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Radiotherapy is an efficient tool in cancer treatment, but it brings along the risk

of side effects such as fibrosis in the irradiated healthy tissue thus limiting tumor

control and impairing quality of life of cancer survivors. Knowledge on radiation-related

fibrosis risk and therapeutic options is still limited and requires further research. Recent

studies demonstrated that epigenetic regulation of diacylglycerol kinase alpha (DGKA) is

associated with radiation-induced fibrosis. However, the specific mechanisms are still

unknown. In this review, we scrutinized the role of DGKA in the radiation response

and in further cellular functions to show the potential of DGKA as a predictive marker

or a novel target in fibrosis treatment. DGKA was reported to participate in immune

response, lipid signaling, exosome production, and migration as well as cell proliferation,

all processes which are suggested to be critical steps in fibrogenesis. Most of these

functions are based on the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) at

plasmamembranes, but DGKAmight have also other, yet not well-known functions in the

nucleus. Current evidence summarized here underlines that DGKA activation may play a

central role in fibrosis formation post-irradiation and shows a potential of direct DGKA

inhibitors or epigenetic modulators to attenuate pro-fibrotic reactions, thus providing

novel therapeutic choices.

Keywords: radiotherapy, late adverse effects, fibrosis, lipid signaling, diacylglycerol, phosphatidic acid

INTRODUCTION

Radiotherapy is a valuable part of cancer treatment; more than 50% of all cancer patients receive
radiation therapy at some point during their treatment for curative or palliative purposes (1, 2).
Ionizing radiation (IR) is given to kill tumor cells but radiation also targets the surrounding normal
tissue resulting in tissue damage (radiation injury) and development of adverse side effects (3).
Within hours to weeks after radiation, an acute tissue response occurs but late adverse effects
may appear even after months or years post-therapy. Early radiation effects include DNA damage,
cell cycle arrest and cell death which will lead to cell loss, endothelial and tissue damage and
inflammation. During this stage of tissue destruction, chemokines, and cytokines are emitted to
activate a wound healing response. Fibroblast to myofibroblast trans-differentiation, extracellular
matrix (ECM) production and angiogenesis occur, resulting in cell proliferation and tissue
regeneration. Once tissue repair is completed, the inflammatory response is resolved, activated
myofibroblasts are deactivated by cellular senescence or cell death and the damaged area should
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turn back to a normal tissue phenotype (4). However, in a
considerable number of irradiated patients, the wound healing
response after radiation is maintained for longer leading to scars,
tissue indurations and contractions, fibrosis, and in some cases,
organ failure. Thus, side effects might strongly affect quality of
life of cancer survivors and can even be a deadly threat. Some
examples revealing the clinical relevance of radiation-induced
fibrosis should shortly be mentioned here.

Regarding the lung, radiotherapy of the thorax is strongly
limited by radiation-induced early side effects in the organ like
acute radiation pneumonitis which even may cause interruption
or premature termination of therapy (5–8). Over a period of
1–2 years post-treatment, radiation-induced alterations in the
lung may lead to destruction of lung architecture or deletion of
specific lung cells like alveolar cells involved in oxygen exchange.
Together with the accumulation of fibrotic tissue forming a “scar,”
these alterations may cause dyspnea, oxygen starvation, and even
organ failure and dead (9). Such severe late side effects occur
in about 5–20% of patients, and despite considerable technical
efforts in targeting specifically the tumor, they are limiting the
applicable dose in lung or esophageal cancer even at the cost of
tumor control.

Also in head and neck cancer patients, radiation-induced
fibrosis can occur. In a Belgian study, 68% of cancer patients
treated with radiotherapy showed mild-to-severe neck fibrosis
with an increasing risk for this side effect with every year after
therapy (10). In these patients, again, fibrotic side effects can be
rather harmful according to the affected site, for example they
strongly affect oral mucosae and swallowing and thus adequate
food intake.

Chronic fibrosis is also frequently identified in breast cancer
patients. About 21% of breast cancer patients developed fibrosis
8 years after they obtained an intra-operative boost radiotherapy
(11). In these patients, fibrosis can result in cosmetic changes of
the breast but also severe and harmful endurations and limited
mobility. Overall, these examples show that tissue fibrosis is
a severe side effect of radiotherapy strongly affecting therapy
success but also quality of life in cancer survivors.

In general, the molecular mechanisms leading to radiation-
induced fibrosis are expected to be similar to those of other
fibrotic diseases in the liver, kidney, lung, or heart. Radiation
causes the initial tissue injury by directly damaging DNA
and by generating reactive oxygen or nitrogen species (ROS
or RNS) which will react with DNA but also with other
cellular components like membranes and lipids (12). Besides
escaping to senescence, the damaged cells can undergo cell
death and represent a severe tissue damage which triggers
the wound healing response. They may cause inflammation
and release of inflammatory chemokines and cytokines which
activate neutrophils, lymphocytes, and monocytes as well as
endothelial cells and resident macrophages, stromal fibroblasts,
and further mesenchymal cells (13, 14). As in other fibrotic
processes, the secretion of tumor growth factor beta (TGF-
β) or platelet-derived growth factor (PDGF) promotes the
development of myofibroblasts expressing alpha-smooth muscle
actin (α-SMA) and producing excess ECM proteins like collagens
with an increased stability of ECM. Enrichment of ECM

and myofibroblasts results in manifestation of indurations and
limited tissue functions.

Although many of the released cytokines like TGF-β, IL-
6 and IL-10 are well-known pro-fibrotic triggers leading
to myofibroblast activation (15), the steps resulting in the
elongation or even perpetuation of wound healing processes are
mostly unknown.

Further cellular components, the phospholipids, are
reported to be involved in radiation-induced fibrogenesis.
In primary human dermal fibroblasts, phospholipids such as
phosphatidylcholine (PC) and phosphatidylethanolamine (PE)
are increased after gamma-irradiation (16). A further bioactive
phospholipid, lysophosphatidic acid (LPA) is synthesized from
PC and is suggested to be a pro-fibrotic factor in radiation-
induced fibrosis (17, 18). Another LPA precursor is phosphatidic
acid (PA) which is converted from diacylglycerol (DAG)
by diacylglycerokinases (DGKs). Increased PA levels trigger
the generation of LPA which is involved in many chronic
inflammatory diseases including idiopathic pulmonary fibrosis
and liver fibrosis (19, 20). In irradiated mice as well as in
cell cultures, supplementation with LPA reduced irradiation-
induced apoptosis (21). LPA functions include stimulation
of cell proliferation, activation of pro-fibrotic responses
and anti-apoptotic mechanisms by LPA receptor-mediated
extracellular signal-regulated kinase (ERK) activation (18).
Thus, targeting LPA with antibodies or antagonists against
its receptor LPAR could make it a valuable target for novel
therapeutic anti-fibrotic approaches. Hence, a LPA type 2
receptor antagonist, octadecenyl thiophosphate (OTP), could
attenuate irradiation-induced apoptosis and activate anti-
apoptotic ERK signaling which both are leading to increased cell
survival (21).

During fibroblast transactivation, epigenetic mechanisms
are involved in activating the appropriate transcriptional
reprogramming in the affected cells (22). Epigenetic variation
might predispose patients for developing a prolonged tissue
response. Changes in post-translational histone marks and
miRNAs have been described (23, 24). Epigenetic changes
during such reprogramming processes can be reverted not only
by intrinsic mechanisms but also by epigenetic drugs. Thus,
this might offer possibilities to attenuate fibrotic processes
and alleviate reconstitution of normal tissue characteristics.
Epigenetic therapies might be helpful substitutions to current
treatment options for radiation-induced fibrosis. These include
small molecules and even stem cells and target the different
specific steps of fibrogenesis, however only some of them are in
clinical use (9, 25, 26). Examples are antioxidants and radical
scavengers which are applied to protect the irradiated normal
tissue from damage through radiolysis of water and other
cellular components (25). Especially drugs already approved for
clinical application for other purposes like hesperidin, rutin,
or melatonin could easily be included in therapeutic schedules
[for a recent summary, see (25)]. Currently, amifostine acting
as a radical scavenger is the only FDA-approved cytoprotective
drug used in head and neck cancer patients. Its use for lung
protection shows ambiguous results (5). Further treatments
include anti-inflammatory drugs like glucocorticosteroids to
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repress the immune response activated in the damaged tissue
(27). Molecular therapies targeting pro-fibrotic players like the
fibrosis driver TGF-β or the connective tissue growth factor
(CTGF) are promising but still in preclinical testing (26, 28, 29).
Further approaches are using mesenchymal stem cells (MSCs)
for tissue regeneration (9). In preclinical models, MSCs not
only replace damaged lung epithelial cells but also promote
tissue repair through the secretion of anti-inflammatory and
anti-fibrotic factors. They can even be genetically modified, e.g.,
by over-expression of the radical scavenging enzyme superoxide
dismutase, to improve their radioprotective potential. First
clinical trials in patients with idiopathic pulmonary fibrosis
are encouraging. There are however strong concerns about the
safety of such a therapy. Therefore, further investigations
to identify novel molecular targets for radioprotective
and antifibrotic treatments are urgently needed to improve
personalized radiotherapy.

DIACYLGLYCEROL KINASE ALPHA (DGKA)
AS A POTENTIAL CANDIDATE IN
RADIATION-INDUCED FIBROSIS

A cohort of breast cancer patients undergoing intraoperative
radiotherapy were observed for occurrence of adverse side effects
with a median follow-up time of 4.9 years (range 2.0–5.5)
(30). For each patient, skin fibroblasts were cultivated. DNA
methylation patterns were determined from patients who did
or did not develop radiation-induced fibrosis using Illumina
450K arrays (31). A number of differentially methylated sites
was identified, among them an intragenic enhancer in the DGKA
gene. Low methylation at this site was associated with moderate
to severe fibrosis (LENT-SOMA grade 2–3) and highmethylation
with mild to no reaction (31, 32). A more detailed analysis
revealed that the radiation-inducible transcription factor EGR1
was able to bind to the differentially methylated region thereby
inducing DGKA expression in fibroblasts which then expressed
enhanced levels of the pro-fibrotic ECM proteins collagen and
fibronectin. DGKA is involved in lipid signaling, cell migration
and cell growth (33). It is expressed in normal T cells, spleen
and skin as well as in cancer cells but it was not yet described
in the context of fibrosis. Several inhibitors are known for this
protein making it an attractive target in the fight against fibrosis.
To further boost studies of DGKA and fibrosis development,
the known characteristics of DGKA are summarized in
the following.

DIACYLGLYCEROL KINASES, FUNCTION,
AND STRUCTURE

DGKA is part of a family of mammalian diacylglycerol kinases
(DGKs) which includes 10 isoforms grouped into five subtypes.
DGKs convert diacylglycerol (DAG) to phosphatidic acid (PA),
which both are lipids with important and far-reaching signaling
properties [Figure 1; (33–37)]. Thus, DGKs terminate DAG-
regulated signals and activate PA-regulated ones. These two
lipids are generated at the membrane and act as hot spots to

localize and activate numerous signaling cascades (38, 39). In
mammals, on the one hand, DGKs act as negative modulators of
classical protein kinase C (cPKC; PKCα, β, and γ) and novel PKC
isoforms (nPKC; PKCδ, ε, η, and θ), protein kinase D (PKD), and
guanyl nucleotide-releasing protein for Ras (RasGRP) (40, 41).
On the other hand, DGKs-induced PA promotes the activation of
mammalian target of rapamycin (mTOR), atypical PKC (aPKC,
PKCζ, and PKCι/κ), and phosphatidylinositol-4-phosphate 5-
kinase (PIP5K) (42).

All DGKs contain at least two cysteine-rich C1 like domains
and a highly conserved catalytic domain (43). The C1 domains
in DGKs originally contribute to DAG-dependent binding to
the membrane. The catalytic domain is a common domain
in all DGKs with a highly conserved motif “φφφGGDGT” (φ
indicates any hydrophobic residue) that involves ATP binding
(44). Each DGK subtype contains accessory regulatory motifs in
its primary sequence that might divert their function, regulation
and localization. There are numerous reviews on DGKs (34, 43,
45–48) but here we are focusing on DGKA which belongs to type
I DGKs that specifically contain a Ca2+-dependent regulatory
domain at its N-terminus including a recoverin-like domain
(RVH) and two EF-hand motifs.

CELLULAR MECHANISMS TO MODULATE
DGKA RNA EXPRESSION

DGKA levels differ considerably in various tissues. Transcripts
are enriched in lymphoid tissues especially lymph nodes,
tonsils and spleen, as well as in skin, esophagus, duodenum
and small intestine (Figure 2A). Expression is low in primary
melanocytes, hepatocytes, and neurons (49–51) and in the
corresponding tissues like liver, brain, kidney, heart and skeletal
muscle, suggesting tissue-specific functions of the protein. This
is confirmed by the evaluation of immunohistochemistry images
of DGKA protein in human tissue sections (Figure 2B). They
show heterogeneous amounts of DGKA in the different cell types
constituting the various tissues. In contrast, DGKA expression is
strongly increased in tumors like melanoma, hepatocarcinoma,
and glioblastoma as detected by RNA quantification or
immunohistochemistry (49–51). In tumors, high DGKA
expression was reported to be associated with cell growth
and activation of Ras, mTOR, or HIF1-α signaling pathways
and poor survival (50, 51). In gastric cancer, however, DGKA
expression was found to be modulated by lipid metabolism and
high DGKA levels were related with good survival (52). These
observations show that DGKA levels can affect many cellular
functions depending on tissue or cell type. Comprehensive
expression patterns in tumor cells reveal that the interplay with
tumor-type specific activated signaling pathways might control
DGKA function. Therefore, DGKA was postulated to be a critical
signaling node in malignant transformation (51).

At the molecular level, several mechanisms of DGKA
regulation have been observed, although which mechanism is
active in which cell type is not completely understood. DGKA is
located on chromosome 12 encoding several isoforms (Figure 3).
Transcription is controlled by at least two functional units,
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FIGURE 1 | Scheme of DGKA functions contributing to radiation-induced fibrosis. Induction of DGKA by ionizing irradiation or other extracellular stimuli activates

several functions in cells like DAG to PA conversion, lipid signaling, exosome secretion, and production of extracellular matrix proteins. According to cell type, these

functions might regulate trans-differentiation to myofibroblasts, activation of immune cells, or pro-fibrotic processes. Interaction of these activated cell types is required

for tissue regeneration after irradiation, however, persistence of activated cell states and increased extracellular matrix production will contribute to fibrosis.

a promoter region 5′-upstream of the transcription start site
and an intragenic enhancer located in intron 1 which can
interact with the promoter as shown by chromatin conformation
capture experiments (31). Moreover, differential methylation of
the enhancer site modulated induction of DGKA expression after
irradiation of fibroblasts. Low DGKA methylation resulted in
increased DGKA expression after irradiation and was associated
with the development of radiation-induced fibrosis (31). In the
patient fibroblasts used in this study, the differential methylation
which modulates DGKA expression after irradiation was already
present before treatment of cells. A methylation change
after irradiation or upregulation of DNA methyltransferase
1 (DNMT1) was not observed (31). Therefore, differential
DGKA methylation seems to indicate a stable predisposition of
patients for radiation-induced fibrosis. Nevertheless, radiation
by itself could change DNA methylation patterns. Although
reports on overall changes causing hyper- or hypomethylation
are rather contradictory, specific DNA methylation changes
have repeatedly been found (55, 56) suggesting an epigenetic

reprogramming after irradiation which might affect cell fate
and therapy outcome.

DGKA expression was up-regulated by exposure to DNA
damaging treatments like γ-irradiation (31, 57), UV-exposure or
treatment with cytostatic drugs and under hypoxic conditions
[summarized in (58)]. Up-regulation was attenuated by silencing
or mutating p53 in the investigated cell models suggesting that
DGKA-related functions might be part of the comprehensive
p53-mediated cellular damage response, as for example after
radiotherapy (59). Furthermore, DGKA expression was strongly
regulated in different tissues and cell types by activating signaling
cascades like those of Src, HIF1-α, mTOR, and Ras/ERK (see
below) and by binding of pathway-specific transcription factors
(TFs). An example in the mouse is the forkhead box O (FoxO)
TF in T cells linking the T cell receptor (TCR) activity to DGKA
abundance via PI3K activity (60) or the TF Egr2 regulating T
cell anergy (61). Regarding the function of the enhancer region,
DGKA expression was stimulated by binding of the radiation-
inducible transcription factor EGR1 (31).
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FIGURE 2 | DGKA expression in normal human tissues. (A) The 10 tissues with the highest DGKA RNA expression are shown. Data are derived from a consensus

dataset in the Human Protein Atlas (HPA) which combines data from three comprehensive databases (HPA, GTEx, and FANTOM5). (B) DGKA protein expression

measured by immunohistochemistry in cell types present in the tissue with the highest RNA expression shown in (A). Protein data for thymus and T cells were not

included in the HPA protein database. For details of protein expression, normalization and quantification, see website (https://www.proteinatlas.org/

ENSG00000065357-DGKA/tissue).

FIGURE 3 | Regulation of DGKA expression by DNA methylation. Location of DGKA on chromosome 12 and transcriptional regulation as shown in the UCSC

Browser, hg19 assembly [http://genome.ucsc.edu/; (53)]. Regulatory elements are indicated by CpG islands and chromatin states (Encode ChromHMM)

characterizing transcription start site (TssA, TssAFlnk, TXFlnk) and enhancer (Enh) in human skin fibroblasts (54). CpG probes (Illumina 450K BeadChipArray) located in

the DGKA promotor area are indicated.

Small RNAs were also involved in the control of DGKA
transcripts. Overexpression of miRNA-297 was shown to be
cytotoxic to glioblastoma cells but not to normal astrocytes
(62). DGKA was the most prominent target of this miRNA.
Further evidence comes from the observation that DGKA, when
upregulated by hypoxia and its mediator, the heterogeneous
nuclear ribonucleoprotein L (HNRNPL), was able to buffer the
cytotoxic effects of increased miRNA-297 expression.

Importantly, DGKA controls TF abundance and signaling
pathways by itself through the conversion of DAG to PA and
regulation of the downstream signaling (33) thus inducing an
auto-regulatory loop for a well-balanced equilibrium between
these pathways. These findings underpin the importance of
maintaining an adequate DGKA level in cells for their proper
functioning as it was shown when describing the role of DGKA
during T cell differentiation. Similar to the growth stimulation
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in tumor cells, it is conceivable that differences in DGKA levels
affect the cellular amounts of DAG and PA and might contribute
to fibroblast activation and migration during wound healing
and to the perpetuation of myofibroblast activation in a pro-
fibrotic situation.

DGKA-MEDIATED SIGNALING AND LIPID
METABOLISM

The DGK family is involved in lipid metabolism specifically in
the conversion of DAG to PA. Both are important intermediates
involved in phospholipid metabolism, and they serve as
second messengers at the plasma membrane. The DAG/PA
ratio is important to maintain cellular homeostasis, and the
dysregulation of cellular phospholipids has been implicated
in several disorders. For example, radiation-induced free lipid
accumulation impairs the normal cellular metabolism via
induction of lipoprotein lipase and fatty acid binding protein
4 (FABP4). At the same time, triacylglycerol is also increased
resulting in steatosis, progression to inflammation, and fibrosis
(19, 63).

Overexpressed or activated DGKA results in the generation
of PA and activates PA-mediated signaling (Figure 4). This
includes mTOR, atypical PKC (aPKC)-RhoGDI, Rab11 family
interacting protein 1 (Rab11-FIP1), and phosphatidylinositol-4-
phosphate 5-kinase (PIP5K) signaling which can lead to fibrosis
formation or tumor cell invasion and migration (42, 64–67). In
contrast, downregulation or inhibition of DGKA results in the
accumulation of DAG, which functions as a second messenger
by binding to C1 domain containing proteins. This binding
triggers multiple signaling pathways including RasGRP, classical
and novel PKC and PKD, which contribute to T cell anergy and
an insulin secretory defect (33, 35, 68).

Biochemical inhibition or silencing of DGKA was reported
to reduce HIF-1α and mTOR signaling by limiting PA in
glioblastoma cells (51). In addition, the cyclic adenosine
monophosphate (cAMP) level was observed to be significantly
increased in these cells which resulted in downregulation
of MTOR transcription. Downregulation of DGKA and its
downstream targets HIF-1α and mTOR resulted in suppression
of tumor cell migration and survival. Rescue experiments
with mTOR or HIF-1α restored cell viability. Remarkably,
the cytotoxic activity of DGKA attenuation was observed in
tumor cells but not in normal cells (51, 69). The authors
suggested a unique DGKA–PA–posphodiesterase–cAMP–mTOR
transcription pathway which would be active besides the lipid
signaling DGKA function. Similarly, Chen et al. found a
stimulation of the PTEN pathway and the oncogenic Akt/NF-
κB activity via cAMP in esophageal squamous cell carcinoma
cells (70) suggesting that, in this way, DGKA might promote
cell growth and cancer progression. Both observations were
found to be specifically active in malignant cells and make
DGKA an exciting target in cancer therapy. These studies further
support a unique role of DGKA in cell growth as this activity
was independent of the kinase activity. Other DGKs were not
reported to be able to substitute the DGKA function in this

process (51, 70). In L6 myotubes overexpressing the human
insulin receptor, DGK inhibition resulted in DAG accumulation,
PKCα activation at the plasma membrane, and reduced glucose-
induced insulin receptor activation (71). Interestingly, DGKA
knockdown or inhibition induces a stronger cytotoxicity in
cancer cells than in normal cells (69), underlining again that
the amount of DGKA might determine its cellular effects.
In addition, this observation supports DGKA as a potential
therapeutic target for cancer and fibrosis treatment.

DAG and PA are not only acting as second messengers but
are also involved in phospholipid metabolism. For example,
downregulation of DGKs results in the accumulation of DAG
which can cause metabolic disorders because DAG is a precursor
for triglycerides and phospholipids such as phosphatidylcholine
(PC) and phosphatidylethanolamine (PE) (20). Increased PA
levels, in contrast, trigger the generation of lysophosphatidic
acid, a lipid involved in many chronic inflammatory diseases
including idiopathic pulmonary fibrosis and liver fibrosis (19).
Conversion of DAG to PA by DGKs is a demanding task as
shown bymore than 50 structurally different DAG and PA species
in mammals (34). DAG consists of a glycerol backbone which
is linked to a saturated and an unsaturated fatty acid which
vary in chain length and composition according to the cellular
turnover of various phosphatidylinositol (PI) species. Specific
DGKs are reported to convert different DAGs (72). For DGKA,
this process might be cell type specific as the spectrum of DAG
species converted in AKI melanoma cells is not identical to
the one observed in normal human dermal fibroblasts (31, 34).
However, different methods were used for quantification in both
cell types.

Finally, it is likely that ionizing radiation which is inducing
highly reactive ROS in cells may alter the composition of
the DAG spectrum mainly by reacting with the unsaturated
part of DAG and PA. This substrate change will cause
at least an intermediate imbalance in the DAG to PA
ratio with all the possible changes in cellular functions as
already described.

RADIATION-INDUCED IMMUNE
RESPONSE AND DGKA-MEDIATED T CELL
ACTIVATION

Radiotherapy has been used for decades to eliminate local tumor
growth, while different radiation dosage and fractionation also
lead to various degrees of injury in surrounding normal tissue
because of the induced immune responses (73). Thus, DGKA, as
regulated by IR,may be involved in IR-induced immune response
through mediating T cell activation.

During the initial phase of radiation exposure, DNA damage,
ROS induction and cell death trigger the release of pro-
inflammatory cytokines (e.g., IL-1, IL-6, IL-10, TGF-β, TNF-
α, and IFN-γ) and activate immune response (6, 74, 75). The
induction time of pro-inflammatory cytokine secretion can vary
fromminutes to hours (initial phase) up to days and weeks (early
acute inflammatory phase) depending on the radiation dosage
and fractionation (15). Lymphocytes and macrophages infiltrate
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FIGURE 4 | DGKA-associated signaling cascades. DGKA controls the conversion of DAG to PA, two membrane-associated lipid messengers. High DAG levels

activate classical PKCs (cPKC) with PKCα, β and γ, novel PKCs (nPKC) with PKCδ, ε, η, and θ, PKD and RasGRP signaling. High PA levels activate mTOR, atypical

PKCs (aPKC) with PKCζ and PKCι/κ, PIP5K, and HIF-1α. The stimulated signaling cascades induce transcription in the nucleus by triggering pathway-specific

transcription factors (TFs).

into the injured tissue and induce inflammasome formation.
Type I T helper cells (Th1), Th17, and macrophages (M1) are
activated and contribute to inflammation around the damaged
area. In the late acute inflammatory phase, anti-inflammatory
cells including Th2 and regulatory T cells (Treg) are induced
to suppress pro-inflammatory responses. Th2 releases cytokines
including IL-3, IL-4, and IL-10 around the injured tissue and
triggers fibroblast-to-myofibroblast differentiation along with the
accumulation of M2 macrophages (76). During this stage, TGF-
β stimulates the generation of Tregs which further produce
TGF-β and IL-10 thus contributing to tissue repair and a pro-
fibrotic action (77). These alterations continue even throughout
the chronic phase of radiation-induced fibrosis. Moreover,
radiation-induced accumulation of lipid products such as free
fatty acids, triglycerides and DAGs activate the infiltration of
macrophages into the damaged tissue and further induce chronic
inflammation (7).

Several reviews indicate that DGKs, especially DGKA and
DGKZ, play an important role in T cell activation via termination
of DAG signaling (42, 78–80), but here we focus on the
role of DGKA. In general, T cell activation requires two
signals: the first consists of the interaction of the T cell

receptor (TCR) with foreign antigens bound to the major
histocompatibility complex (MHC) on the surface of antigen-
presenting cells (APC). This initial signal is responsible for
the generation of two phospholipase PLC-γ-mediated cleavage
products, inositol triphosphate (IP3) and DAG. The two second
messengers promote the signaling cascades of both the Ca2+-
mediated nuclear factor of activated T cells (NFAT) and the
Ras/ERK pathway (81). DGKA participates in this step as
follows. During initial TCR signaling, Ca2+ generated by PLC-
γ promotes a conformational change of DGKA leading to the
activation of its membrane-binding domain, and subsequently
to its rapid translocation and binding to the plasma membrane.
Membrane-bound DGKA (activated DGKA) metabolizes DAG
to PA. However, a further signal is necessary to complete T
cell activation. Co-stimulatory molecules such as CD28, which
interact with CD80 on the surface of APC, are essential to fully
activate T cells. During this step, PKCθ is involved in activating
NF-κB-mediated IL-2 synthesis (6). The co-stimulatory signals
balance the catalytic DGKA activity which is still located
at the plasma membrane to avoid that DAG levels become
insufficient to activate downstream signaling such as IL-2
secretion. Therefore, over-activated DGKA would result in T cell
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anergy. Co-stimulatory signals and IL-2 also trigger PI3K/AKT
activation to further suppress FoxO-dependent DGKA mRNA
expression finally creating a feed-back loop limiting DGKA
levels and signal intensity (33, 78). Thus, DGKA acts as an
immunological checkpoint to control the activities of T and NK
cells (82, 83). A recent study further showed that a lack of DGKA
reduced inflammation markers like IL-1β expression in white
adipose tissue in mice which were fed with a short-term high-fat
diet (84). This suggests that DGKA may be involved in the early
immune response also in other tissues.

As a part of the immune response after irradiation, T and
NK cells were shown to be activated and to gain the ability to
kill tumor cells after radiotherapy; however, tumors seem to be
protected from this cytotoxic activity (85). In renal clear cell
carcinoma, for example, the activity of tumor-infiltratingNK cells
was inhibited by strong expression of DGKA and insufficient
ERK pathway activity. Inhibition of DGKA or reactivation of
the ERK pathway reconstituted the anti-tumor activity of T and
NK cells (86). This was also observed in other tumors where
inhibition of DGKA and other DGKs restored pro-apoptotic
signaling in normal T and NK cells against tumor (83, 87–90).
This suggests that DGKA inhibition might be an interesting
strategy for tumor therapy. If however, DGKA inhibition results
in a similar T and NK cell activation by irradiation in the normal
tissue, an increase in tissue damage might be observed which
would increase therapeutic side effects. Remarkably, cell toxicity
of DGKA inhibitors was found to be lower in normal cells (51, 69)
making this possibility less probable. In the irradiated healthy
tissue, it is therefore assumed that immune cells are infiltrating
the damaged tissue, and together with fibroblasts and endothelial
cells, induce tissue regeneration. DGKA has been shown to be
activated in irradiated fibroblasts of patients with high fibrosis
risk (31). This response has not yet been investigated in T cells or
in irradiated tissues but it would be interesting to analyze DGKA
under both conditions. This would show how the different
cell types are interacting during wound healing and whether
induced DGKA levels sustainably disturb the DAG balance
and induce a prolonged wound healing response which might
be pro-fibrotic.

DGKA REGULATES EXOSOME
PRODUCTION WHICH CAN ACTIVATE
PRO-FIBROTIC FUNCTIONS

Regeneration of normal tissue after irradiation requires
cooperation of multiple cell types like immune cells, fibroblasts
or mesenchymal stem cells which are attracted to the injured
tissue site and activated for their specific function in the wound.
When the wound is closed, attracted cells and induced processes
have to be shut down to avoid accumulation of excessive ECM,
scars, and on a long-term basis, fibrosis. It is evident that such a
process needs multiple intercellular communications. One way
could be mediated by membrane trafficking related processes
like the release of multivesicular bodies or secretion of exosomes
(47, 91). Exosomes can transport signaling peptides, proteins
or miRNAs depending on cell type and regulated function.
They are excreted or internalized by various cell types like stem

cells, fibroblasts or lymphocytes (92). These exosome-mediated
processes are by far not completely understood but there are
some examples that underline the importance of exosomes in
fibrogenesis. Exosomes derived from mesenchymal stem cells
were reported to activate fibroblast migration and proliferation
and to regulate collagen synthesis during wound healing (92, 93).

DAGs were suggested to belong to the lipids that contribute
to exosome production in T lymphocytes (94–96). In T
cells, exosomes mainly transport Fas ligand which mediates
cytotoxicity and Fas-induced cell death in the targeted area.
Membrane-bound DKGA is an essential regulator of the
membrane-related process of exosome production as it controls
the formation and polarization of mature multivesicular bodies
as precursors of exosomes (94). DGKA might drive similar
exosome-mediated effects in other cell types. An example is
shown in H1299 tumor cells expressing a gain of function p53
mutant (mutp53; R270H; p53R172H). ECM production and
the orthogonal branching of collagen, one of the hallmarks of
fibrosis, could be substantially impeded by pharmaceutically
inhibiting DGKA in these cells (97). In fact, this process was
strongly controlled by DGKA-mediated exosome production. A
further analysis in mice with mutp53-driven pancreatic cancer
revealed this orthogonal ECM characteristic even in the lungs of
the animals where it preceded metastasis indicating a potential
role of DGKA in ECM production via exosomes (97).

Migration of different cell types to the wound and their
perpetuated activation is required for fibrosis to occur. In
tumor cells harboring gain-of-function p53 mutations, DGKA
increases cell migration and invasion capability. In this process,
membrane-bound DGKA generates increased PA levels, thus
recruiting β1 integrin trafficking and MMP9 secretion to
promote cytoskeleton reorganization for protrusion elongation,
lamellipodia formation, membrane ruffling, migration, and
spreading through the atypical aPKC/Rab-coupling protein
(RCP) mediated signaling in epithelial cells (65–67). In mouse
embryonic fibroblasts (MEFs), PA-Rac1-mediated cytoskeleton
reorganization was mainly promoted by DGKZ or DGKG not by
DGKA (98, 99). However, DGKA expression inMEFs is relatively
low compared to human fibroblasts, so further investigations on
DGKA and cell migration in human fibroblasts is needed.

DGKA inhibition or silencing reduce the migration-related
membrane processes and finally attenuate migration. Although
detection of these processes depends mainly on expression of the
mutated p53 protein, data reveal that membrane-bound DGKA
is involved in this process, and in a similar way, might participate
in wound healing and pro-fibrotic events.

In this context, it should be mentioned that increased
collagen production was measured as a pro-fibrotic endpoint in
fibroblasts. This was depending on DGKA protein abundance
and activity in fibroblasts after γ-irradiation (31). Whether this in
vitro process was accomplished by membrane processes resulting
in vesicles or exosomes formation as summarized by Stephens
(100) was not analyzed, however increased collagen synthesis and
secretion was associated with an increase of mRNA transcription
and protein synthesis. This observation underpins the multiple
functions DGKA might have depending on the intracellular
location of the protein and the abundance in different
cell types.
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NUCLEAR LOCALIZATION OF DGKA AND
CELL CYCLE REGULATION

There is evidence that several DGK family members are not only
present in the cytosol and cellular membranes but also in the
cell nucleus [Table 1; (112, 113)]. This led to the assumption that
there might be a role for DGKs in cell cycle regulation. DGKA
nuclear localization was observed in specific cell types such as the
human natural killer cell line YT, the mouse lymphocyte cell line
CTLL-2 (102) or in rat thymocytes and T-cell-enriched peripheral
lymphocytes (103). Furthermore, DGKA was observed to shuttle
between the nucleus and the cytoplasm, e.g., Baldanzi et al.
showed that upon stimulation of human T lymphocytes, DGKA
can exit from the nucleus which is associated with a rapid
negative regulation of its enzymatic activity (104). In contrast,
serum starvation in the mouse embryo fibroblast cell line
NIH/3T3 led to the transport of DGKA from the cytoplasm

into the nucleus, a process which could be reversed by serum
restoration (105).

DGKA is distinctly expressed in different tumor cell types
while their normal tissue counterparts are often devoid of
its expression; this suggests that it is able to enhance tumor
cell proliferation. DGKA is highly expressed in various human
hepatocellular carcinoma cell lines (50). Here, the authors
observed a significantly enhanced cell proliferation upon
overexpression of DGKA. Furthermore, immunohistochemical
analyses in tissue samples from patients with hepatocellular
carcinoma revealed an association of high DGKA expression
and high expression of the cellular proliferation marker Ki-67.
DGKA was also strongly expressed in the nuclei of human K562
leukemia cells and was shown to be involved in both changes
of the RB phosphorylation status and in the progression of the
cell cycle through the G1/S checkpoint (101). These authors used
synchronized cells to demonstrate cell cycle phase-dependent

TABLE 1 | DGKA function according to cellular localization.

Cellular Compartment Function Species Cell line

(cell type)

References

Nucleus Cell cycle regulation Human K562 (myelogenous leukemia) (101)

Proliferation Human YT (natural killer cell) (102)

Mouse CTLL-2 (T lymphocytes) (102)

Lymphocyte activation Rat Primary thymocytes (103)

nra Human Jurkat (T cell leukemia) (104)

Mouse NIH/3T3 (embryonic fibroblasts) (105)

Cytosol T cell activation Human Jurkat (T cell leukemia) (104–107)

Rat Primary thymocytes (103)

Lipid metabolism,

signaling

Swine Primary vascular smooth muscle cells (68, 106, 107)

Human Jurkat (T cell leukemia) (68, 108)

Rat L6 (skeletal myoblasts) (71, 108)

nra Mouse NIH/3T3 (embryonic fibroblasts) (105)

Rat Primary thymocytes (103)

Membrane T cell activation Human Jurkat (T cell leukemia) (104, 106–110)

Mouse Primary T cells (111)

Lipid metabolism,

signaling

Swine Primary vascular smooth muscle cells (68)

Mouse CTLL-2 (T lymphocytes) (72)

Mouse BaF/3 (pro-B cells) (72)

Dog MDCK (kidney epithelial cells) (67)

Rat L6 (skeletal myoblasts) (71)

Exosome maturation Human Jurkat (T cell leukemia) (94)

Migration Human H1299 (lung carcinoma) (65)

Matrix invasion Human MDA-MB-231 (breast cancer cells) (66)

Multivesicular body

secretion

Human Jurkat (T cell leukemia) (95)

Human Raji B (B lymphocytes)

Total cell Cell proliferation, signaling Human HuH7, PLC/PRF/5, HLE, and Hep3B

(hepatocellular carcinoma)

(50)

anr, not reported.
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DGKA expression, and they applied DGK inhibitors resulting
in down-regulation of cell growth and accumulation of cells
into G0/G1 phase. Yanagisawa et al. observed DGKA expression
in several human melanoma cell lines while normal epidermal
melanocytes did not express this protein (49). In addition,
they revealed DGKA as a negative regulator of TNF-α-induced
apoptosis in these tumor cells. Further evidence for an anti-
apoptotic and proliferation-enhancing activity of DGKA in
cancer cells derived from different cancer entities is reported
using selective inhibitors of DGKA (51, 69, 114).

All in all, the above-mentioned studies demonstrate that
DGKA (i) is present in the nucleus of different cell types,
(ii) is involved in cell cycle regulation, and (iii) has cell-type
specificity functions based on its expression levels. Although
there is a lack of data on DGKA and cell cycle regulation
in fibrosis, it is conceivable that DGKA might play a role
in transactivation of resident fibroblasts to replicating active
myofibroblasts, the activity of which has to be maintained in
fibrotic tissues.

TARGETING OF DGKA BY SMALL
COMPOUNDS

To interfere with the manifold cellular functions of DGKs,
compounds were designed to suppress DGK activity. So far, the
compounds R59022 and R59949 are described to show a higher
selectivity toward type I DGKs including DGKA by binding
to the catalytic domain (115). Ritanserin, a serotonin receptor
antagonist, and a chemical fragment of it, RF001, were identified
to attenuate DGKA function e.g., by increasing the DGKA affinity
toward ATP in vitro (116, 117). Especially RF001 shows strong
effects because it targets both the catalytic domain and the C1
domains of DGKA (117). Most recently, a novel compound,
AMB639752, has been identified based on its structural analogy
to Ritanserin, R59022 and R59949 (118). The drug shows high
specificity for DGKA but does not have the associated activity
against the serotonin receptor like the parental drugs. A further
compound, CU-3, functions as a competitive ATP inhibitor, but
it is unclear why CU-3 has high selectivity for type I DGKs (114).
In contrast, a recent study showed that DGKA can be activated
when treated with KU-8 (119). Several authors describe that
the growth of glioblastoma and other cancers can be impeded
with DGKA inhibitors in cell cultures and in xenografts (51,
114, 120). Also AMB639752 is impeding cell migration of MCF7
tumor cells (121). DGKA inhibitors, therefore, offer not only
a promising way to manipulate DGKA activity for therapeutic
purposes in tumor cells but they might also be helpful to confine
a perpetuated wound healing response leading to fibrosis. The
current drugs, however, show poor pharmacokinetic data in
mice and have considerable off-target effects like targeting the
serotonin receptor (116). Still, novel drug screening strategies as
those described by Velnati et al. (121) give promise that these
limitations can be overcome.

Additional attractive candidates to modulate DGKA levels
are epigenetic drugs as they can alter or even reverse aberrant
gene expression. Gene expression is organized on different

layers by epigenetic mechanisms, especially by DNAmethylation
and histone modifications (22). As most epigenetic marks in
differentiated cells are highly stable and serve as an epigenomic
memory (122), a protective epigenomic layout, once established
by an epigenetic treatment, could be maintained throughout
numerous rounds of cellular replication in fibroblasts (123). As
a proof-of-concept for epigenetic therapy, Zeybel et al. (124)
halted CCl4-induced liver fibrosis progression in mice with
the histone methyltransferase inhibitor 3-deazaneplanocin A
(DZNep). DZNep also inhibited myofibroblast transactivation
in vitro (124). In a fibroblast model for radiation-induced
fibrosis (31), BET-bromodomain inhibitors (JQ1 and PFI-1)
suppressed induction of DGKA in bleomycin-treated fibroblasts,
reduced histone H3 lysine 27 acetylation (H3K27ac) at
the DGKA enhancer and repressed collagen marker gene
expression (125). Here, BET-bromodomain inhibitors altered the
epigenetic landscape of fibroblasts, counteracting pro-fibrotic
transcriptional events. Of course, the use of epigenetic drugs to
alter pro-fibrotic signaling requires further experimental proof,
but there is sufficient evidence (126) that altering the chromatin
state at theDGKA locus could be a valuable therapeutic approach
in fibrosis prevention and might lead to long-lasting, stable
protection against radiation-induced fibrogenesis.

A further promising therapeutic approach could be a co-
treatment of both disturbed DGKA levels and downstream
signaling. In a tentative approach, co-treatment with the DGK
inhibitor R59949 and the protein kinase C alpha inhibitor
Gö6976 attenuated cell growth and COL1A1 transcription
in primary human fibroblasts, indicating great potential to
synergistically treat fibrosis development (31). It should however
be mentioned here that all anti-fibrotic treatments targeting
DGKA either directly or by changing its expression might be
demanding, as in case of drug-inducedDAG/PA imbalance, other
DGK isoforms expressed in cells or further signaling pathways
might step in to take over the function of DGKA.

CONCLUSIONS

Radiotherapy is a highly efficient tool for cancer treatment
but the risk of side effects especially radiation-induced fibrosis
may considerably restrain therapy outcome by either reducing
tumor control or the overall quality of life post-therapy.
Therefore, how to prevent fibrosis still requires more detailed
studies. Recently, growing evidence indicates that DGKA is
a central node regulating numerous cellular functions like
immune response, lipid signaling, exosome production and
migration as well as cell proliferation by maintaining an
adequate DAG to PA balance at cell membranes but also by
potential, yet unknown functions in the nucleus. In addition,
DGKA expression is inducible by irradiation. Even though the
mechanisms of how DGKA contributes, after irradiation of cells,
to the pro-fibrotic processes of myofibroblast transactivation
and production of ECM are still not fully elucidated, there is
strong evidence that DGKA is activated after irradiation and
that it has many competences to play a central function in
fibrosis development when disturbed by irradiation. Inhibitors
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that target DGKA function and protein levels either by direct
interaction with the protein, by addressing its epigenetic
control or by modulating DAG-dependent signaling might
therefore offer novel therapeutic avenues to prevent or attenuate
radiotherapy-induced fibrosis.
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