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Materials from peptide assembly: towards the treatment of
cancer and transmittable disease
Monica C Branco, Dina M Sigano and Joel P Schneider
As the prevalence of cancer and transmittable disease persists,

the development of new and more advanced therapies remains

a priority in medical research. An emerging platform for the

treatment of these illnesses is the use of materials formed via

peptide assembly where the bulk material itself acts as the

therapeutic. Higher ordered peptide structures with defined

chemistry are capable of cellular targeting, recognition, and

internalization. Recent design efforts are being made to exploit

the nanoscale definition of the materials formed by assembling

peptides to target cancer and microbial cells and to function as

vaccines. This review focuses on assembled peptide materials

that actively participate in the biological processes important to

cancer and transmittable diseases to exert an anticipated

functional outcome.
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Introduction
The immune system is our primary defense towards

microbial pathogens and foreign substances [1–3]. It is

composed of a variety of cells that can recognize and

destroy pathogens, and later gain immunity to them in the

event of future encounters. To aid the immune system,

antibiotics and vaccines have been developed to treat and

prevent many illnesses [4,5]. Antibiotics assist the innate

immune system in eliminating existing bacterial and

fungal infections [4]. Alternatively, vaccines exploit the

adaptive immune system to gain immunity towards dis-

ease, such as those transmitted by viruses [5]. For

example, several vaccines have been developed to suc-

cessfully prevent communicable illnesses including

smallpox, diphtheria, measles, mumps, and polio. In

addition, the vaccine, Gardasil1, has been approved for

the prevention of anal, cervical, vulvar, and vaginal can-

cers. The first therapeutic cancer vaccine for metastatic
www.sciencedirect.com 
prostate cancer, Provenge1, was recently FDA-approved,

and at the time of this writing, ProstvacTM was in Phase

III clinical trials for prostate cancer. Recently, the emer-

gence of antibiotic resistant microbes and rapidly mutat-

ing viruses has greatly compromised current therapies [6].

In addition, there are illnesses, such as cancer and auto-

immune diseases, in which the immune system fails [7].

These diseases necessitate the development of alterna-

tive and more advanced therapies.

An emerging platform for the treatment of cancer and

transmittable disease is the use of materials formed via

peptide assembly where the bulk material itself acts as

the therapeutic [8,9]. Over the last several decades, pep-

tide materials have been extensively developed as tissue

engineering scaffolds or drug delivery vehicles, where the

material serves in a passive role for the intended therapy

[10–19]. Currently, design efforts are being made to

exploit the nanoscale definition of the material formed

by assembling peptides to target cancer and microbial

cells and to function as vaccines. These materials are not

passive bystanders that simply deliver drugs or serve as

rebarb for cellular attachment and extracellular matrix

elaboration, but actively engage intended biological tar-

gets to exert an anticipated functional outcome. This

review will focus on assembled peptide materials that

actively participate in the biological processes important

to cancer and transmittable diseases. As will be high-

lighted, these higher ordered structures with defined

chemistry are capable of cellular targeting, recognition,

and internalization, and represent promising leads

towards the treatment of these human ailments.

Why use self-assembling peptides as the building blocks

for material construction rather than more traditional

polymers? Peptides, in general, are biocompatible, bio-

degradable, provide exquisite selectivity in binding, and

many are weakly immunogenic, contrary to common

belief [11,20,21��]. A seemingly endless array of structural

and functional diversity can be designed at the peptide

monomer level that can be directly translated to the

materials that are formed from their self-assembly

(Figure 1). Peptides can be conveniently synthesized

using solid phase methodology, taking advantage of a

vast array of commercially available natural and non-

natural amino acid residues. Peptides can be elaborated

functionally by conjugating other peptides, biologically

active ligands, lipids, and even polymers using synthetic

bioconjugation strategies, such as native chemical ligation

and oxime chemistry, to name a few [22]. Peptides can be

designed to adopt desired structures such as helices and
Current Opinion in Chemical Biology 2011, 15:427–434
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Figure 1
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Peptides can be prepared chemically on solid support and functionalized via ligation chemistry with other peptides, ligands, lipids, and polymers to

impart functionality and control folding and self assembly. Self-assembled materials can be engineered to controllably display biofunctionality that

enables targeted applications. Assemblies are not drawn to scale.
sheets that can serve as the structural building blocks for

higher-ordered structures. Facial and block amphiphili-

city can be engineered into monomeric folded structures

to drive self-assembly yielding targeted morphologies.

Common material morphologies realized in peptide

assembly include micelles, nanoparticles, wormlike

micelles, fibrillar networks, and hybrid networks com-

posed of mixtures of peptides and polymers. In these

materials, the side chains of bioactive amino acid residues

in the peptide sequence or appended ligands can be

displayed with spatial fidelity and high copy number; if

more than one bioactive moiety is displayed, multifunc-

tionality can be realized from a single material. Each type

of material shown in Figure 1 possesses distinct structural

and mechanical properties that enable their use in tar-

geted applications. For example, fibrillar networks that

form hydrogels are easily administered topically for der-

mal applications. As will be discussed in this review,

hybrid networks, micelles, nanoparticles, and wormlike

micelles can be engineered to facilitate cell recognition

and uptake. Although monomeric peptides introduced
Current Opinion in Chemical Biology 2011, 15:427–434 
systemically can suffer from short circulation half-lives

and conformational denaturation induced by components

of the serum, such as albumin, peptides contained within

assemblies can enjoy increased half-lives in serum and

conformational stability [8,23–25,26�,27].

Self assembling peptides for anticancer
therapy
An ideal treatment for cancer is the one that can dis-

criminate between cancerous and healthy tissue [7]. The

repertoire of proteins expressed on the surface of tumor

cells are largely similar to those on cells comprising

healthy tissue, thus allowing malignant cells to remain

indistinguishable to the immune system [3]. However,

some proteins, which are overexpressed or have

mutations, can be exploited by cancer specific therapies

[1,7]. A self assembling peptide system was recently

designed to target and bind to cell membrane proteins

present on cancerous cells by Kopecek et al., Figure 2a(1)

[28�]. Here, a strategy employing coiled coil peptides

targets CD20 membrane proteins on the surface of Bur-
www.sciencedirect.com
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Figure 2
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(a) Examples of peptide-based materials designed to interact with cancer cells extra-cellularly and intra-cellularly. Counter-clockwise: (1) CD20 cell

membrane proteins (orange) bound to the Fab0 portion (white) of 1F5 antibody-CCE conjugate. CCE (red) forms a coiled coil with CCK peptide (blue)

covalently attached to a HMPA polymer (green); (2) Pro-peptide (blue) with a leaving group (yellow) enters easily into cells, where it is hydrolyzed by an

enzyme (purple), liberating a peptide that self assembles into nanofibers; (3) wormlike micelles or nanofibers (blue and red) formed from peptide

amphiphiles disrupt lipids on the cellular membrane; (4) interaction between p53 protein (blue) and its oncoprotein counterparts, MDM2 or MDM4

(green), are inhibited by micelles formed from a peptide amphiphile containing the antagonistic peptide, p5314–28; (5) interaction between HOX (orange)

and its cofactor, PBX (yellow), to DNA is inhibited by micelles formed from a peptide amphiphile containing the antagonistic peptide, WYPWMKKHH.

(b) Time-dependent apoptosis of Burkitt’s lymphoma (Raji B) cells after exposure to no treatment, Fab0-(CCE)1 alone, (CCK)9-P alone, 1F5 anti-CD20

antibody and GAM secondary antibody, premixture of Fab0-(CCE)1 and (CCK)9-P, and consecutive addition of Fab0-(CCE)1 followed by (CCK)9-P. (c)
Percentage of viable MDA-MB-231 breast cancer cells after exposure to PBS solution, and PBS solutions containing KLAK peptide, scrambled KLAK

peptide amphiphile, and KLAK peptide amphiphile. (d) Fold inhibition of T3M4 pancreatic cancer cell proliferation by peptides P1-P6. P1:

WYPWMKKHH-RQIKIWFQNRRMKWKK; P2: CH3(CH2)14CONH-WYPWM KKHH-RQIKIWFQNRRMKWKK; P3: RQIKIWFQNRRMKWKK; P4:

CH3(CH2)14CONH-RQIKIWFQNRRMKWKK; P5: WYPWMKKHH; P6: CH3(CH2)14CONH-WYPWMKKHH.
kitt’s non-Hodgkin lymphoma Raji B-cells. One of the

coiled coils, CCE, is attached to a Fab0 fragment of the

1F5 anti-CD20 antibody, whereas the other peptide,

CCK, is bound to a HPMA (N-(2-hydroxypropyl)meth-

acrylamide) polymer. When the antibody fragment binds

to CD20, the bound CD20 protein remains on the cell

surface, exposing the random coil CCE peptide. Recog-

nition of the polymer-bound complementary peptide

CCK results in coiled coil assembly of the two peptides

and, according to the authors, concomitant cross-linking

of CD20 receptors, which leads to apoptosis of Raji B-

cells. The premixing of the antibody-conjugate with the

polymer-conjugate induces high levels of apoptosis after
www.sciencedirect.com 
six hour incubation as shown in Figure 2b, and the

consecutive administration of the two components shows

greater levels of apoptosis over 24 hours. The positive

control, crosslinking of the 1F5 anti-CD20 antibody with

a GAM secondary antibody, is shown for reference.

Importantly, at higher concentrations, the activity of

the assembled peptide system demonstrates comparable

apoptotic activity as the positive control (data not shown).

The upregulation of enzymes, both extracellular and

intracellular, is also common within tumors [29–34]. Out-

side of the cell, proteases are excreted to breakdown the

extracellular matrix and allow migration of malignant cells
Current Opinion in Chemical Biology 2011, 15:427–434
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[29,30]. Inside the cell, enzymes control cell signaling

pathways necessary for cell proliferation, migration, and

survival [31–34]. Peptides designed to take advantage of

enzymes are particularly advantageous because their

activity is dependent on the occurrence and quantity of

enzyme present, allowing for spatial and temporal resol-

ution of the therapy at the cancer site. Xu et al. have

developed a small peptide hydrogelator whose self-

assembly is triggered by an endogenous esterase within

HeLa cervical cancer cells [35�]. A pro-peptide was

designed that remains soluble outside of cells and can

diffuse easily into cells. Within the cellular cytoplasm, the

pro-peptide is hydrolyzed, liberating a peptide that self

assembles into nanofibers. Fibril formation within the cell

results in cell death, Figure 2a(2). The proliferation of

cells whose level of enzyme expression is low, is not

affected by the presence of the pro-peptide, demonstrat-

ing the specificity in the peptide design.

Pre-assembled peptide nanostructures have also been

designed as cancer therapies. For example, Stupp et al.
have designed peptide amphiphiles composed of bioac-

tive peptides conjugated to alkyl tails that promote

micellar self-assembly in aqueous solution [15]. The

ability of these assemblies to target tumors relies on

the enhanced permeability and retention (EPR) effect

found at developing tumors [36–38]. Leaky vasculature

and poor lymphatic drainage allow nanostructures on

the order of 10–500 nm to passively diffuse through

vessel gaps and accumulate at the local tumor site.

In one particular design, a peptide amphiphile

(CH3(CH2)14CO-A4G3(KLAKLAK)2) was prepared  con-

taining a cytotoxic, cationic peptide sequence, (KLAK-

LAK)2 appended to a palmitic alkyl tail. The peptidic

portion is designed to form an amphiphilic a-helix

that disrupts cellular and mitochondrial membranes

(Figure 2a(3)) [39�]. This peptide amphiphile assembles

into nanofibers that stabilize the helical conformation of

the KLAK sequence and facilitate its interaction with the

membranes of MDA-MB-231 and SKBR-3 breast cancer

cells to ultimately disrupt membrane integrity and cause

cell death. The data in Figure 2c clearly show that the

self-assembled material, itself, is responsible for this

activity. Here, the peptidic portion of the peptide alone,

which is presumably monomeric in solution, is not active.

The data also show that only the amphiphile containing

the peptide of correct sequence is active, nicely demon-

strating the power of peptides to facilitate selective

activity from the materials in which they are contained.

Peptide micelles can be used to actively engage cellular

membranes and facilitate internalization to target intra-

cellular proteins, such as upregulated oncoproteins and

downregulated tumor suppressor proteins in cancer cells

(Figure 2a(4, 5)) [15,40�]. For example, inhibition of the

interaction between wild-type p53 protein and its onco-

protein counterparts, MDM2 or MDM4, is possible by a
Current Opinion in Chemical Biology 2011, 15:427–434 
16 residue sequence, p5314–28, which is cell impermeable

and thus, incapable of reaching its intended target [40�].
By tethering a double tailed lipid onto the peptide, Tirrell

et al. have prepared a peptide amphiphile that assembles

into micelles. These micelles are capable of entering

SJSA-1 osteosarcoma, HeLa cervical cancer, and MDA-

MB-435 breast cancer cells. Further studies are needed to

demonstrate that MDM2 or MDM4 are targeted by the

peptide amphiphile.

Transcription factors and other DNA binding proteins are

also intracellular proteins that are often upregulated in

cancer cells. One example is the deregulated HOX

proteins in primary solid tumors and certain hematological

malignancies that cause abnormal gene expression [41�].
Inhibition is possible by targeting the binding of HOX and

its cofactor, PBX, to DNA using the antagonistic peptide,

WYPWMKKHH. To facilitate its internalization into

the cell, Hartgerink et al. have designed a peptide amphi-

phile P2 (CH3(CH2)14CONH-WYPWMKKHH-RQI-

KIWFQNRRMKWKK) where the peptide antagonist

domain is appended to a palmitic alkyl tail and capped

with a cell penetrating sequence [41�]. This peptide

amphiphile (P2) reduces the gene expression of several

HOX genes in T3M4 pancreatic cancer cells after 24 hours.

As shown in Figure 2d, P2 is capable of inhibiting growth of

the T3M4 cells by 7.5-fold after 7 days, whereas P1, the

peptide without the alkyl chain, inhibits cell growth only 2-

fold. Control peptides comprised of the cell penetrating

portion or the antagonistic portion alone and their palmityl

chain derivatives (P3–P6) show no effect on cell growth.

Therefore, by simply preparing self-assembling peptide

amphiphiles from bioactive peptides, their intracellular

activity can be strongly enhanced. In all of these examples,

the self-assembled material, itself, exerts action, which

precludes the necessity of adding drugs that are eventually

delivered from the material to elicit activity.

Self-assembling peptides as antimicrobials
The emergence of multi-drug resistant microbes that

challenge the immune response and current therapy has

also drawn attention to peptide materials. Antimicrobial

peptides are cationic, amphiphilic peptides that display

non-specific, broad-spectrum activities towards several

microorganisms and are typically monomeric in solution

[42,43]. They are amphiphilic in a facial sense, which is

quite different from the linear or block amphiphilicity

that is typical of the peptide amphiphiles designed by

Stupp, Tirrell, and Hartgerink. The folded structures of

most antimicrobial peptides are typically helical or b-

sheet and display a cation-rich face and a distinct,

opposing hydrophobic face. Unlike small molecule anti-

biotics that have a particular cellular target, cationic

peptides depend solely on their non-specific interaction

with negatively charged bacterial cell surfaces. Here,

the polycationic face of the peptide facilitates initial

engagement of the cell wall. On binding to the cell
www.sciencedirect.com
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Figure 3

(a)

(b) (c) (d)

2
1

Current Opinion in Chemical Biology

(a) Bacterial membrane disruption caused by (1) peptide nanoparticles formed by self assembling peptide amphilphiles (red) and (2) a fibrillar network

of self assembled polycationic b-hairpins (blue). Only the outer leaflet of Gram-negative bacteria is shown; lipopolysaccharide is shown in blue;

membrane proteins are shown in purple. (b) Strips of 2 wt% MARG1 hydrogel syringe-delivered to an agar bed of MRSA. Single arrows denote the

location of hydrogel. (c) Confocal microscopy image of a live (green)/dead (red) viability assay of MRSA grown on agar. Image shows one of the strips

of hydrogel from panel b. Arrow designates the hydrogel boundary on the MRSA-loaded agar. Scale bar = 200 mm. (d) Magnification of hydrogel–agar

interface. Scale bar = 50 mm.
surface, peptide insertion into the membrane occurs,

which is facilitated by the hydrophobic face of the

peptide; the peptide then typically assembles, forming

pores that disrupt the membrane and causes cell death

[44].

Self-association of the peptides in solution prior to cell

engagement can increase the potency of some cationic

peptides. To take advantage of this self assembly effect,

Yang et al. have developed nanoparticles comprised of an

arginine-rich TAT peptide shell and a hydrophobic cho-

lesterol core (Figure 3a(1)) [45�]. The nanoparticles

showed strong antimicrobial activity against several bac-

teria, including drug-resistant strains, as well as yeast and

fungi. Also, the minimal inhibitory concentration of the

nanoparticle was six times lower than the peptide portion

of the amphiphile from which it was made, suggesting

that the high density of positive charge displayed from

the particle leads to greater membrane disruption as

compared to the peptide alone.

Similar to their design targeting cancer cells, Xu et al. have

designed pro-peptides that are taken up by Escherichia coli
and cleaved by an intracellular phosphatase. The cleaved

peptide self assembles into nanofibers that inhibit bac-

terial growth [46].
www.sciencedirect.com 
Our group has designed a hydrogel scaffold from self-

assembling peptides that exhibits inherent antibacterial

activity [47�,48]. MAX1 is a twenty amino acid peptide

that can undergo triggered intramolecular folding to adopt

an amphiphilic b-hairpin that subsequently self-assem-

bles into b-sheet rich fibrils, which constitute a mechani-

cally rigid hydrogel. Solvent exposed cationic lysines on

the surface of the fibrils interact with negatively charged

bacterial cell surfaces ultimately compromising mem-

brane integrity, Figure 3a(2). MAX1 gels show bacterio-

cidal activity towards Gram-negative E. coli and K.
pneumoniae, and Gram-positive S. epidermidis, S. pyrogenes,
and drug-susceptible Staphylococcus aureus [47�]. In this

system, it is the material afforded by self-assembly that is

active, namely fibrils that display a high density of posi-

tively charged amino acid side chains from their surface.

In a subsequent design, the substitution of two lysines in

the primary sequence of MAX1 with arginine residues,

results in a peptide named MARG1. This peptide self-

assembles to form a hydrogel that is active against Methi-

cillin-resistant S. aureus (MRSA) [48]. Figure 3b shows an

experiment wherein thin strips of MARG1 hydrogel are

syringe delivered to a bed of MRSA grown on an agar

surface. Live-dead assays employing confocal microscopy

show that bacteria beneath the delivered hydrogel are

dead, and bacterial growth only occurs on the outlying
Current Opinion in Chemical Biology 2011, 15:427–434
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Figure 4

(a) (b)
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(a) Model of a synthetic virus-like particle formed from lipopeptide helical bundles. (b) Model of self-assembled polypeptide nanoparticle composed of

two coiled coil peptide domains displaying a B cell epitope on its surface.
agar that was not exposed to the gel, Figure 3(c) and 3(d).

Taken together, these peptide material examples demon-

strate how higher ordered structures with defined chem-

istry resulting from self assembly can offer excellent

bacterial cell targeting and activity.

Self-assembling peptides as vaccines
Preventative measures such as vaccines for cancer and

transmittable disease are also being explored to prime the

immune response prior to exposure to such formidable

illnesses. In addition, vaccines can be administered thera-

peutically to treat existing conditions, as is the case with

the previously mentioned Provenge1. Often, the effec-

tiveness of immunotherapies is complicated by non-

optimal epitope display and use of heterogeneous adju-

vants which fail to induce a robust antibody response

[26�]. The use of self-assembling peptides as antigens

holds promise since synthetic peptides can be prepared

with precise chemical definition for optimized epitope

display [49,50]. In addition, their self-assembled struc-

tures can present epitopes in a spatially defined, multi-

valent fashion, resulting in enhanced biorecognition by

immune cells. Collier et al. prepared nanofibers from self-

assembling peptides that display a T and B cell epitope

from chicken egg ovalbumin [26�]. The nanofibers are

able to elicit high antibody titers without the need of an

additional adjuvant. The immune response to epitope is

also dependent on its covalent attachment to the self-

assembled fibril, and is comparable to the response

observed for the epitope with complete Freund’s adju-

vant. This observation suggests that the fibril, itself, is an

active participant in generating a response and not an

innocent bystander that simply presents the epitope to

the immune cells.

High antigen surface presentation can also be obtained

using coiled coil peptide motifs [51–53]. Synthetic virus-
Current Opinion in Chemical Biology 2011, 15:427–434 
like particles were derived by Robinson et al. from lipo-

peptides that first self assemble into a-helix bundles and

then further assemble into spherical micelles through the

clustering of lipid chains, Figure 4a. [54,55�] From the

surface of the coiled bundles, multiple copies of a desired

antigen can be displayed for adjuvant-free stimulation of

the immune system. Burkhard et al. have also developed

nanoparticles from self-assembling coiled coil peptides

(Figure 4b) [56,57�]. Epitopes for malaria and severe

acute respiratory syndrome (SARS) were displayed on

the surface of separate nanoparticles. For both systems,

the immune response is high and long-lived, and the

resultant antibodies display high avidity to the epitope.

Overall, self-assembling peptides are a novel strategy to

construct simple, chemically defined particles as potential

vaccines capable of productive presentation of desired

antigens.

Conclusion
As the prevalence of cancer and infectious disease per-

sists, the development of new and more advanced thera-

pies remains a priority in the health research community.

Novel therapies that show high specificity and enhanced

potency are needed for diseases that confound the

immune system and are unresponsive to current available

treatments. The design of materials via peptide assembly

has the potential to impact this need. Peptides, in general,

are a growing class of therapeutics with over 50 products

now in the market, and more in clinical trials [21��].
Materials made from these exquisite molecules represent

a novel frontier in therapeutic design. With that said, the

examples provided in this review are mainly academic in

nature, and if warranted, a large amount of work must be

done to translate them to the clinic. As with their small

molecule cousins, many materials will fail somewhere

along the costly, arduous path of development. However,

the materials that do fail as therapies will surely find use as
www.sciencedirect.com
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tools to further our understanding of the biological pro-

cesses that govern disease. Therefore, the design of novel

materials that have the potential to significantly impact

human ailments is important and is the first necessary

step, namely discovery, in bringing any therapy into the

clinic.
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