Crunch
because ChIP enrichment cannot be reliably assessed in these re-
gions (see Methods).

Crunch uses a Bayesian mixture model that assumes that the
genomic windows derive from a mixture of unenriched and en-
riched regions, and uses a new statistical model for read-density
fluctuations in unenriched regions consisting of a convolution
of log-normal and Poisson sampling noise (Balwierz et al. 2009).
The parameters of this model are automatically fitted for each
data set, resulting in a z-statistic for the enrichment of each geno-
mic window. In the absence of any enriched windows, these
z-values follow a standard normal distribution, and Figure 2B
shows that for the BRCA1 data set, we indeed observe that the z-
statistics of >99.9% of the windows almost perfectly follow a stan-
dard normal distribution, and that a small fraction of significantly
enriched windows show much higher z-values. Crunch orders all
windows by their z-values and by default picks a cutoff corre-
sponding to a false discovery rate (FDR) of 0.1 (Fig. 2C; Supplemen-
tal Methods).

Crunch then merges enriched windows that overlap on the
genome into enriched genomic regions. To identify individual
binding events, Crunch models the observed ChIP profile in
each enriched region as a mixture of a constant background and
Gaussian peaks (Fig. 2D), with widths that are constrained by the
estimated fragment length (Methods; Supplemental Methods). A
final z-value is calculated for each individual binding peak, and
the peak finding results are summarized as a list with genomic co-
ordinates, z-value, and the locations of the nearest transcription
start sites of genes upstreamof and downstream from each binding
peak (Fig. 2E). Theweb interface also provides, for each peak, a link
to a view of the peak’s locus within the SwissRegulon genome
browser (Pachkov et al. 2013).

Explaining the observed peak sequences by a complementary

set of motifs

Probably the most novel aspect of Crunch is that it aims to explic-
itly explain the observed peak sequences in terms of sequence

A B

Figure 1. Analysis overview and quality-control (QC) summary. (A) Overview of the steps in Crunch’s ChIP-seq analysis, which divides into three parts:
preprocessing of the data, identification of the binding peaks, and regulatory motif analysis. (B) QC summary statistics for the BRCA1 data set. Statistics are
separated into those associated with the mapping, the modeling of the ChIP signal, peak calling, and motif enrichment. For each statistic, a color gradient
bar and indicator show how the statistic for this data set compares with those across the full set of ENCODE data sets, with green indicating relatively high
quality and red relatively low quality.
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motifs that occurwithin them. Tomake this notion precise, we use
an idealized model of the ChIP-seq experiment in which, given a
set of motifs {w}, the probability of immunoprecipitating a se-
quence s is proportional to the number of binding sites for themo-
tifs {w} in s. As detailed in the Methods, the probability for the

observed set of peak sequences given a set of motifs {w} can then
be quantified by an enrichment score, E{w}, that gives the geomet-
ric average of the fold enrichment of binding sites for the motifs
{w} in peak sequences relative to random sequences of the same
length and nucleotide composition.

A B

C

E

D

Figure 2. Peakcalling results for theBRCA1dataset. (A)Reversecumulativedistributionof the summedreadcounts fromtheBRCA1backgroundsamples in
genome-wide slidingwindows of 2000bp.Crunch adaptively determines a cutoff (red line), andwindowswith coverage higher than this cutoff are removed
from further analysis. (B) Distribution of the observed z-values from all genome-wide sliding widows (in black) and a reference standard normal distribution
(in red). (C) Reverse cumulative distribution of the same z-values (in black), as well as the z-score threshold (in red) corresponding to an FDR of 0.1. Note
that the vertical axes in panels A, B, andC are in log-scale. (D) ChIP read-density profile of an individual enriched region (red), togetherwith the fittedmixture
model (black). The two gray dashed lines show the Gaussians used in the mixture model of this region. The colored bars show the two individual binding
peaks with their locations and amplitudes shown in the legend. (E) Table with the top 10 peaks of the BRCA1 experiment. Each peak is annotated with its
coordinates on the genome, its z-value, its nearest upstream and downstream genes, and the distance to the transcription start sites (TSS) of these genes.
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To find an optimal set of motifs {w}, Crunch divides the top
peaks into a training and a test set of peaks and then first performs
de novomotif finding on the training peaks using the PhyloGibbs
(Siddharthan et al. 2005) and MotEvo (Arnold et al. 2012) algo-
rithms previously developed in our laboratories. Both these algo-
rithms are designed to incorporate information from sequence
conservation patterns by running on multiple alignments of
orthologous genomic regions, and Crunch automatically aligns
each peak sequence with orthologous sequences from related or-
ganisms. The motifs that were found de novo are then combined
with a large collection of more than 2000 position-specific weight
matrices (PWMs) thatwe collected fromanumber of resources into
a motif library,Wlib. From this library, a motif set {w} is iteratively
constructed by starting with the single motif w that has the max-
imal enrichment Ew and adding motifs so as to maximize E{w} on
the test set of peaks. The result is a set of complementary motifs
that jointly best explain the observed binding peak sequences
(Fig. 3A).

For theBRCA1peaks, the topmotifwas amotif founddenovo,
called denovo_WM_9,with an enrichment score of about 5.3. That
is, the peak sequences have on average 5.3 times as many sites for
this motif as random sequences of the same nucleotide composi-
tion. The other five motifs in the set {w} all have enrichments less
than 1.5 when considered individually, but considered jointly,
they increase the enrichment, and all six together almost double
the enrichment to 10.547 (Fig. 3A,B). Crunch also shows to what
extent different motifs in the set tend to either co-occur or avoid
co-occurring within the same peak sequences by reporting the
correlations in motif occurrence for all pairs of motifs in the set
(Fig. 3C).

For each motif in the set {w}, Crunch reports a number of
additional pieces of information. Besides showing the motif’s
sequence logo, each motif is compared with all other motifs in
the library of known motifs, and a list of the top matching motifs
is reported (Fig. 3D). Crunch’s top motif for the BRCA1 data, that
is, denovo_WM_9, is very similar to a GFX motif in HOMER, the
UA1 motif from ENCODE (which is the top motif for BRCA1 re-
ported by ENCODE), and a motif from HOMER for the TF
ZBTB33, also known as KAISO, which is in line with previous anal-
ysis of this data set (Wang et al. 2012). Besides the enrichment
score, eachmotif is characterized by a number of additional perfor-
mancemeasures. First, the precision-recall curve that would be ob-
tained if peak sequences were classified based on the number of
sites for the motif is calculated, and the area under the curve is re-
ported (Fig. 3E). We see that motif denovo_WM_9 can identify
∼40% of the peaks with high precision. Second, Crunch investi-
gates to what extent the number of predicted binding sites in a
peak correlates with the significance (z-value) of the peak (Fig.
3F). We see that as soon as the z-value is larger than about eight,
peaks are virtually guaranteed to contain at least one site for
denovo_WM_9. In addition, peaks with very high z-scores tend
to have more than one binding site. Third, if the sites of the motif
correspond to the locations where the immunoprecipitated pro-
tein associates to the DNA, we would expect that the sites would
tend to occur where the ChIP coverage is highest (see Supplemen-
tal Fig. S4), and to quantify this, Crunch reports the distribution of
coverage at binding sites versus at all positions in the peaks (Fig.
3G). We see that the ChIP coverage at binding sites for deno-
vo_WM_9 is more than nine times higher than at random posi-
tions in peaks. Finally, for each motif Crunch also reports the
number of peaks for which binding sites are predicted to occur
(Fig. 3A). Note that although denovo_WM_9 occurs in ∼50% of

all peaks, its occurrence is highly specific, whereas the GFY-Staf
motif occurs in almost all peaks but is much less specific. All other
motifs in the set occur in only a small subset of the peaks. The Sup-
plemental Text provides a discussion of the biological significance
of these motifs, which we hypothesize correspond to direct inter-
action partners of BRCA1.

All results of themotif analysis are available through an inter-
active graphical interface that is automatically generated for each
data set that is submitted to Crunch, allowing the user to explore
the results in detail. For example, a user can decide to select from
all binding peaks only those peaks in which sites for a given motif
are predicted to occur. In addition, to allow further downstream
analysis of the binding site constellations in peaks, flat files are pro-
vided that annotate each peak with the precise occurrences of all
the motifs from the complementary set {w}. PWM files for all the
reported motifs are also provided.

Crunch’s noise model accurately reflects fluctuations in ChIP

read densities

Because peak callers use a statisticalmodel to distinguish true bind-
ing peaks from “random” fluctuations in read density, the accura-
cy of peak finding relies on the accuracy of the statistical model. In
the BRCA1 example above, we saw that the distribution of z-values
inferred by our noise model accurately tracked the expected stan-
dard normal distribution, supporting that Crunch’s noise model
correctly captures the statistics of ChIP-seq coverage fluctuations
across the genome. We find that this is observed for most of the
ENCODE ChIP-seq data sets.

For each data set, we quantified the difference between
the expected distribution of z-values and the observed one by the
root of the average squared deviation of the observed log-density
of z-values and the standard normal log-density, that is, −z2/2−
log (

����
2p

√
) over the range z∈ [−5, 3], which covers 99.9% of the

distribution. High z-values were excluded because the distribution
is expected to deviate from the expected standard normal at high z-
values, and very negative z-values were excluded to avoid having
the measure be dominated by a few outliers in this regime. We ob-
serve a very goodmatch between the expected and observed distri-
bution of z-value for ∼90% of all data sets (Fig. 4). Note that, even
for the worst case, the observed distribution follows the standard
normal over the range z∈ [−2.5, 2.5] which includes ∼99% of all
windows.

As far as we are aware, Crunch is the only peak finding tool for
which the noise model is explicitly supported by the data. In addi-
tion, because Crunch provides a figure with the comparison of the
observed and expected z-value distribution in its report, users can
immediately check whether their data show an aberrant distribu-
tion of ChIP signal fluctuations.

Crunch’s peak finding outperforms other popular peak finders

We made a version of the Crunch pipeline that replaces Crunch’s
peak finding with the peak finding of two popular and well-estab-
lished peak finders—MACS2 (Zhang et al. 2008) and SISSR (Jothi
et al. 2008), reran the pipeline for all 128 ENCODE data sets using
these two tools, and made an extensive comparison of the quality
of the peak predictions (see Supplemental Results). Several differ-
ent lines of evidence show that Crunch’s peak predictions outper-
form those of MACS2 and SISSR. First, Crunch’s peaks show more
overlap with those of both MACS2 and SISSR than the peaks of
these two tools with each other (Supplemental Fig. S5).
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Second, for pairs of data sets in which the same TF was ana-
lyzed in different cell lines or by different laboratories, Crunch typ-
ically predicts similar peak numbers, whereas MACS2 and SISSR
predict peak numbers that vary more than 10-fold or even 100-

fold (Fig. 5A, inset). We strongly suspect that the large variability
in the number of predicted peaks for MACS2 and SISSR results
from the fact that, in contrast to Crunch, these tools do not have
a realistic statistical model for the fluctuations in ChIP density

A

B C D

E F G

Figure 3. Motif analysis results for the BRCA1 data set. (A) List of complementary motifs that jointly explain the BRCA1 binding peaks. The motifs are
sorted in the order in which they were added to the motif set, and for each motif, its name, sequence logo, and a set of statistics characterizing the
performance of the motif are shown. (B) Evolution of the enrichment score of the ensemble of complementary motifs {w} as more motifs are added.
(C) Heatmap of pairwise correlations of the occurrence of all motifs in {w} across binding peaks. (D) The top three motifs from the library of known motifs
with most similarity to the motif denovo_WM_9. (E) Precision-recall curve for motif denovo_WM_9. The area under the curve (AUC) is 0.625.
(F) Correlation between the ChIP signal (peak z-scores) and the number of predicted binding sites for denovo_WM_9 in peaks. The Pearson correlation
coefficient is 0.6966. (G) Distributions of ChIP coverage at denovo_WM_9 sites (red curve) and at all positions in peaks (black curve). The coverage at sites
is on average 9.1018, as high as at random positions in the peaks. Both axes are shown on a log-scale.
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along the genome. Third, the predicted peaks on data sets for the
same TF have consistently larger overlap for Crunch than for
MACS2 and SISSR (Fig. 5A; Supplemental Fig. S6).

Fourth, for the large majority of data sets the topmotif found
on the Crunch peaks has a higher enrichment score than the most
enrichedmotif found on either theMACS2 or SISSR peaks (Fig. 5B;
Supplemental Fig. S7). Finally, because we noted that MACS2 typ-
ically predicts wider peaks than Crunch and because wewanted to
exclude the possibility that the poorer performance ofMACS2 and
SISSR results from these differences in peak width, we also per-
formed an in-depth comparison of motif enrichment on regions
of the same width for all tools. To investigate what width would
be appropriate, we calculated the average number of sites for the
most enriched motif in the top 1000 peaks as a function of posi-
tion relative to the peak center and found that site enrichment is
mainly concentrated in a region of roughly a single nucleosome
wide, that is, from −75 to +75 around the peak center (Fig. 5C).
We thus decided to compare the statistics of site enrichment in re-
gions of 150 bp, centered on each peak’s center. Second, because
themotif finding on theMACS2 and SISSR peaksmight have failed
to identify the best motif, we compared the enrichment of the
same motif across the top n Crunch, MACS2, and SISSR peaks as
a function of the number of peaks n. For example, the inset of
Figure 5D shows the enrichment of Crunch’s top motif for the
TCF3 data set on 150-bp regions centered on the peak centers of
Crunch (green), MACS2 (blue), and SISSR (orange) as a function
of the number of peaks taken. Crunch’s peaks show highest en-
richment over almost the entire range of peak numbers, and this
is also observed when using the top motifs of MACS2 or SISSR
(Supplemental Fig. S8). For the top 1000 peaks (Fig. 5D, inset, dot-
ted line) Crunch’s peaks have an enrichment of 3.81; MACS2’s
peaks, an enrichment of 2.14; and SISSR’s peaks, an enrichment
of 3.07. Thus, the ratios of enrichments are R=3.81/2.14≈1.78
for Crunch versusMACS2 and R=3.81/3.07≈1.24 for Crunch ver-
sus SISSR. To summarize the enrichments across all data sets,
Figure 5D shows the distribution of these ratios R on the top
1000 Crunch peaks versus those of the same motif on the top
1000MACS2 and SISSR peaks. For 80% of the data sets andmotifs,
Crunch’s top 1000 peaks are more enriched than those of MACS2
and SISSR (Fig. 5D, dotted line), and superior enrichments are ob-

served for all peak numbers ranging from the top 200 to the top
10,000 peaks (Supplemental Fig. S9). Finally, in addition to motif
enrichments as defined by Equation 9, we also calculated all these
statistics using the often used AUCmetric, that is, the area under a
receiver operator curve (see Supplemental Results).We find that all
our observations also apply when AUC scores are used to measure
motif enrichment: For 70%–80% of all data sets and motifs, the
Crunch peaks show higher AUCs than the peaks of MACS2 or
SISSR (Supplemental Fig. S10).

Crunch’s de novo motifs outperform known motifs for the

majority of data sets

To assess the importance and quality of the motifs that Crunch
found de novo, we compared the enrichment scores of the top
de novo and library motifs for each of the ENCODE ChIP-seq
data sets (excluding seven data sets for which fewer than 200 peaks
were found). Note that for most of the TFs that were immunopre-
cipitated in these data sets, the library of knownmotifs already in-
cludes several motifs representing these TFs, including all the
ENCODE motifs that were previously inferred from these data
sets (Wang et al. 2012). We thus expected that for most data sets,
one of the many known motifs would outcompete the motifs
that Crunch found de novo. In contrast, we find that for the ma-
jority of data sets, the top de novo motif outperformed all known
motifs (Fig. 6). Because the motif finding was performed on a dif-
ferent set of peaks than used for evaluating motif enrichment, the
superior performance cannot be because of overfitting the training
peaks. In addition, for cases in which a de novomotif wasmost en-
riched and another data set was available for the same TF, we find
that the de novo motif still outperforms the best-known motif on
this other data set for the largemajority of the cases (Supplemental
Fig. S11).

For about a quarter of the data sets, the motif enrichment im-
proves by 0.2 or more. Although a difference in log-enrichment of
0.2may seemmodest, because there are typically 500 sequences in
our test set, this increase in enrichment corresponds to a likelihood
ratio of e0.2×500≈2.7 ×1043. Finally, we note that de novo motifs
show improved enrichment especially when there was no highly
enriched motif in the library of knownmotifs (Fig. 6, right panel).

Figure 4. Genome-wide fluctuations in ChIP signal fit Crunch’s noise model. (Left) Examples of the z-value distributions of ChIP-enrichments genome-
wide for four data sets (colored lines) together with the reference standard Gaussian (black line). The vertical axis is shown on a logarithmic scale. (Right)
Cumulative distribution of the mean squared deviation between the observed z-value distribution and the standard Gaussian for the 128 ENCODE data
sets. The locations in the cumulative distribution of the four data sets shown in the left panel are shown as correspondingly colored points.
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The inferred motif sets are highly consistent across replicate

experiments

For TFs that specifically bind the DNA, one might expect that the
binding peaks should in principle be explainable by just a single
motif, that is, the motif representing the sequence specificity of
that TF. To quantify to what extent additional motifs are needed
to account for the observed peaks, we defined, for each data set,
the “additional information” as the log-ratio of enrichments of
the entire motif set and of the top motif. The histogram of addi-
tional information shows that TFs can be separated into “solitary
binding” TFs, for which the binding peaks are explained by a sin-
gle motif, and “cobinding” TFs, which require a set of multiple
motifs to explain (Fig. 7A). Although one might expect that addi-
tional information predominantly occurs when the top motif has
low information content, we find no correlation between the in-
formation content of the top motif and the additional informa-
tion (Supplemental Fig. S12). In addition, for TFs that were
immunoprecipitated in two different cell lines, the additional
information is generally very similar in both cell lines (Fig. 7B),
supporting that the additional information is an intrinsic proper-
ty of the TF.

We next investigated to what extent the inferred motifs were
consistent across different experiments with the same TF. We di-

vided the set of TFs into “solitary binders” and “cobinders” de-
pending on whether the average additional information in the
complementary motif set was smaller or larger than 0.2. For each
pair of experiments performed with the same cobinding TF, we
compared the motif sets using a consistency score that runs from
zero, when there is no overlap between the motif sets, to one,
when the exact same motifs occur in the exact same order (see
Methods). With the exception of a few motifs such as STAT3,
EP300, and RCOR1, the large majority of cobinding TFs shows
highly consistent motif sets across the experiments, including ex-
periments on different cell lines (Fig. 7C). This suggests that, for
most cobinding TFs, the complementary motif set is an inherent
characteristic of the TF and that Crunch can successfully identify
such cobindingmotif sets. In addition, whenmotif sets differ sub-
stantially between cell lines, Crunch’s predictions can be used as
hypotheses for further biological follow-up. For example, for
STAT3 Crunch’s analysis suggests that STAT3 associated signifi-
cantly more often with RUNX factors in the GM12878 cell line
and with AP-1 factors in the HeLa S3 cell line.

There were eight solitary binding TFs for which multiple ex-
periments were performed, with 22 experiments performed in to-
tal with these factors. For each of these experiments, we extracted
the top five knownmotifs with the highest enrichment scores and
calculated the consistency of the top five motifs across all pairs of

A B

C D

Figure 5. Comparison of the peak predictions of Crunch, MACS2, and SISSR. (A) For each of the 31 pairs of data sets for the same TF, the overlap of the
top 1000 peaks predicted by Crunch on the two data sets is shown on the horizontal axis versus the overlaps of the top 1000 peaks predicted by MACS2
(blue) and SISSR (orange) on the vertical axis. The dotted line shows y= x. The inset shows box-whisker plots of the ratios R of predicted peak numbers for
pairs of data sets for the same TF for Crunch (green),MACS2 (blue), and SISSR (orange). (B) Enrichment of themost enrichedmotif in the top 1000 peaks of
Crunch (horizontal axis) versus enrichment of the most enriched motifs in the top 1000 peaks of MACS2 (blue) and SISSR (orange). The dashed line shows
the line y= x. (C ) Average number of sites for the most enriched motif in the top 1000 peaks of Crunch (green), MACS2 (blue), and SISSR (orange) as a
function of position relative to the peak’s center. The black bar shows the region [−75, 75]. (D) The inset shows enrichment of Crunch’s top motif as a
function of the number of top peaks for Crunch (green),MACS2 (blue), and SISSR (orange). The dashed line shows the enrichments for the top 1000 peaks.
The main plot shows the reverse cumulative distribution of the ratio of site enrichment in Crunch’s top 1000 peaks versus enrichment of the same motif in
the top 1000 MACS2 (blue) or SISSR (orange) peaks across all data sets and top motifs for each of the three tools.
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experiments performed with the same TF. Note that the consisten-
cy again runs from zero for disjoint sets to one for sets of identical
motifs in the exact same order.We find that of the eight TFs tested,
only the experiments on USF2 showed disagreement on the order
of the topmotifs. All others showed very high to perfect consisten-
cy, preserving the relative order even of highly similar motifs (Fig.
7D). This suggests that the binding specificity of the TF is indepen-
dent of the details of the experiment and that, more importantly,
Crunch’s results can be used to select an optimal motif for solitary
binding TFs.

Discussion

We here presented Crunch, a completely automated pipeline that
performs all ChIP-seq analysis steps in a standardized manner.
Crunch does not require any computational expertise of the
user. Raw data can simply be directly uploaded to the Crunch
web server, all analysis is performed automatically, and results
are provided both through an interactive graphical web interface,
as well as through flat files for further downstream analysis. In this
way, Crunch allows any user not only to perform ChIP-seq analy-
sis on their own data but also to systematically compare different
ChIP-seq data sets.

Beyond providing a standardized pipeline, Crunch also intro-
duces a number of novel features, and we show the power of the
method on a large collection of ChIP-seq data sets from the
ENCODE Project. In contrast to all peak finding tools that we are
aware of, Crunch uses a noise model for fluctuations in ChIP read
densities that is automatically fitted to the data and that demon-
strably matches the statistics of the fluctuations that are actually
observed in the data. In comparison to other well-established
peak finders, Crunch’s peak predictions aremore consistent across
data sets for the sameTFandare substantiallymore enriched for the
sequence motif associated with the TF. Probably the most impor-
tant novel feature of Crunch is that a comprehensive regulatory
motif analysis is integrated into the pipeline. By capitalizing on
motif finding tools previously developed in our laboratory
(Siddharthan et al. 2005; Arnold et al. 2012), Crunch uses a combi-
nationofdenovomotif findingandpredictionofbinding sites fora
large library of knownmotifs to explain the observed binding peak

sequences in terms of the constellations of regulatory motifs that
occur within them. In particular, Crunch automatically identifies
a minimal set of complementary motifs that jointly best explain
the observed peak sequences. Included among Crunch’s result are
files listing not only all binding peaks, their chromosomal loca-
tions, andChIP signal strength but also annotations of all regulato-
ry motifs occurring within these sequences, as well as statistical
analyses of the co-occurrence of all thesemotifs and their contribu-
tion to explaining the peak sequences. These results may be espe-
cially valuable for further downstream analysis of how sequence
motif constellations determine the genome-wide binding patterns
of TFs that are observed in vivo.

We found that themotifs that Crunch identified de novo out-
competed all known motifs for the majority of data sets, support-
ing the power of Crunch’s motif finding procedures. Second,
Crunch’s analysis showed that immunoprecipitated factors can
be naturally divided into “solitary binding TFs,” in which the
peak sequences are characterized by a single binding motifs, and
“cobinders,” in which the peak sequences contain sites for a com-
bination of complementary motifs. These cobinding motifs most
likely correspond to TFs that tend to co-occur in binding regions
of the TF in question, but some of them may also correspond to
TFs that bind at other genomic loci that form 3D interactions
with the binding loci of the TF in question. Both the complemen-
tarymotif set and the topmotifs for solitary binding TFs are highly
reproducible across experiments, even when very similar motifs
from different collections are available, suggesting that Crunch
can be used to identify the optimal in vivo bindingmotif for a giv-
en solitary TF.

Although we here focused on the application of Crunch to
data from ChIP-seq experiments with TFs, Crunch can also be ap-
plied to other types of data. For example, by using data from
DNase-seq experiments, Crunch can be used to identify regions
of open chromatin. Similarly, by using data from ChIP-seq exper-
iments for the H3K4me1 or H3K27ac chromatin marks, Crunch
can be used to identify the locations of cis-regulatory modules.
In this context, we believe that Crunch’s comprehensive motif
analysis will be especially valuable for downstream analysis of
how the genome-wide location of open chromatin and active en-
hancers is determined by local sequence motifs.

Figure 6. Comparison of the performance of known and de novomotifs. (Left) The reverse cumulative distribution of the log-ratios R of enrichment of the
top motif found de novo by Crunch and the top motif from the library of known motifs across the 121 ENCODE data sets for which at least 200 binding
peaks were identified. A positive difference means that Crunch’s de novo motif outperformed all library motifs. (Right) Scatter plot of the log-ratio R as a
function of the enrichment score of the best-known motif. The inset zooms in on the gray region on the left side of the plot.
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Methods

The Crunch analysis pipeline has been implemented using the
Anduril workflow engine (Ovaska et al. 2010). Below we describe
the analysis steps in the order in which they occur in the pipeline
(see Fig. 1), providing details for novel methods and relegating
more standard analysis steps to the Supplemental Methods.

Quality control and adapter removal

Crunch directly takes raw FASTQ files as input. To avoid contami-
nating downstream analyses with low-quality or erroneous se-
quences, we perform quality filtering and adapter removal,
which includes automated determination of the adapter that was
used using a list of known Illumina adapters (see Supplemental
Methods; https://support.illumina.com/downloads/illumina-
customer-sequence-letter.html).

Mapping

After filtering, Crunch maps the remaining reads to the reference
genome using Bowtie version 1.1.1 (for details, see Supplemental

Methods; Langmead et al. 2009). Instead of only retaining unique-
lymapping reads, whichwould lead to a systematic loss of binding
peaks in regions whose sequences are not unique in the genome,
we retain multimapping reads and equally distribute the weight
of each read to all mapping locations. To allow visualization of
the ChIP profiles in a genome browser, Crunch produces down-
loadable WIG files of the aligned reads.

Crunch by default uses the older version of Bowtie (Lang-
mead et al. 2009) rather than the newer version Bowtie 2 (Lang-
mead and Salzberg 2012), which runs faster and with less
memory for longer reads and can also perform gapped alignment.
To compare the performance of Bowtie with that of Bowtie 2, we
randomly selected 13 data sets that have a range of sequencing
depths and numbers of binding peaks, and replaced Bowtie with
Bowtie 2 for the mapping. We find that Bowtie 2 systematically
maps fewer reads than Bowtie (Supplemental Fig. S13). This is con-
sistent with the guidelines from the Bowtie developers that Bowtie
2 can have less sensitivity for reads that are <50 bp long. Nonethe-
less, there is virtually no change to the downstream peak calling
(Supplemental Fig. S13).

A C

B D

Figure 7. Consistency of the motif sets across replicate data sets. (A) Histogram of the additional information for all complementary motif sets from the
ENCODE data. The height of the bin corresponds to the number of unique TFs in the bin. TFs withmultiple experiments are shown in a colored font, and the
multiplicity of experiments for one TF within a bin is indicated. (B) Additional information across replicates for the 24 TFs for which multiple experiments
were performed. Each dot corresponds to an experiment, with the color indicating the cell line. TFs are sorted by their mean additional information. (C)
Consistency scores for all pairs of experiments (dots) with cobinding TFs (columns). The color indicates whether the experiments were performed in the
same (black) or different (red) cell lines. As an example, the logos on the left show the complementary motif sets for two ELK1 experiments in different cell
lines, withmatchingmotifs connected by lines. The consistency score for these two sets is 0.7 (seeMethods). (D) Consistencies of the top five knownmotifs
for all pairs of experiments (columns) with the same solitary binding TF (indicated next to each dot). The color indicates whether the pair of experiments
was performed in the same (black) or different (red) cell lines. As an example, we show the topmotifs for two experiments with the TFMAX, in two different
cell lines. Identical motifs are connected by lines, and the consistency of these two sets of motifs is 0.84.
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Fragment size estimation

After shearing and pulling down the DNA, ChIP-seq protocols for
sequencing library preparation generally include a step that selects
fragments in a certain size range. Because the lengths of the select-
ed fragments are typically significantly longer than the length of
the sequencing reads, reads are produced from both ends of each
double-stranded fragment. Consequently, the read distribution
in the neighborhood of a protein-binding site typically shows
two peaks on opposite strands of the DNA, at a distance approxi-
mately equal to the typical fragment length (Schmid and Bucher
2007). Crunch uses this fact to estimate the fragment length
from the correlations in occurrence of reads on opposite strands
as a function of their distance d (see Supplemental Methods;
Supplemental Fig. S3).

Peak calling: identifying enriched regions

The first step in Crunch’s peak finding consists of calculating, for
each length 500 window in the genome, the number of fragments
n and m from the ChIP and background samples, respectively,
whose centersmap to the correspondingwindow (see Supplemen-
tal Methods). Next, Crunch identifies and removes genomic win-
dows with aberrantly high read densities in the background
samples (see Supplemental Methods). These regions typically cor-
respond to repetitive regions that align poorly with genomes of
closely related species, and we suspect that the fragment counts
are aberrantly high in these regions because these repeats are
much more abundant in the genome used in the experiment
than in the reference assembly, causing reads to pile up in these re-
gions. These regions do not obey the statistics that are observed for
the vast majority of the genome, and this leads to a high rate of
false prediction of binding peaks in these regions.

To compare the fragment densities in ChIP and background
samples, we normalize the fragment counts by the total fragment
counts.We first add a pseudocount of 0.5 to the fragment counts n
and m for each window and then determine the sums N and M of
the fragment counts across all windows in the ChIP and back-
ground sample. To detect windows that are significantly enriched
in the ChIP sample relative to the background, we need a statistical
model for the fluctuations in observed read densities for windows
that are not enriched. It is well known that even for identical se-
quence libraries, the act of sequencing itself introduces Poisson
sampling noise in the number of observed reads in a given win-
dow. Although many peak finders make the assumption that
this Poisson sampling noise is the only source of fluctuations, it
is also well recognized that the other steps in the protocol, such
as the fragmenting of the DNA and PCR amplification, introduce
additional noise. For reasons of mathematical convenience, it
has become popular to assume that these additional fluctuations
are gamma distributed, leading to an overall negative binomial dis-
tribution of read densities across replicates, (see, e.g., Anders and
Huber 2010). However, in previous work we have shown that the
empirically observed fluctuations in read densities across replicates
are well described by a convolution of multiplicative, that is, log-
normal, and Poisson sampling noise (Balwierz et al. 2009). In par-
ticular, if f is the true fraction of fragments deriving from a certain
locus, the probability to obtain n reads at the locus when sequenc-
ing N reads in total is approximately given by

P(n|f , N)/ exp −
log
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− log (f )
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where σ2 is the variance of the multiplicative noise component,
and the term 1/n corresponds to the variance owing to the

Poisson sampling noise (for details, see Balwierz et al. 2009). If a
given window corresponds to a region of the genome that was un-
bound, then the true fraction f should be the same in the ChIP and
background sample. Consequently, the probability to obtain n out
of N fragments in the ChIP sample when m out of M fragments
were observed in the background sample is given by
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The term 2σ2 is the variance of the multiplicative noise com-
ponent, and the term 1/n+1/m constitutes the contribution to the
variance from the Poisson noise components of both the fore-
ground and background samples. As a significant fraction of the
reads in the foreground sample derives from bound regions, the
fragment density in regions without binding is systematically low-
er in the ChIP sample than in the background sample. The param-
eter μ corresponds to the resulting overall shift in log-density in the
unbound regions.

If a window corresponds to a region that had binding of the
immunoprecipitated factor, then the fragment density can be arbi-
trarily higher in the ChIP sample than in the background sample.
Instead of making specific assumptions about this distribution, we
will describe the probability Pb(n|N, m, M) to obtain n out of N
reads in the ChIP sample, givenm out ofM in the background sam-
ple, by a uniform distribution in the difference δ of log-densities
between ChIP and background. That is, let δ= log(n/N)− log(m/M),
and let R= δmax− δmin correspond to the observed range in δ values
across all windows. We then assume that, for a bound region, the
δ value can take on any value in this range:

Pb(n|N, m, M) = 1
R
. (3)

To model the joint distribution of both bound and unbound
windows, we now assume a mixture model. That is, the overall
probability for a window to obtain n out of N fragments in the
ChIP sample given that it had m out of M fragments in the back-
ground sample is given by

Pmix(n|N, m, M, s, m, r) = rPu(n|N, m, M, s, m)

+ (1− r)Pb(n|N, m, M), (4)

where ρ is the fraction of windows that are unbound, and μ and σ
are the parameters of the noise model for unbound regions as de-
scribed above. We then fit the parameters μ, σ, and ρ by maximiz-
ing the log-likelihood across all windows using expectation
maximization (see Supplemental Methods). Finally, because the
Gaussian approximation in Equation 2 becomes inaccurate
when the raw fragment counts are only zero or one, we exclude
windows in which the ChIP fragment count is below two.

After the parameters μ, σ, and ρ have been fit, we compute a
z-value for every window:

z =
log

n
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− log
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− m���������������
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n
+ 1

m

√ . (5)

Note that if therewas no binding at any of thewindows in the
genome, the z-values should follow a standard normal distribu-
tion. As a final list of bound windows, we select all windows
with a z-value over a threshold z∗. We set z∗ by default such that
the FDR is 0.1 (Supplemental Methods; Fig. 2C), but this value

Berger et al.

1174 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.239319.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.239319.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.239319.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.239319.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.239319.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.239319.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.239319.118/-/DC1


can also be altered by the user if desired. Finally, because we chose
the sliding windows to overlap, we merge overlapping windows
that passed the threshold into larger bound regions.

Peak calling: identifying individual binding peaks within enriched

regions

The enriched genomic regions that result from the analysis in the
previous section are typically 500–1000 bp in length, which is sig-
nificantly longer than the length of individual protein-binding
sites on the DNA. In the second step of peak calling, we search
for individual binding events by inspecting the ChIP signal within
the regions at single–base pair resolution. For each position in each
significantly enriched region, we compute the number of fore-
ground fragments that overlap it. Here fragments are reads that
were extended from their 5′ end to fragment size in 3′ direction.
The result is a ChIP coverage profile for each significantly enriched
region (Fig. 2D). To detect individual binding events, we now fit
the coverage profile of each enriched region to a mixture of
Gaussian peaks plus a uniform background distribution, in which
the widths of the Gaussian peaks are constrained by the estimated
fragment length (Supplemental Methods; Supplemental Fig. S14).
A z-value is recalculated for each individual binding peak.

Association of binding peaks with genes and promoters

To annotate which genes may be regulated by the regulatory ele-
ments within the peak, we use our curated collection of promoters
from SwissRegulon (Balwierz et al. 2009; Pachkov et al. 2013) and
record the three closest promoters upstream of and downstream
from the peak, as well as the genes associated with these promot-
ers. In addition, for each peak we provide a link to the
SwissRegulon genome browser, displaying the peak within its ge-
nomic context, including annotations of known transcripts,
known promoters, and predicted TF binding sites within these
promoters.

Regulatory motif analysis

To perform themotif analysis, Crunch first sorts the binding peaks
by z-value and collects either all binding peaks, or the top 1000
peaks when there are more than 1000 significant peaks (no motif
finding is performed when there are fewer than 200 peaks). The
peaks are then randomly divided into two equally sized subsets:
a training set {Ptraining} that Crunch uses to find and optimize mo-
tifs, as well as a test set {Ptest} that Crunch uses to assess the perfor-
mance of motif sets.

As detailed in the Supplemental Methods, Crunch then first
performs de novo motif finding on the training set {Ptraining} using
the PhyloGibbs (Siddharthan et al. 2005) and MotEvo (Arnold
et al. 2012) algorithms previously developed in our laboratory.
PhyloGibbs is used to find a set of motifs and MotEvo to refine
thesemotifs. Both these algorithms are designed to incorporate in-
formation from sequence conservation patterns by running on
multiple alignments of orthologous genomic regions. Crunch au-
tomatically aligns each peak sequence in the training set with
orthologous sequences from related organisms and runs Phylo-
Gibbs and MotEvo on these multiple alignments (Supplemental
Methods). The result is a set of up to 24 candidate de novo motifs
of different widths. These de novo motifs are combined with a
large collection of more than 2300 PWMs that we collected from
a number of resources into a motif library W (see Supplemental
Methods).

Crunch then finds a complementary set of regulatory motifs
from this library that together optimally explain the observed
ChIP-seq data using an idealizedmodel of the chromatin immuno-

precipitation process. First, we approximate the genome by a pool
of sequences, P, consisting of the observed binding peaks, Po, to-
gether with a very large set of “background” sequences, Pb, that
have the same lengths and nucleotide composition but are other-
wise random. Second, we assume that when immunoprecipitating
with a protein X, the probability of detecting a particular peak se-
quence, p, as a peak is proportional to the average number, np, of
copies of X that are bound to the sequence (averaged over many
cells). To relate the binding of X to the sequence of peak p, we as-
sume the following model. We assume that there is a set of motifs
{w} representing the sequence specificities of both X itself (if X is a
sequence-dependent DNA-binding factor), as well as all other
DNA-binding factors to whichX binds either directly or indirectly,
and that the total binding ofX to sequence p is proportional to the
total number of binding sites in p for the motifs in {w}. That is, we
assume that the probability of observing sequence p as a peak se-
quence is given by

PIP(p|{w})/ np,{w} + blp, (6)

where np,{w} is the total number of binding sites formotifs of the set
{w} within p, lp is the peak’s length, and β corresponds to the
amount of nonspecific binding per nucleotide. We added a non-
specific binding term to the model because it strongly improves
the performance of the model, and it is well-known that TFs asso-
ciate nonspecifically with the DNA (mostly through electrostatic
attraction). Using Equation 6, the probability to observe, that is,
immunoprecipitate, all of the observed peaks Po and none of the
backgrounds peaks Pb is then given by

PIP(Po|{w}) =
∏
p[Po

np,{w} + blp∑
p′[P np′ ,{w} + bl p′

[ ]
=

∏
p[Po

np,{w} + blp
N{w} + bL

[ ]
, (7)

where N{w} is the total number of binding sites for the motifs {w}
within the large pool P, and L is the total length of all sequences
in the pool P. To assess the performance of the set of motifs {w} rel-
ative to random expectation, we use the difference between the
log-likelihoods of observing the set Po given motifs {w} and when
randomly sampling peak sequences, and we take the limit of as-
suming the background set Pbmuch larger than the set of observed
peaks Po. We then find

dLIP(Po|{w}) =
∑
p[Po

log
np,{w} + blp
〈nb,{w}〉 + b〈l〉

( )
, (8)

with 〈nb,{w}〉 denoting the average numbers of sites for motifs {w}
per background sequence, and 〈l〉 is the average length of the back-
ground sequences. Equation 8 gives the log-likelihood ratio of im-
munoprecipitating the true peak sequences Po from a very large
pool of sequences of equal nucleotide composition and length, be-
tween amodel inwhich sequences are sampled proportional to the
number of sites they contain for motifs from {w} and a model in
which sequences are sampled randomly. Finally, to give a more in-
tuitivemeasure, we transform this log-likelihood ratio into an “en-
richment” score as follows:

E{w} = exp
1
|Po|

∑
p[Po

log
np,{w} + blp
〈nb,{w}〉 + b〈l〉

( )[ ]
. (9)

The enrichment E{w} has a simple interpretation: It measures
the geometric average of the ratio of the amount of binding to ob-
served peak sequences versus background sequences. As detailed in
the Supplemental Methods, for any set of motifs {w}, the enrich-
ment E{w} is calculated by optimizing the parameters of the motif
finding and the nonspecific binding on a training set of peaks
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and background sequences and then calculating E{w} on a test set of
peaks and background sequences.

Crunch searches for a minimal motif set {w} that maximizes
the enrichment E{w}. As a complete search across all subsets of
{Wlib} is computationally infeasible, we use a greedy algorithm
that maximizes E{w} by adding one motif at a time (Fig. 3A).
Crunch starts by calculating the enrichment Ew for each individual
motifw in the library and sorts all motifs by this score. Because the
motif library {Wlib} is highly redundant, we typically find that any
high scoring motif w on the list is accompanied by a number of
highly similar but lower-scoring motifs further down the list.
These motifs are highly unlikely to end up in the final set {w},
and for computational efficiency, we remove these motifs from
the list. That is, for any motif on the sorted list, all motifs that
are highly similar but lower on the list are removed (for details,
see Supplemental Methods). We denote the sorted list of remain-
ing motifs by {Wreduced}. We initiate the motif set {w} with the
top motif wtop, that is, the motif with maximal enrichment Ew,
and iterate

1. For every motif w left in {Wreduced}, compute E{w}∪w.
2. Denote the motif w with maximal E{w}∪w by w∗.
3. If E{w}∪w∗ increases E{w} by >5%, addw∗ to {w} and go to step one.

Otherwise, terminate the algorithm.

The cutoff of at least a 5% increase for each added motif was
chosen so as to allow even motifs that add relatively little to be in-
corporated while at the same time avoiding adding redundant
motifs.

Additional motif statistics

Besides the enrichment score Ew, Crunch calculates a number of
additional statistics to characterize the way in which each motif
from the set {w} associates with the binding peaks (Fig. 3). First,
for each motif, Crunch reports what fraction of the binding peaks
contains at least one site for the motif. Second, although Crunch
uses the enrichment score Ew to quantify the ability of the motif
to explain the observed peaks, it also provides a standard preci-
sion-recall curve that shows howwell binding peaks can be distin-
guished from background sequences based on the number of
predicted sites (Fig. 3E). That is, by varying a cutoff on the total
number of binding sites, T, Crunch calculates what fraction of
binding peaks have a number of sites larger than T (sensitivity)
and what fraction of all sequences with more than T sites are
true binding peaks (precision).

As a third measure, Crunch calculates to what extent the
number of predicted binding sites in a peak correlates with the
strength of the peak’s ChIP signal, that is, whether sequences
withmore sites lead tomore enriched peaks. Crunchboth provides
a graph showing a box plot of the distribution of the number of
predicted sites as a function of ChIP signal strength (Fig. 3F) and
calculates the overall Pearson correlation between the number of
binding sites, np,w, and the peak’s z-value. Finally, if binding sites
for the motif were directly responsible for the immunoprecipita-
tion of the fragments, then we would expect the positions of the
binding sites within the peak region to colocalize with the peak
of theChIP signal. Crunch’s results also include a figure that shows
the distribution of ChIP signal at predicted binding sites and, for
reference, at all positions in the peaks (Fig. 3G). To quantify the en-
richment of the ChIP signal at predicted binding sites, we calculate
a ChIP signal enrichment:

CEw =
∑

i cipw(i)
�c
∑

i pw(i)
, (10)

where i runs over all positions at which a binding site formotifw is
predicted, pw(i) is the posterior probability (as assigned byMotEvo)

for the site at i, ci is the ChIP signal (fragment coverage) at position
i, and �c is the average ChIP signal in the binding peaks. Only bind-
ing sites with posterior pw(i) > 0.2 are included in this calculation.

Finally, Crunch also reports statistics on the co-occurrence of
motifs from the set {w} within binding peaks. For each pair of mo-
tifs (w, w′) in {w}, Crunch calculates the Pearson correlation in the
number of binding sites np, w and np, w’ across the binding peaks p.
To visualize these correlations, Crunch provides a heat map of be-
tween motif correlation over peaks (Fig. 3C).

Consistency of motif sets

To compute the consistencyC of two sets of motifs S and S′, we use
the following measure, which is an extension of the Dice set sim-
ilarity measure for ordered sets (Egghe and Michel 2003):

C(S, S′) =
∑

i,j Q(0.2− d(Si, S′ j))
1

2max (i,j)−1∑
i

1
2i−1 +

∑
j

1
2 j−1

, (11)

where i and j run from one to the number of motifs in S and S′, re-
spectively; Θ(x) is the Heaviside step-function, which is zero if its
argument is negative and one otherwise; and d(Si, S

′
j) is the dis-

tance between motif i in S and motif j in S′ (see Supplemental
Methods). That is, if the distance between two motifs is lower
than 0.2, the motifs are considered to match (for an example of
motif distances among motifs, see Supplemental Fig. S15). Note
that the consistency C(S, S′) runs from zero (no matching mem-
bers) to one (two identical sets in the same order).

Software availability

Crunch is available as a web server at crunch.unibas.ch. For com-
pleteness, we also make an archive with all the source code of
the current implementation of Crunch available as a Supplemen-
tal Code file.
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