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Abstract
RNA junctions are important structural elements of RNA molecules. They are formed when

three or more helices come together in three-dimensional space. Recent studies have

focused on the annotation and prediction of coaxial helical stacking (CHS) motifs within

junctions. Here we exploit such predictions to develop an efficient alignment tool to handle

RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-

Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topolo-

gies as tree graphs to incorporate constrained tree matching and dynamic programming

algorithms into a new method, called CHSalign, for aligning the secondary structures of

RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient align-

ment tool for RNAs containing similar junctions. Experimental results based on thousands

of alignments demonstrate that CHSalign can align two RNA secondary structures contain-

ing CHS motifs more accurately than other RNA secondary structure alignment tools.

CHSalign yields a high score when aligning two RNA secondary structures with similar

CHS motifs or helical arrangement patterns, and a low score otherwise. This new method

has been implemented in a web server, and the program is also made freely available, at

http://bioinformatics.njit.edu/CHSalign/.

Introduction
RNA secondary structures are composed of double-stranded segments such as helices con-
nected to single-stranded regions such as junctions and hairpin loops. These structural ele-
ments serve as building blocks in the design of diverse RNA molecules with various functions
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in the cell [1–3]. In particular, RNA junctions are important structural elements due to their
ability to orient many parts of the RNA molecule [4].

An RNA junction, also known as a multi-branch loop, forms when more than two helical
segments are brought together [5–10]. RNA junctions exist in numerous RNA molecules; they
play important roles in a wide variety of biochemical activities such as self-cleavage of the ham-
merhead ribozyme [11], the recognition of the binding pocket domain by purine riboswitches
[12] and the translation initiation of the hepatitis C virus at the internal ribosome entry site
[13]. Recent studies have classified RNA junctions with three and four branches into three and
nine families, respectively [14,15]. Experiments have verified that a three-way junction in Ara-
bidopsis has an important functional role [16]. A junction database, called RNAJunction, has
been established, which contains junctions of all known degrees of branching [5].

A common tertiary motif within junctions of an RNA molecule is the coaxial stacking of
helices [17–19], which occurs when two separate helical segments are aligned on a common
axis to form a pseudocontiguous helix [20]. Coaxial stacking configurations have been
observed in all large RNAs for which crystal structures are available, including tRNA, group I
and II introns, RNase P, riboswitches and large ribosomal subunits. Coaxial helical stacking
(CHS) provides thermodynamic stability to the RNA molecule as a whole [21] and reduces the
separation between loop regions within junctions [22]. Moreover, coaxial stacking configura-
tions form cooperatively with long-range interactions in many RNAs [14,17,23], and are there-
fore crucial as for correct tertiary structure formation as well as the formation of different
junction topologies [15,17,24]. Since junctions are major architectural components in RNA, it
is important to understand their structural properties. For example, the function of RNA mole-
cules may be inferred if their junction components are similar in structure to other well-studied
junction domains.

In this paper we build upon our previously developed Junction-Explorer tool [25] for pre-
dicting coaxial stacking and RNAJAG [4] for modelling junction topologies as tree graphs, and
present a method, CHSalign, for aligning two RNA secondary (2D) structures that possess
CHS motifs within the junctions of the two RNA structures. Coaxial stacking interactions in
junctions are part of tertiary (3D) motifs [24]. Thus, CHSalign differs from both RNA 2D and
3D structure alignment tools. Existing secondary (2D) structure alignment tools focus on
sequences and base pairs without considering tertiary motifs. Existing tertiary (3D) structure
alignment tools accept as input two RNA 3D structures including all types of tertiary motifs in
the Protein Data Bank (PDB) [26] and align the 3D structures by considering their geometric
properties, torsion angles, and base pairs.

For 3D structure alignment, Ferre et al. [27] developed a dynamic programming algorithm
based on nucleotide, dihedral angle, and base pairing similarities. Capriotti and Marti-Renom
[28] developed a program to align two RNA 3D structures based on a unit-vector root-mean-
square approach. Chang et al. [29] and Wang et al. [30] employed a structural alphabet of dif-
ferent nucleotide conformations to align RNA 3D structures. Hoksza and Svozil [31] developed
a pairwise comparison method based on 3D similarity of generalized secondary structure units.
Sarver et al. [32] designed the FR3D tool for finding local and composite recurrent structural
motifs in RNA 3D structures. Dror et al. [33] described the RNA 3D structure alignment pro-
gram, ARTS, and its use in the analysis and classification of RNA 3D structures [34]. Rahrig
et al. [35] presented the R3D Align tool for performing global pairwise alignment of RNA 3D
structures using local superpositions. He et al. [36] developed the RASS web server for compar-
ing RNA 3D structures using both sequence and 3D structure information.

On the other hand, a well-adopted strategy for RNA 2D structure alignment is to use a tree
transformation technique and perform RNA alignment through tree matching [37–39]. For
instance, RNAforester [39] aligns two RNA 2D structures by calculating the edit-distance
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between tree structures symbolizing RNAs. By utilizing tree models to capture the structural
particularities in RNA, RSmatch [37] aligns two RNA 2D structures effectively. Additional
methods are described in [38,40].

In contrast to these methods for aligning two RNAs when their 2D structures are available,
another group of closely related methods achieved RNA folding and alignment simultaneously.
For instance, FOLDALIGN [41] uses a lightweight energy model and sequence similarity to
simultaneously fold and align RNA sequences. Dynalign [42] finds a secondary structure com-
mon to two sequences without requiring any sequence identity. DAFS [43] simultaneously
aligns and folds RNA sequences based on maximizing the expected accuracy of a predicted
common secondary structure of the sequences. Similar techniques are implemented in Centroi-
dAlign [44] and SimulFold [45]. SCARNA [46] employs a method of comparing RNA
sequences based on the structural alignment of the fixed-length fragments of the stem candi-
dates in the RNAs.

While many methods have been developed for RNA structure alignment, as surveyed
above, few are tailored to junctions, especially junctions with coaxial stacking interactions.
Junctions and coaxial stacking patterns are common in many RNA molecules and, as men-
tioned above, are involved in a wide range of functions. Furthermore, experimental probing
techniques, such as RNA SHAPE chemistry, SAXS, NMR, and fluorescence resonance energy
transfer (FRET), often provide sufficient information to determine coaxial stacking configura-
tions [2,47–49]. Thus, a junction-tailored tool capable of comparing RNA structures on the
basis of coaxial stacking patterns in their junctions could be particularly valuable. To this end,
we present CHSalign, which performs RNA alignment by applying a constrained tree matching
algorithm and dynamic programming techniques to ordered labeled trees symbolizing RNA
structures with coaxial stacking patterns. Experimental results on different data sets demon-
strate the effectiveness of this newly developed tool. The CHSalign web server is freely available
at http://bioinformatics.njit.edu/CHSalign/.

Materials and Methods
CHSalign accepts as input two RNA 2D structures which contain manually annotated coaxial
stacking of helices, and produces as output an alignment between the two input structures.
When manually annotated coaxial stacking patterns are not available, CHSalign invokes our
previously developed Junction-Explorer tool [25] to predict the coaxial stacking configurations
of the input structures.

Our approach is to transform each input RNA 2D structure with coaxial stacking patterns
into an ordered labeled tree. Tree graphs are popular models for representing RNA structures
[4,23,39,50–52]. We extend RNAJAG [4] to obtain an ordered tree model, in which each tree
node represents a secondary structure element such as a helix (stem), junction or hairpin loop.
When comparing two tree nodes, we use a dynamic programming algorithm [37,38] to align
the 2D structural elements in the tree nodes, obtaining a score between the two nodes. We then
use a constrained tree matching algorithm to find an optimal alignment between the two input
RNA 2D structures, taking into account their coaxial stacking configurations. Below, we detail
our tree model and the constrained tree matching algorithm.

Tree model formalism
Let Rseq be an RNA sequence containing nucleotides or bases A, C, G, U. Rseq[i] denotes the
base at position i of Rseq ordered from the 5’ to 3’ ends. Rseq[i, j], i< j, is the subsequence start-
ing at position i and ending at position j. Let R be the 2D structure of Rseq with at least one base
pair. A helix in R is a double-stranded segment composed of contiguous base pairs. A base pair
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connecting position i and position j is denoted by (i, j) and its enclosed subsequence is Rseq[i, j].
If all nucleotides in Rseq[i, j] except Rseq[i] and Rseq[j] are unpaired single bases, and (i, j) is a
base pair in R, we call Rseq[i+1, j-1] a hairpin loop.

A junction, or a multi-branch loop, is an enclosed area connecting different helices [7]. An
n-way junction in R has n branches. This junction connects n helices where there are n base
pairs (i1, j1). . . (in, jn) (one base pair for each helix), and n subsequences participating in the
junction. The n subsequences are denoted by Rseq[i1+1, i2-1], Rseq[j2+1, i3-1], Rseq[j3+1, i4-
1],. . ., Rseq[jn-1+1, in-1], and Rseq[jn+1,j1-1]. All the unpaired bases on the n subsequences com-
prise the n-way junction, and the subsequences are called the loop regions of the junction.
Internal loops or bulges can be considered as special cases of “two-way” junctions [5]. How-
ever, for the purpose of this work, nmust be greater than 2. Thus, internal loops or bulges are
not considered as junctions in our work; instead, they are considered as part of the helices in R.

We transform the 2D structure R into an ordered labeled tree T in which each node has a
label and the left-to-right order among sibling nodes is important. Each node of T represents a
2D structural element of R, belonging to one of three types: helix, junction, and hairpin loop.
With this tree model, pseudoknots are excluded.

Fig 1 illustrates the transformation process. Fig 1A shows the 3D crystal structure of the
adenine riboswitch molecule (PDB code: 1Y26) obtained from the Protein Data Bank (PDB)

Fig 1. Transformation of an RNA 3Dmolecule into an ordered labeled tree. (A) The 3D crystal structure of the adenine riboswitch molecule (PDB code:
1Y26) obtained from the Protein Data Bank (PDB) and drawn by PyMOL. The first helix according to the 50 to 30 orientation is labeled by H1 and highlighted in
blue. The second helix is labeled by H2 and highlighted in green. The third helix is labeled by H3 and highlighted in red. The junction labeled by J1 and hairpin
loops labeled by P1 and P2 respectively are highlighted in light grey. J1 is a multi-branch loop where the three helices H1, H2 and H3 connect. P1 and P2 are
hairpin loops connected to helices H2 and H3, respectively. (B) The corresponding secondary (2D) structure, obtained from RNAView. Each 2D structural
element in (B) is highlighted as in (A). The yellow bar across H1, J1 and H3 denotes a coaxial helical stacking H1H3 in the molecule 1Y26. (C) The ordered
labeled tree, T, used to represent the 2D structure R in (B). Each node of T corresponds to a 2D structural element of R where the octagon (squares, triangles
respectively) in T represents the junction (helices, hairpin loops respectively) in R.

doi:10.1371/journal.pone.0147097.g001

CHSalignWeb Server

PLOS ONE | DOI:10.1371/journal.pone.0147097 January 20, 2016 4 / 22



[26] and drawn by PyMOL (http://www.pymol.org/). The first helix according to the 50 to 30

orientation is labeled by H1 and highlighted in blue. The second helix is labeled by H2 and
highlighted in green. The third helix is labeled by H3 and highlighted in red. The junction
labeled by J1 and hairpin loops labeled by P1 and P2 respectively are highlighted in light grey. J1
is a multi-branch loop where the three helices H1, H2 and H3 connect. P1 and P2 are hairpin
loops connected to helices H2 and H3, respectively.

Fig 1B shows the corresponding 2D structure, obtained from RNAView [53]. Each 2D
structural element in Fig 1B is highlighted as in Fig 1A. Notice that there is a yellow bar across
H1, J1 and H3, symbolizing a coaxial helical stacking H1H3 in the molecule 1Y26, as described
in [17,24]. In general, the coaxial helical stacking status of a three-way junction such as J1 in
Fig 1B is described as one of four possibilities: H1H2, H2H3, H1H3, or none, where HxHy indi-
cates that Hx and Hy are coaxially stacked, i.e., helix Hx shares a common axis with helix Hy.

The locations of the junctions and the coaxial helical stacking status of each junction in a given
2D structure can be determined using the methods described in [25].

Fig 1C shows the tree, T, used to represent the 2D structure R in Fig 1B. Each node of T cor-
responds to a 2D structural element of R where the octagon (squares, triangles respectively) in
T represents the junction (helices, hairpin loops respectively) in R. Thus, like the 2D structural
elements, each tree node belongs to one of three types, namely helix, junction, and hairpin
loop. Tree nodes of different types are prohibited to be aligned with each other, and hence the
term “constrained tree matching” is used in our work (reminiscent of structural constraints in
RNA described in [54]).

We use t[i] to represent the node of tree T whose position in the left-to-right post-order tra-
versal of T is i. The post-order procedure works by first traversing the left subtree, then travers-
ing the right subtree, and finally visiting the root. In Fig 1C, the post-order position number of
each node is shown next to the node. By construction, the tree node corresponding to an n-way
junction consists of n– 1 children. The first helix according to the 50 to 30 orientation is the par-
ent node of the junction node. The other n– 1 helices are the children of that junction node.
The number of children of node t[i] is the degree of t[i]. In Fig 1C, H1 is the parent node of J1,
which has two children, H2 and H3. The degree of the junction node J1 is 2. In general, the
degree of an n-way junction node is n– 1.

Consider two RNA 2D structures R1 and R2 and their tree representations T1 and T2 respec-
tively. Let t1[i] (t2[j], respectively) be the node of T1 (T2, respectively) whose position in the
post-order traversal of T1 (T2, respectively) is i (j, respectively). Let T1[i] be the subtree rooted
at t1[i], and T2[j] be the subtree rooted at t2[j]. F1[i] represents the forest obtained by removing
the root t1[i] from subtree T1[i]. F2[j] represents the forest obtained by removing the root t2[j]
from subtree T2[j]. Suppose the degree of t1[i] ismi (i.e., t1[i] hasmi children t1½i1�; . . . ; t1½imi

�)
and the degree of t2[j] is nj (i.e., t2[j] has nj children t2½j1�; . . . ; t2½jnj �). We use S(T1[i], T2[j]) to

represent the alignment score of subtree T1[i] and subtree T2[j], and use γ(t1[i], t2[j]) to repre-
sent the alignment score of node t1[i] and node t2[j]. We use ; to represent an empty node;
matching a tree node with ; amounts to aligning all nucleotides in the tree node to gaps.

Alignment scheme
We employ a dynamic programming algorithm to align two RNA 2D structures with coaxial
stacking patterns. Our approach is to transform each RNA 2D structure into an ordered labeled
tree as explained in the previous subsection. We then apply the dynamic programming algo-
rithm to the ordered labeled trees representing the two RNA 2D structures. Based on the align-
ment of the trees, we obtain the alignment of the corresponding RNA 2D structures. As noted
above, each tree node belongs to one of three types: helix, junction, and hairpin loop. Different
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types of tree nodes are prohibited to be aligned with each other. When aligning two subtrees
T1[i] and T2[j] and calculating the score S(T1[i], T2[j]), there are nine cases to be considered.

Case 1. Both t1[i] and t2[j] are junctions.
One constraint we impose on pairwise alignment is that when aligning a p-way junction

node v1 with a q-way junction node v2, p must be equal to q. Furthermore, the coaxial helical
stacking status of v1 must be the same as the coaxial stacking status of v2. Thus, a three-way
junction must be aligned with a three-way junction, which is not allowed to align with a four-
way junction. Furthermore, a three-way junction whose coaxial helical stacking status is H1H2

must be aligned with a three-way junction having the same H1H2 status, which is not allowed
to align with a three-way junction whose coaxial helical stacking status is H2H3. In general,
junctions with different branches and different coaxial stacking configurations have different
biological properties. This constraint is established to ensure a biologically meaningful align-
ment is obtained, and to avoid introducing too many gaps in the alignment.

According to our tree model, if a tree node is a junction, it must have at least two children
and the children must be helix nodes. A junction contains loop regions with single bases
whereas helices are double-stranded regions with base pairs. A junction node is thus prohibited
to be aligned with a helix node. Hence, t1[i] must be aligned with t2[j] provided they have the
same number of branches and the same coaxial helical stacking status, denoted byC(t1[i]) =C
(t2[j]). Their children are trees, which together form forests F1[i] and F2[j] respectively. F1[i]
must be aligned with F2[j]. Thus the alignment score of T1[i] and T2[j] can be calculated as:

SðT1½i�;T2½j�Þ ¼ max
gðt1½i�; t2½j�Þ þ SðF1½i�; F2½j�Þ
0

: ð1Þ
(

IfC(t1[i]) =C(t2[j]), t1[i] and t2[j] must have the same number of children, and the order
among the sibling nodes is important. IfC(t1[i]) 6¼C(t2[j]), i.e., t1[i] and t2[j] have different
numbers of children (branches) or they have different coaxial helical stacking statuses, they are
prohibited to be aligned together. Thus, the score of matching F1[i] with F2[j] can be calculated
as:

SðF1½i�; F2½j�Þ ¼
SðT1½i1�;T2½j1�Þ þ . . .þ SðT1½im�;T2½jm�Þ if Cðt1½i�Þ ¼ Cðt2½j�Þ
�1 otherwise

ð2Þ
(

wherem is the number of children of t1[i] and t2[j] respectively. We useP(t1[i]) to represent
the coaxial helical stacking status of t1[i];P(t1[i]) = 1 (2, 3, 0, respectively) if the coaxial helical
stacking status of t1[i] is H1H2 (H2H3, H1H3, none, respectively). The score of matching t1[i]
with t2[j] is

gðt1½i�; t2½j�Þ ¼
sþ w if Cðt1½i�Þ ¼ Cðt2½j�Þ; Pðt1½i�Þ 6¼ 0; Pðt2½j�Þ 6¼ 0

sþw =2 if Cðt1½i�Þ ¼ Cðt2½j�Þ; Pðt1½i�Þ ¼ Pðt2½j�Þ ¼ 0

�1 otherwise

: ð3Þ

8><
>:

Here, s is the score obtained by aligning the junction in t1[i] with the junction in t2[j]. We use a
dynamic programming algorithm [37,38] to calculate the alignment score s, and adopt the RIBO-
SUM85-60 matrix [55] to calculate the score of aligning two bases or base pairs in RNA 2D struc-
tures. (The default gap penalty is –1.) With this scoring matrix, CHSalign can handle non-
canonical base pairs. The addition of a parameter w to the alignment score is a computational
device to enforce the right alignment of the RNAs when the junction patterns match. Thus, if t1[i]
and t2[j] have the same number of branches, their CHS patterns are alike, andP(t1[i])6¼0,P
(t2[j])6¼0, we use s+w as the modified alignment score. When t1[i] and t2[j] have the same number
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of branches andP(t1[i]) =P(t2[j]) = 0, we use s+(w/2) as the modified score. The value of w
required experimentation, as we discuss later, but a value of 100 seems to work well in practice.

Case 2. Both t1[i] and t2[j] are helices.
Due to the nature of RNA 2D structures and based on our tree model, a helix has only one

child, which is either a junction or a hairpin loop. The subtree rooted at the child of t1[i] is
denoted by T1[i—1] and the subtree rooted at the child of t2[j] is denoted by T2[j—1]. We have
to match helix nodes t1[i] and t2[j] first, and then add the alignment score of their subtrees
T1[i—1] and T2[j—1] if the alignment score of the subtrees is greater than or equal to zero, or
simply match t1[i] with t2[j] if the alignment score of their subtrees is negative (i.e., the subtrees
are not aligned). Therefore, the alignment score of T1[i] and T2[j] can be calculated as:

SðT1½i�;T2½j�Þ ¼ max

gðt1½i�; t2½j�Þ þ SðT1½i� 1�;T2½j� 1�Þ
gðt1½i�; t2½j�Þ
0

ð4Þ

8><
>:

The score γ(t1[i], t2[j]) is obtained by aligning the helix in t1[i] with the helix in t2[j] using a
dynamic programming algorithm [37,38]. The value 0 is used if the other entries in Eq (4) yield
negative scores.

Case 3. Both t1[i] and t2[j] are hairpin loops.
Due to the nature of RNA 2D structures and based on our tree model, a hairpin does not

have any child. Therefore hairpin nodes are always leaves in the tree representation of an RNA
2D structure. When both t1[i] and t2[j] are hairpin loops, matching T1[i] with T2[j] amounts to
matching t1[i] with t2[j]. Thus, the alignment score becomes:

SðT1½i�;T2½j�Þ ¼ max
gðt1½i�; t2½j�Þ
0

: ð5Þ
(

The score γ(t1[i], t2[j]) is obtained by aligning the hairpin loop in t1[i] with the hairpin loop
in t2[j] using a dynamic programming algorithm [37,38].

Case 4. t1[i] is a junction and t2[j] is a helix.
Since t1[i] and t2[j] have different types, they cannot be aligned with each other. There are

two subcases.
Subcase 1. t2[j] is aligned to gaps. Then T1[i] must be aligned with T2[j—1], which is the

subtree rooted at the child of t2[j].
Subcase 2. t1[i] is aligned to gaps. Suppose t1[i] hasmi children t1½i1�; . . . ; t1½imi

�. The sub-
trees rooted at these children are denoted by T1½i1�; . . . ;T1½imi

� respectively. Then, one of these
subtrees must be aligned with T2[j]; specifically the subtree yielding the maximum alignment
score is aligned with T2[j].

We take the maximum of the above two subcases. Thus, the score of matching T1[i] with
T2[j] can be calculated as:

SðT1½i�;T2½j�Þ ¼ max

gð;; t2½j�Þ þ SðT1½i�;T2½j� 1�Þ

gðt1½i�; ;Þ þmax1�k�mi
fSðT1½ik�;T2½j�Þg

0

:

8>>><
>>>:

ð6Þ

The value 0 is used if both of the two subcases yield negative scores.
Fig 2 illustrates this case where two PDB molecules, A-riboswitch (PDB code: 1Y26) and the

Alu domain of the mammalian signal recognition particle (SRP) (PDB code: 1E8O), are con-
sidered. Fig 2A shows the 3D crystal structure of the adenine riboswitch molecule and its tree
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Fig 2. Illustration of an alignment between two RNAmolecules. (A) The 3D crystal structure of the adenine riboswitch (PDB code: 1Y26) and its tree
representation T1. (B) The 3D crystal structure of the Alu domain of the mammalian signal recognition particle (SRP) (PDB code: 1E8O) and its tree
representation T2. (C) Whenmatching T1[i] with T2[j], since t1[i] and t2[j] have different types where t1[i] is a junction and t2[j] is a helix, there are two subcases
to be considered. Subcase 1 is illustrated in (i) where t2[j] is aligned to gaps and T1[i] is aligned with T2[j—1]. Subcase 2 is illustrated in (ii) where t1[i] is
aligned to gaps, and the subtree rooted at one of the children of t1[i] is aligned with T2[j]. In this example, t1[i] has two children, t1[i1] and t1[i2]. Thus, either the
subtree rooted at t1[i1], denoted by 1[i1], is aligned with T2[j] as illustrated in (iia), or the subtree rooted at t1[i2], denoted by T1[i2], is aligned with T2[j] as
illustrated in (iib).

doi:10.1371/journal.pone.0147097.g002
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representation T1. Fig 2B shows the 3D crystal structure of the Alu domain of the mammalian
SRP molecule and its tree representation T2. When matching T1[i] with T2[j], since t1[i] and
t2[j] have different types where t1[i] is a junction and t2[j] is a helix, there are two subcases to
be considered, as detailed above. Fig 2C-i illustrates subcase 1, in which t2[j] is aligned to gaps
and T1[i] is aligned with T2[j—1]. Fig 2C-ii illustrates subcase 2, in which t1[i] is aligned to
gaps, and the subtree rooted at one of the children of t1[i] is aligned with T2[j]. In our example
here, t1[i] has two children, t1[i1] and t1[i2]. Thus, either the subtree rooted at t1[i1], denoted by
T1[i1], is aligned with T2[j] as illustrated in Fig 2C-iia, or the subtree rooted at t1[i2], denoted
by T1[i2], is aligned with T2[j] as illustrated in Fig 2C-iib. The maximum alignment score
obtained from Fig 2C-iia and 2C-iib is used. Then S(T1[i], T2[j]) is calculated by taking the
maximum of the two subcases illustrated in Fig 2C-i and 2C-ii respectively.

Case 5. t1[i] is a junction and t2[j] is a hairpin loop.
Since t1[i] and t2[j] have different types, the two nodes cannot be aligned together. Further-

more, t2[j] is a hairpin loop, which does not have any child. Thus t1[i] must be aligned to gaps,
and the subtree rooted at one of the children of t1[i] is aligned with T2[j]; specifically the sub-
tree yielding the maximum alignment score is aligned with T2[j]. Therefore, the alignment
score of T1[i] and T2[j] can be calculated as:

SðT1½i�;T2½j�Þ ¼ max
gðt1½i�; ;Þ þmax1�k�mi

fSðT1½ik�;T2½j�Þg
0

: ð7Þ
(

Case 6. t1[i] is a helix and t2[j] is a junction.
Similar to Case 4, there are two subcases.
Subcase 1. ti[i] is aligned to gaps. Thus, the subtree rooted at the child of t1[i], denoted by

T1[i—1], must be aligned with T2[j].
Subcase 2. t2[j] is aligned to gaps. Suppose t2[j] has nj children t2½j1�; . . . ; t2½jnj �. The subtrees

rooted at these children are T2½j1�; . . . ;T2½jnj � respectively. Then T1[i] must be aligned with one

of these subtrees.
Taking the maximum of these two subcases, we calculate the score of matching T1[i] with

T2[j] as:

SðT1½i�;T2½j�Þ ¼ max

gðt1½i�; ;Þ þ SðT1½i� 1�;T2½j�Þ
gð;; t2½j�Þ þmax1�k�nj

fSðT1½i�;T2½jk�Þg

0

: ð8Þ

8>><
>>:

Case 7. t1[i] is a helix and t2[j] is a hairpin loop.
Because t1[i] and t2[j] have different types, the two nodes cannot be aligned together. Fur-

thermore, since t1[i] is a helix, it has only one child; t2[j] is a hairpin loop with no children.
Therefore, t1[i] must be aligned to gaps and the subtree rooted at the child of t1[i], denoted by
T1[i—1], must be aligned with T2[j], or if the alignment yields a negative score, we use the
value 0. Thus, the alignment score is

SðT1½i�;T2½j�Þ ¼ max
gðt1½i�; ;Þ þ SðT1½i� 1�;T2½j�Þ
0

: ð9Þ
(

Case 8. t1[i] is a hairpin loop and t2[j] is a junction.
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This is similar to Case 5. Thus, we can calculate the score of matching T1[i] with T2[j] as:

SðT1½i�;T2½j�Þ ¼ max
gð;; t2½j�Þ þmax1�k�nj

fSðT1½i�;T2½jk�Þg
0

:ð10Þ
(

Case 9. t1[i] is a hairpin loop and t2[j] is a helix.
This is similar to Case 7, with the alignment score:

SðT1½i�;T2½j�Þ ¼ max
gð;; t2½j�Þ þ SðT1½i�;T2½j� 1�Þ
0

: ð11Þ
(

Time and space complexity
Let |T1| (|T2| respectively) denote the number of nodes in tree T1 (T2 respectively) that repre-
sents RNA structure R1 (R2 respectively). CHSalign maintains a two-dimensional table in
which c(i, j) represents the cell located at the intersection of the ith row and the jth column of
the table. The value stored in the cell c(i, j), 1� i� |T1|, 1� j� |T2|, is S(T1[i], T2[j]). The
dynamic programming algorithm employed by CHSalign calculates the values in the table by
traversing the trees T1 and T2 in a bottom-up manner. After all the values in the table are com-
puted, the algorithm locates the cell c with the maximum value. A backtrack procedure starting
with the cell c and terminating when encountering a zero identifies the alignment lines of an
optimal alignment and calculates the alignment score between T1 and T2.

Let |R1| (|R2| respectively) denote the number of nucleotides, i.e., the length, of RNA struc-
ture R1 (R2 respectively). Let |t1[i]| (|t2[j]| respectively) be the number of nucleotides in node
t1[i] (t2[j] respectively). Let d1 (d2, respectively) be the maximum degree of any node in tree T1
(T2 respectively). The time complexity of computing γ(t1[i], t2[j]) is O(|t1[i]|×|t2[j]|) [37].
Thus, the time complexity of computing S(T1[i],T2[j]) is O(max(d1,d2)+|t1[i]|×|t2[j]|). Here
max(d1, d2) is a constant because a junction has at most twelve branches in solved RNA crystal

structures [4,25,52]. Furthermore,
XjT1 j

i¼1
jt1ðiÞj ¼ jR1j and

XjT2 j
j¼1

jt2ðjÞj ¼ jR2j: Therefore the
time complexity of calculating all the values in the two-dimensional table is

Oð
XjT1 j

i¼1

XjT2 j
j¼1

ðmaxðd1; d2Þ þ jt1½i�j � jt2½j�jÞÞ

¼ Oð
XjT1 j

i¼1

XjT2 j
j¼1

ðjt1½i�j � jt2½j�jÞÞ
¼ OðjR1j � jR2jÞ:

ð12Þ

Locating the cell c with the maximum value in the two-dimensional table and executing the

backtrack procedure require Oð
XjT1 j

i¼1

XjT2 j
j¼1

ðjt1½i�j � jt2½j�jÞÞ ¼ OðjR1j � jR2jÞ computational

time. Therefore the time complexity of CHSalign is O(|R1|×|R2|). Since only a two-dimensional
table is used, the space complexity of CHSalign is O(|T1|×|T2|) = O(|R1|×|R2|).

Data sets
Popular benchmark datasets such as BRAliBase [56] and Rfam [57] are not suitable for testing
CHSalign, since they do not contain coaxial helical stacking information. As a consequence, we
manually created two datasets for testing CHSalign and comparing it with related methods.
The first dataset, Dataset1, contains 24 RNA 3D structures from the Protein Data Bank (PDB)
[26] (see Table 1). This dataset was studied and published in [4,25,52], in which all annotations
for junctions and coaxial helical stacking were taken from crystallographic structures. Each 3D
structure in Dataset1 contains at least one three-way junction, and the lengths of the 3D
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structures range from 40 nt to 2,958 nt. Some 3D structures contain higher-order junctions
such as ten-way junctions with coaxial stacking patterns. The 2D structure of each 3D structure
in Dataset1 is obtained with RNAView retrieved from RNA STRAND [58]. The pseudoknots
in these structures are removed using the K2N tool [59].

The second dataset, Dataset2, contains 76 three-way junctions extracted from the 24 3D
structures in Dataset1. (Some 3D structures in Dataset1 contain more than one three-way junc-
tion and all those three-way junctions in a 3D structure are extracted.) The lengths of the
three-way junctions range from 28nt to 153nt. The coaxial helical stacking status of each three-
way junction in Dataset2 is described as one of three possibilities: H1H2, H2H3, H1H3. Thus,
every three-way junction in Dataset2 contains a coaxial stacking pattern. In the RNA literature,
most research efforts have been focused on three-way and four-way junctions [6,15,60–62]
partly due to the fact that higher-order junctions are rare. In particular, three-way junctions
are the most abundant type of junctions, accounting for over 50% of the available crystal data.
We also performed experiments on four-way junctions; results obtained from the four-way
junctions were similar to those for the three-way junctions reported here, and hence omitted.

Results and Discussion

Two CHSalign web server versions
We have implemented two programs in Java, a standalone version denoted by CHSalign_u,
and the other a pipeline denoted by CHSalign_p. CHSalign_u requires the user to manually

Table 1. The 24 RNA full structures in Dataset1 selected from the Protein Data Bank (PDB) to evaluate
the performance of the alignment methods studied in this paper.

PDB Code Molecule Name Length

1 1E8O Alu domain of the Signal recognition particle (7SL RNA) 50

2 1L9A Signal recognition particle RNA S domain 126

3 1LNG Signal recognition particle (7S.S RNA) 97

4 1NBS Ribonuclease P RNA 119

5 1NKW 23S ribosomal RNA 2884

6 1NYI Hammerhead ribozyme 40

7 1S72 23S ribosomal RNA 2876

8 1U6B Group I intron 222

9 1U8D xpt-pbuX guanine riboswitch aptamer domain 67

10 1UN6 5S ribosomal RNA 122

11 1X8W Tetrahymena ribozyme RNA (group I intron) 968

12 1Y26 Vibrio vulnificus A-riboswitch 71

13 2A64 Ribonuclease P RNA 298

14 2AVY 16S ribosomal RNA 1530

15 2AW4 23S ribosomal RNA 2958

16 2B57 Guanine riboswitch 65

17 2CKY Thiamine pyrophosphate riboswitch 154

18 2CZJ Transfer-messenger RNA (tmRNA) 248

19 2EES Guanine riboswitch 68

20 2GDI TPP riboswitch 80

21 2HOJ THI-box riboswitch 75

22 2J00 16S ribosomal RNA 1687

23 2J01 23S ribosomal RNA 2891

24 2QBZ M-Box RNA, ykoK riboswitch aptamer 153

doi:10.1371/journal.pone.0147097.t001
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annotate the coaxial stacking patterns within junctions of the pair of RNA 2D structures in the
input, and produces an optimal alignment between the two input structures.

By contrast, CHSalign_p accepts as input two unannotated RNA 2D structures and pro-
duces as output an optimal alignment between the two input structures while taking into
account their junctions and coaxial stacking configurations within the junctions. This pipeline
invokes our previously developed Junction-Explorer tool [25] to automatically predict and
identify the junctions and coaxial stacking patterns within the junctions in the input structures,
and then aligns the input structures containing the predicted coaxial stacking patterns. Both
CHSalign_u and CHSalign_p are available on the web.

Performance evaluation using RMSD
We conducted a series of experiments to evaluate the performance of our algorithms. In the
first experiment, we divided Dataset2 into three disjoint subsets Dataset2-1, Dataset2-2 and
Dataset2-3, with 35, 18, and 23 junctions, respectively. These three subsets contain, respec-
tively, three-way junctions whose coaxial helical stacking status is H1H2, H2H3, or H1H3. We
performed pairwise alignment of junctions in each subset. There are (35×34/2+18×17/2+-
23×22/2 = 1,001) pairwise alignments produced by CHSalign. Commonly used ways for evalu-
ating the accuracy of these structural alignments include the calculation of distance matrices or
RMSD (root-mean-square deviation) [4,29,32,63–66]. We adopt the RMSD measure [4,29] to
evaluate the performance of our algorithms; specifically we use the method for computing
RMSDs of tree graphs [4]. It has been shown that RMSDs of tree graphs and RMSDs of atomic
models are positively correlated and indicate similar trends [4]. The average of the RMSD val-
ues of the 1,001 pairwise alignments was calculated and plotted.

One important parameter in our algorithms is the weight w used in Eq (3) for calculating
the alignment score of two junction nodes. This parameter is introduced to favor the alignment
between two junctions with the same number of branches and the same coaxial helical stacking
status. Experimental results show that when w is sufficiently large (e.g., w> 50), our algorithms
work well. In subsequent experiments, we fixed the weight w in Eq (3) at 100.

Fig 3 compares CHSalign_u and CHSalign_p with three other alignment programs: RNAfo-
rester [39], RSmatch [37] and FOLDALIGN [41]. Like CHSalign, both RNAforester and
RSmatch produce an alignment between two input RNA 2D structures. FOLDALIGN differs
from the other programs in Fig 3 in that it performs 2D structure prediction and alignment
simultaneously. When running the FOLDALIGN tool, the structure information in the data-
sets was ignored and only the sequence data was used as the input of the tool. In addition,
when experimenting with CHSalign_u, the coaxial stacking patterns were provided along with
the input RNA 2D structures. When running the other programs including CHSalign_p, RNA-
forester, RSmatch and FOLDALIGN, these coaxial stacking patterns were absent in the input.
CHSalign_p automatically predicts the coaxial stacking patterns and then aligns the predicted
structures.

Fig 3 shows that CHSalign_u performs the best, achieving an RMSD of 1.78 Å. The draw-
back of CHSalign_u, however, is that it requires the user to annotate the input RNA structures
with coaxial stacking patterns manually. Manually annotating coaxial stacking patterns on
RNA structures requires domain related expertise. On the other hand, CHSalign_p does not
require any manual processing and achieves a reasonably good RMSD of 1.83 Å. Since the pre-
dicted coaxial stacking patterns may be imperfect, the RMSD of CHSalign_p is larger than that
of CHSalign_u. RSmatch and RNAforester have even larger RMSDs of 4.41 Å and 6.13 Å,
respectively. This happens because RSmatch and RNAforester ignore coaxial stacking configu-
rations when aligning RNA 2D structures. FOLDALIGN has the largest RMSD of 8.26 Å,
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partly because it does not consider coaxial helical stacking either, and partly because there are
errors in its predicted 2D structures.

Performance evaluation using precision
In the next experiment, we adopt precision as the performance measure, defined below, to eval-
uate how junctions and coaxial stacking patterns are aligned by different programs using the
24 structures in Dataset1. We say a junction J1 in structure R1 is aligned with a junction J2 in
structure R2, or more precisely there is a junction alignment between J1 and J2, if there exist a
nucleotide n1 on a loop region of J1 and a nucleotide n2 on a loop region of J2 such that n1 is
aligned with n2. A junction alignment between J1 and J2 is a true positive if J1 and J2 have the
same number of branches and the same coaxial helical stacking status. A junction alignment
between J1 and J2 is a false positive if J1 and J2 have different numbers of branches or different
coaxial helical stacking statuses. The precision (PR) of an alignment between R1 and R2 is
defined as

PR ¼ TP=ðTP þ FPÞ; ð13Þ

Fig 3. Comparison of the RMSD values obtained by CHSalign_u, CHSalign_p, RSmatch, RNAforester and FOLDALIGN. The RMSD values of
CHSalign_u, CHSalign_p, RSmatch, RNAforester and FOLDALIGN are 1.78 Å, 1.83 Å, 4.41 Å, 6.13 Å and 8.26 Å, respectively. The proposed CHSalign
method performs better than the existing alignment tools in terms of RMSD values.

doi:10.1371/journal.pone.0147097.g003
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where TP equals the number of true positives and FP equals the number of false positives in
the alignment. The higher PR value a program has, the more precise alignment that program
produces. In the experiment, we also included a closely related RNA 3D alignment tool (SET-
TER) [31].

We calculated the precision of each alignment produced by a program, took the average of
the precision values of the pairwise alignments of the 24 structures in Dataset1, and plotted the
average values. Fig 4 shows the result. We see that CHSalign_u performs the best, achieving a
PR value of 1. CHSalign_p achieves a PR value of 0.85, not 1, because some coaxial stacking
patterns were not predicted correctly by Junction-Explorer [25] used in CHSalign_p. The other
programs in Fig 4 did not consider coaxial helical stacking while performing pairwise align-
ments, and hence achieved low PR values. Specifically, the PR values of RNAforester, SETTER,
RSmatch, and FOLDALIGN were 0.54, 0.42, 0.33, and 0.31 respectively. Unlike the CHSalign
method, these programs occasionally align two junctions with different numbers of branches
or different coaxial helical stacking statuses, hence yielding false positives. However, SETTER
is a general-purpose structure alignment tool capable of comparing two RNA 3D molecules
with diverse tertiary motifs, while CHSalign can only deal with the 2D structures of the 3D
molecules that contain coaxial helical stacking motifs.

Fig 4. Comparison of the PR values obtained by CHSalign_u, CHSalign_p, RNAforester, SETTER, RSmatch and FOLDALIGN. The PR values, as
defined in Eq (13), of CHSalign_u, CHSalign_p, RNAforester, SETTER, RSmatch and FOLDALIGN are 1, 0.85, 0.54, 0.42, 0.33 and 0.31, respectively. The
proposed CHSalign method performs better than the existing alignment tools in terms of PR values.

doi:10.1371/journal.pone.0147097.g004
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Potential application of CHSalign
To demonstrate the utility of the CHSalign tool, we applied CHSalign to the analysis of ribos-
witches that regulate gene expression by selectively binding metabolites [67]. Table 2 lists six
riboswitches that bind to different metabolites (purine, guanine, thiamine pyrophosphate
[TPP], and S-Adenosyl methionine [SAM]) found in different organisms. Since such binding
and gene regulation activities are correlated to junction structures, the results of junction align-
ments could help suggest structural similarity (and thus possibly function) of these ribos-
witches. For each riboswitch, Table 2 also lists the junction type and coaxial helical stacking
status within the junction in that riboswitch. Fig 5 illustrates the coaxial stacking patterns in
the six riboswitches. We tested several combinations of junctions in these six riboswitches to
determine whether the CHSalign results confirm known structural and functional similarity in
existing RNAs. Table 3 summarizes the test results. Details of these results, including the input
and output of each test, can be found in S1 and S2 Files.

Without knowledge of junction helical arrangements, we first tested the following cases
using CHSalign_p, where the two aligned junctions had the same coaxial stacking patterns. We
used SAM riboswitches in different organisms (PDB codes 2GIS and 4B5R in Table 2) as input.
CHSalign_p predicted that the two riboswitches had helical arrangements of four-way junc-
tions both with coaxial stacking helices 1 and 4 and helices 2 and 3, and produced a very high
alignment score of 252.61, as calculated by the equations in the subsection ‘Alignment scheme”
in the section ‘Materials and Methods’. This high score implies that the two riboswitches have
highly similar helical arrangements. This corroborates our expectations, because the two tested
riboswitches have similar structures and functionality, binding to SAM. Next, when we used
purine and guanine riboswitches (PDB codes 2G9C and 3RKF), we obtained a high alignment
score of 179.68 for three-way junction alignment of the two riboswitches with predicted coaxial
stacking of helices 1 and 3 in both riboswitches, indicating high similarities of their three-way
junction structures. We also tested two TPP riboswitches with three-way junctions in different
organisms (PDB codes 2GDI and 3D2G), which produced a high alignment score of 191.06,
again indicating that these two TPP riboswitches have similar three-way junction structures.

We next compared very different junction structures using CHSalign_p. When we aligned
two different riboswitches—SAM riboswitch with a four-way junction and purine riboswitch
with a three-way junction (PDB codes 2GIS and 2G9C, respectively), we obtained a low align-
ment score of 20.40. We also tested a pair of purine and TPP riboswitches (PDB codes 2G9C
and 2GDI), which are in different riboswitch classes and have different coaxial stacking pat-
terns in their three-way junctions. We obtained a low alignment score of 13.65. These experi-
ments suggest that CHSalign_p, based only on secondary structural information, is useful for
inferring tertiary structural features regarding helical arrangements.

Finally, we tested CHSalign_u, which requires prior information about junction arrange-
ment and produces a structural similarity score for two given RNAs. Here, we tested two cases.

Table 2. The six riboswitches selected from the Protein Data Bank (PDB) to demonstrate the utility of our web server.

PDB Code Molecule Name Length Junction CHS

1 2G9C Artificial purine riboswitch 68 3-way H1H3

2 3RKF Artificial guanine riboswitch 68 3-way H1H3

3 3D2G A. thaliana TPP riboswitch 77 3-way H1H2

4 2GDI E. coli TPP riboswitch 80 3-way H1H2

5 2GIS T. tengcongensis SAM-I riboswitch 95 4-way H1H4 H2H3

6 4B5R H. marismortui SAM-I riboswitch 95 4-way H1H4 H2H3

doi:10.1371/journal.pone.0147097.t002
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Fig 5. Illustration of the coaxial stacking patterns in the six riboswitches used to demonstrate the
utility of our web server. (A) Artificial purine riboswitch (PDB code: 2G9C) with a three-way junction and a
CHSmotif of type H1H3 in the junction. (B) Artificial guanine riboswitch (PDB code: 3RKF) with a three-way
junction and a CHSmotif of type H1H3 in the junction. (C) A. thaliana TPP riboswitch (PDB code: 3D2G) with a
three-way junction and a CHSmotif of type H1H2 in the junction. (D) E. coli TPP riboswitch (PDB code: 2GDI)
with a three-way junction and a CHSmotif of type H1H2 in the junction. (E) T. tengcongensis SAM-I riboswitch
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First, we considered the same RNA structure (purine riboswitch with PDB code 2G9C) but
annotated it with different helical arrangement patterns where one had coaxial stacking helices
1 and 3 (H1H3) and the other had coaxial stacking helices 1 and 2 (H1H2). Second, we consid-
ered two RNAs with different structures (purine riboswitch with PDB code 2G9C and guanine
riboswitch with PDB code 3RKF respectively) but annotated them with the same helical
arrangement pattern, namely coaxial stacking helices 1 and 2 (H1H2). Note that this manually
annotated H1H2 pattern is different from the H1H3 pattern that naturally occurs, and is also
predicted by CHSalign_p, in the purine and guanine riboswitches.

In the first case, the score produced by CHSalign_u was very low (36.69), due to the different
helical arrangements. This result shows the large conformational range of structural arrangements
that the purine riboswitch can have, from naturally preferable arrangements (H1H3, as predicted
by CHSalign_p) to unnatural arrangements (H1H2, as manually set by us). In the second case,
CHSalign_u produced a high score of 179.68, which indicates the possibility that two different
RNA structures can have very similar helical arrangements when we manually set these arrange-
ments. Thus, CHSalign_u could help investigate the structural diversity of all possible helical
arrangements, including natural or hypothetical conformations for two RNA 2D structures.

Conclusions
We have presented a novel method (CHSalign) capable of producing an optimal alignment
between two input RNA secondary (2D) structures with coaxial helical stacking (CHS), based on
our previously developed Junction-Explorer [25] and RNAJAG [4]. The method is junction-
aware, CHS-favored in the sense that it assigns a weight to the alignment of two RNA junctions
with the same number of branches and the same coaxial helical stacking status while prohibiting
the alignment of two junctions that do not have the same number of branches or the same coax-
ial helical stacking status. The method transforms each input RNA 2D structure to an ordered
labeled tree, and employs dynamic programming techniques and a constrained tree matching
algorithm to align the two input RNA 2D structures. CHSalign has two versions; CHSalign_u
requires the user to manually annotate the coaxial stacking patterns in the input structures while
CHSalign_p automatically predicts the coaxial stacking patterns in the input structures. Experi-
mental results demonstrate that both versions outperform the existing alignment programs that
do not take into account coaxial stacking configurations in the input RNA structures.

It has been observed that several functional RNA families such as tRNA, RNase P, and large
ribosomal subunits have conserved structural features while having very diverse sequence

(PDB code: 2GIS) with a four-way junction and a CHSmotif of type H1H4, H2H3 in the junction. (F) H.
marismortui SAM-I riboswitch (PDB code: 4B5R) with a four-way junction and a CHSmotif of type H1H4,
H2H3 in the junction.

doi:10.1371/journal.pone.0147097.g005

Table 3. Results obtained by aligning seven pairs of riboswitches from Table 2.

Program Molecule 1 Molecule 2 Alignment Score

CHSalign_p 2GIS T. tengcongensis SAM-I riboswitch (H1H4, H2H3) 4B5R H. marismortui SAM-I riboswitch (H1H4, H2H3) 252.61

CHSalign_p 2G9C Artificial purine riboswitch (H1H3) 3RKF Artificial guanine riboswitch (H1H3) 179.68

CHSalign_p 2GDI E. coli TPP riboswitch (H1H2) 3D2G A. thaliana TPP riboswitch (H1H2) 191.06

CHSalign_p 2GIS T. tengcongensis SAM-I riboswitch (H1H4, H2H3) 2G9C Artificial purine riboswitch (H1H3) 20.40

CHSalign_p 2G9C Artificial purine riboswitch (H1H3) 2GDI E. coli TPP riboswitch (H1H2) 13.65

CHSalign_u 2G9C Artificial purine riboswitch (H1H3) 2G9C Artificial purine riboswitch (H1H2) 36.69

CHSalign_u 2G9C Artificial purine riboswitch (H1H2) 3RKF Artificial guanine riboswitch (H1H2) 179.68

doi:10.1371/journal.pone.0147097.t003
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patterns. RNA structure alignment tools such as CHSalign can help measure the structural sim-
ilarity between these RNAs, even without sequence relevance in the RNAs. Similar RNA struc-
tural motifs are encountered on a variety of RNAs. While these motifs exist in different
contexts, their functions are related. For instance, sarcin-ricin motifs often bind to proteins,
and GNRA tetraloops act as receptors for RNA-RNA long-range interactions. Furthermore,
examples of larger structure-function similarity are observed in the tRNA-like structure found
in the transfer-messenger RNA (tmRNA), whose structure similarity with tRNA helps identify
the functional role of tmRNAs to aid in translation via stalled ribosome rescue. Other tRNA-
like structures found in viruses such as HIV and internal ribosome entry sites (IRES) mimic
the 3D “L-shape” of tRNAs to take control of the host ribosome.

As our knowledge on RNA structure progresses, more sophisticated secondary structure
alignment tools are required that allow for comparison of tertiary motifs such as coaxial stack-
ing patterns. Indeed, experimental probing techniques such as RNA SHAPE chemistry, SAXS,
NMR, and fluorescence resonance energy transfer (FRET), can often provide sufficient infor-
mation to determine coaxial helical stacking [47,68,69]. Because the structure and function of
RNA are highly interrelated, a tool that addresses coaxial stacking patterns can assist the com-
parison of structures with high functional relevance.

CHSalign is the first tool that can compute an RNA secondary structure alignment in the
presence of coaxial helical stacking. When coaxial stacking configurations are available from
experimental data such as FRET, NMR or SAXS data, the user can input such information to
aid in the alignment. However, if no knowledge of coaxial stacking configurations is available,
CHSalign can infer this information by employing Junction-Explorer [25], which predicts
coaxial helical stacking with 81% accuracy.

Existing RNA secondary structure alignment tools [37,39] do not distinguish between struc-
tural elements such as helices, junctions and hairpin loops. However, each element type has its
special property and function. In contrast, CHSalign only matches structural elements of the
same type. Furthermore, the tool imposes a constraint that a junction of RNA1 can be aligned
with a junction of RNA2 only if they have the same number of branches and the same coaxial
helical stacking status. We also implemented an extension of CHSalign, which relaxes this con-
straint. This extension is able to align two junctions with different numbers of branches and
simply requires that coaxially stacked helices be aligned with coaxially stacked helices when
matching a p-way junction with a q-way junction for p different than q. The source code of
both CHSalign and its extension can be downloaded from the web server site.

Supporting Information
S1 File. Results obtained by aligning five pairs of riboswitches from Table 2 using CHSa-
lign_p. For each pair of riboswitches, the input and output of the CHSalign_p program are dis-
played. The input includes two riboswitches in bpseq format. CHSalign_p invokes Junction-
Explorer to predict coaxial helical stacking (CHS) motifs in the input molecules, and aligns the
predicted structures. The output includes the CPU time spent in performing the alignment, the
alignment score and alignment details.
(TXT)

S2 File. Results obtained by aligning two pairs of riboswitches from Table 2 using CHSa-
lign_u. For each pair of riboswitches, the input and output of the CHSalign_u program are dis-
played. The input includes two riboswitches in bpseq format along with CHS motifs annotated
manually by the user. The output includes the CPU time spent in performing the alignment,
the alignment score and alignment details.
(TXT)
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