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Spontaneous activity in the developing central nervous system occurs before the brain
responds to external sensory inputs, and appears in the hindbrain and spinal cord as
rhythmic electrical discharges of cranial and spinal nerves. This spontaneous activity
recruits a large population of neurons and propagates like a wave over a wide region of
the central nervous system. Here, we review spontaneous activity in the chick hindbrain
by focusing on this large-scale synchronized activity. Asynchronous activity that is
expressed earlier than the above mentioned synchronized activity and activity originating
in midline serotonergic neurons are also briefly mentioned.
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INTRODUCTION

The developing nervous system generates spontaneous activity that is suggested to play a critical
role in neural development (Moody and Bosma, 2005; Blankenship and Feller, 2010). Some of
the earliest activity is expressed in the hindbrain and spinal cord. This spontaneous activity was
originally considered to be a prototype of the rhythmic discharges in the adult central nervous
system, such as respiratory and locomotor patterns. This classic view has been challenged by
recent studies showing that the embryonic spontaneous activity has different characteristics of
spatio-temporal patterns, origin, and pharmacological substrates from those of the adult central
pattern generators (e.g., see the discussions of Chub and O’Donovan, 1998; Thoby-Brisson et al.,
2005).
In past studies, spontaneous activity has often been analyzed using isolated hindbrains or spinal

cords as these structures were considered to produce independent activities, which has caused
some confusion. In fact, during early development activity propagates over a wide area of the
central nervous system, maximally extending to the lumbosacral cord and forebrain, and thus most
regions of the central nervous system are functionally correlated (Momose-Sato et al., 2001b, 2007,
2009, 2012a).
Here, we review spontaneous activity in the chick embryo by focusing on this large-

scale synchronized activity. Much of what we learned about the synchronized activity has
come from studies on the chick embryo because the embryo in an externally laid egg is
readily available and amenable to surgical and pharmacological manipulation. Synchronized
activity having characteristics similar to those described here has also been reported in
the mammalian embryo, and we refer the reader to related reviews, as well as literatures
focusing on the spinal cord (O’Donovan, 1999; Chatonnet et al., 2002; Marder and Rehm,
2005; Moody and Bosma, 2005; Greer et al., 2006; Hanson et al., 2008; O’Donovan et al., 2008;

Abbreviations: E, embryonic day, which shows days of incubation in chicks; GABA, γ-aminobutyric acid.
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Bosma, 2010; Momose-Sato and Sato, 2013), which would
be a great help for better understanding the present topic.
In the last sections of this article, we also briefly mention
asynchronous activity that is expressed earlier than the above
mentioned synchronized activity, and activity originating in
midline serotonergic neurons.

LARGE-SCALE SYNCHRONIZED ACTIVITY

Activity Pattern
The earliest studies of spontaneous activity in the chick embryo
involve descriptions of embryonic motility observed in ovo.
Preyer (1885) described this behavior more than a century
ago, and it has been well characterized by Hamburger and
Balaban (1963) (for reviews see Bekoff, 2001; Oppenheim and
Lauder, 2001). Embryonic motility from stage 21 (E3.5, E:
days of incubation in chicks) appears as periodically recurring
sequences of slight flexions of the neck, with subsequently
two or more S-waves extending from the head to the tail
(Hamburger and Balaban, 1963). Direct evidence for the
neurogenic basis of this behavior has been obtained from
electrophysiological studies of spinal neuronal activity in ovo,
which revealed a parallel between the electrical discharges
and embryonic motility (Ripley and Provine, 1972; Provine,
1973).

The cranial and spinal nerves show similar rhythmic
bursting when the hindbrain and/or spinal cord is isolated
in vitro (Landmesser and O’Donovan, 1984; Fortin et al.,
1995; O’Donovan et al., 1998), indicating that motor outputs
from these nerves produce embryonic motility. The activity
is recorded as recurring episodes composed of several bursts,
appearing at a low frequency with an inter-episode interval
of a few minutes (Figure 1A). Similar spontaneous activity
is detected in mouse and rat embryos (Nakayama et al.,
1999; Abadie et al., 2000; Hanson and Landmesser, 2003;
Ren and Greer, 2003; Momose-Sato et al., 2007, 2012a),
indicating that this activity is globally generated across
species.

Experiments manipulating the rhombomere (segmental
structures of the early hindbrain) and rhombomere-specific
genes have suggested that the expression of the burst is associated
with the odd-numbered rhombomeres (r3 and r5) and their
interaction with the adjacent even-numbered rhombomeres
(Fortin et al., 1999), with some molecular cues expressed in
rhombomere segments, such as Krox20, regulating the bursting
pattern (Chatonnet et al., 2002; Borday et al., 2003; Coutinho
et al., 2004). Although these experiments were performed in
isolated hindbrains, in which the primary rhythm generator
was deprived (see ‘‘Origin’’ Section), the results suggest that
inter-segmental interactions are important for the generation of
recurring bursting patterns.

Synchronization
The spontaneous activity in the hindbrain and spinal cord is
associated with the co-activation of different nerves/regions.
Synchronization occurs between different rostrocaudal levels,

between the left and right sides, and between the nerves
innervating the flexor and extensor muscles (Provine, 1973;
Fortin et al., 1994, 1995; Milner and Landmesser, 1999).
Thus, the early spontaneous activity may be correlated with
intersegmental and bilateral interactions between different
neuronal subsets (Fortin et al., 1995). This has been visually
demonstrated in optical studies using voltage-sensitive dyes,
in which spontaneous as well as sensory-evoked waves spread
over a wide region of the central nervous system, including
the spinal cord, hindbrain, midbrain, cerebellum, and part of
the forebrain (Momose-Sato et al., 2001b, 2007, 2009, 2012a).
The propagation velocity of the wave was too slow to be
attributed to axonal conduction along unmyelinated fibers at
the corresponding stage (O’Donovan et al., 1994; Arai et al.,
2007; Momose-Sato et al., 2007). The mechanisms underlying
the spread of this activity may include the sequential synaptic
activation of adjacent regions coupled by short-range synaptic
connections (Fortin et al., 1995; O’Donovan et al., 2008),
the non-synaptic release of transmitters and paracrine-like
intercellular communication (Demarque et al., 2002; Scain
et al., 2010), and the coordination of chemical transmitters
with gap junctions, as well as electrical interactions between
neighboring neurons (Hanson and Landmesser, 2003; Ren et al.,
2006).

Development
Correlated spontaneous discharges are recorded from stage
24 (E4) in the hindbrain (Fortin et al., 1994; Momose-
Sato et al., 2009) and from stage 22.5–24 (E3.5–E4) in
the spinal cord (Milner and Landmesser, 1999; Hanson and
Landmesser, 2004). Marked changes occur in the activity
patterns during development, such as an increase in the interval
between episodes, the number of burst discharges within the
episodes (a single burst to multiple bursts), and a decrease
in the inter-burst interval within an episode (O’Donovan and
Landmesser, 1987; Fortin et al., 1994; Milner and Landmesser,
1999).

Synchronization over the brain and spinal cord is observed
during a particular period of development, E4–E8 (Momose-
Sato et al., 2009; Momose-Sato and Sato, 2014). From E9
onward, spontaneous activity becomes segregated in the spinal
cord, and the signal is very small or undetectable in the
hindbrain (Momose-Sato and Sato, 2014; Figure 1B). The results
indicate that the activity at E9 and later is no longer ‘‘large-
scale’’, but is specialized to the spinal network. Interestingly,
spontaneous activity becomes detectable in the E9 hindbrain
when the hindbrain is isolated, although no such activity
is observed when the spinal cord is intact (Momose-Sato
and Sato, 2014; Figure 1C). This seems due to a change
in neural excitability in the hindbrain, which is caused by
deprivation of the spinal rhythm generator (also see ‘‘Origin’’
Section).

In the mouse and rat embryos, it has been reported that
large-scale synchronized activity is substituted by segregated
activity in the caudal spinal cord and rostrolateral medulla,
which seem to correspond to the locomotor and respiratory
rhythm generator, respectively (Momose-Sato et al., 2012a).
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FIGURE 1 | (A) Electrical recording of spontaneous activity in the chick embryo. The signal was recorded from a hindbrain-spinal cord preparation dissected from an
E6 (stage 28) embryo with a glass micro-suction electrode applied to the root of the vagus nerve. In the inset, an enlarged trace of a single burst indicated with a red
asterisk is presented. (B) Voltage-sensitive dye recording of the spontaneous activity in an E9 (stage 35) hindbrain-spinal cord preparation. Recordings in (Ba,b) were
obtained from the hindbrain and cervical cord of the same preparation, respectively. Enlargements in optical signals indicated with green asterisks are presented in
the lower side. Oscillatory activity was detected from the lower medulla (Ba, red arrowheads) and spinal cord (Bb), but not in the pons (Ba, a green asterisk and
inset), midbrain, or cerebellum. (C) Voltage-sensitive dye recording of the spontaneous activity that appeared in the isolated hindbrain at E9 (stage 35).
A pseudo-color image on the right shows the propagation pattern of the spontaneous activity. The frame interval was 20 ms. Data shown in Figures 1B,C, 2 were
obtained using a 1020ch optical recording system (Hirota et al., 1995; Momose-Sato et al., 2001a) with a voltage-sensitive dye, NK2761. The scale on the
recordings and images indicates the fractional change in transmitted light intensity, ∆I/I. G.VIII, vestibulo-cochlear ganglion; N.X, vagus nerve (Reproduced from
Mochida et al., 2009b; and Momose-Sato and Sato, 2014).
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The underlying mechanism in the mouse involves the switching
of γ-aminobutyric acid (GABA) acid responses from excitatory
to inhibitory (Momose-Sato et al., 2012b). Nevertheless, this
seems not to be the case in the chick embryo because the
application of the GABAA receptor antagonist bicuculline does
not restore the activity in the E9 hindbrain (Momose-Sato
and Sato, 2014) and even suppresses the activity in the spinal
cord until at least E11 (Chub and O’Donovan, 1998). Possible
mechanisms include the intrinsic excitability of neurons being
decreased with hyperpolarization of the resting membrane
potential or other changes in electrical properties, and also
weakened functional connections in neurons under the level
required to mediate the conduction of the activity. It is
also possible that some inhibitory signals are derived from
ascending fibers or targets innervated by descending fibers, or the
effects of neuromodulators (Whelan, 2003; Marder and Rehm,
2005).

Origin
Which part of the central nervous system functions as a generator
of the large-scale synchronized activity? An optical imaging
study using hindbrain-whole spinal cord preparations have
shown that the origin of the spontaneous wave is in the upper
cervical cord/lower medulla at stage 24–29 (E4–E6) with some
variations between the activities (Figures 2A,B). As development
proceeds to stage 30–34 (E7–E8), the region responsible for
generating the wave shifts caudally, and the activity is initiated
in any part of the spinal cord (Momose-Sato et al., 2009;
Figure 2B).

Although spontaneous activity is typically initiated in the
spinal cord in intact preparations, activity can be detected
in the isolated hindbrain, in which the primary rhythm
generator is deprived (Fortin et al., 1995, 1999; Momose-
Sato and Sato, 2014). Furthermore, this rhythmic pattern
is preserved in transverse sections of the hindbrain (Fortin
et al., 1995). Moreover, the spontaneous activity is generated
by single rhombomeres when isolated at E2 (stage 10–11;
Fortin et al., 1999; Borday et al., 2003). Thus, neurons
and/or neuronal networks producing spontaneous activity are
widely distributed in the hindbrain and spinal cord, with a
specific excitable region probably pacing the activity in intact
preparations. When the primary pacing area is removed, as is
the case for the isolated hindbrain, other potential generators
become initiators of spontaneous activity, and produce activity
with a similar pattern to the previous one (Momose-Sato
et al., 2007; Momose-Sato and Sato, 2014; Figure 2C). This
homeostatic compensation is an active process, which is
associated with an increase in excitability and/or the number
of neurons recruited to the activity (Momose-Sato and Sato,
2014).

According to the model proposed in the chick spinal cord, the
generation of spontaneous activity is dependent on the degree
of neuronal connectivity and the number of units recruited to
the wave. The activity is not generated in a particular class of
cells, but is initiated where the connection is sufficient enough
to sustain the propagation of activity throughout the whole
network (Chub and O’Donovan, 1998; O’Donovan et al., 1998).

A similar model might be applicable to the neural network in the
hindbrain.

Pharmacology
Nicotinic acetylcholine receptors, specifically those without the
α7-subunit, mediate spontaneous synchronized activity at early
developmental stages (stage 25–28: E4.5–E6), and glutamate
receptors at later stages (stage 33∼: E8∼; Chub and O’Donovan,
1998; Milner and Landmesser, 1999; Hanson and Landmesser,
2004; Mochida et al., 2009b). GABA and glycine also act
as excitatory mediators, most likely because the Cl− reversal
potential (ECl) is more positive than the resting potential, which
is caused by the high intracellular Cl− concentration (Chub and
O’Donovan, 2001).

In mouse and rat embryos, it has been reported that
spontaneous activity undergoes two types of developmental
changes in pharmacological substrates. One is a switching
of the dominant contributor from nicotinic acetylcholine
receptors to glutamate receptors, and the other is the change
in GABA/glycinergic responses from depolarizing/excitatory
to hyperpolarizing/inhibitory (Nakayama et al., 1999; Ren
and Greer, 2003; Myers et al., 2005; Ladle et al., 2007;
Momose-Sato et al., 2012b). In the chick embryo, the
dominant neuronal response to GABA and glycine is
depolarizing/excitatory at least until E8 in the hindbrain
(Momose-Sato et al., 1998) and E10–E11 in the spinal cord
(Chub and O’Donovan, 1998; Gonzalez-Islas and Wenner,
2006). On the other hand, some neurons in the hindbrain
reticular formation receive hyperpolarizing inputs from
GABAergic neurons, which seem to regulate the high-
frequency bursts of the spontaneous activity (Fortin et al.,
1999).

In addition to chemical synaptic antagonists, synchronized
activity is inhibited by putative gap junction blockers such
as octanol, carbenoxolone, and 18ß-glycyrrhetinic acid (Milner
and Landmesser, 1999; Mochida et al., 2009b). Although
interpretation of the results gained using these blockers is
not forthcoming because of the non-specific effects of the
drugs on cell membrane conductance, a recent study in the
mouse spinal cord demonstrated that 18ß-glycyrrhetinic acid and
meclofenamic acid exhibited specific effects on gap junctions
(Czarnecki et al., 2014), suggesting that the correlated activity
is mediated by the coordination of chemical neurotransmitter
systems and gap junctional communication.

ASYNCHRONOUS ACTIVITY EXPRESSED
EARLIER THAN THE SYNCHRONIZED
ACTIVITY

In addition to the synchronized activity discussed above,
asynchronous excitation has been detected in the chick
hindbrain using Ca2+-imaging (Mochida et al., 2009a).
In this study, both retrogradely labeled reticulospinal
and vestibuloocular neurons exhibited asynchronous
transients earlier than the emergence of synchronized
activity in each population (stage 25 in the reticulospinal
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FIGURE 2 | (A) The propagation pattern of the spontaneous activity in an E6 (stage 28) hindbrain-spinal cord preparation. The activity initiated in the upper cervical
cord (a). Images (Ab,c) present maximum responses in the hindbrain and caudal cord, respectively. Images were obtained from the hindbrain and spinal cord
indicated with squares in the right inset. (B) The origins of the spontaneous activity are indicated with circles for the most typical preparation at stage 24–33. In each
preparation, one circle corresponds to one spontaneous wave, and variations in circle locations show variations in the origin of the activity. (C) Pseudo-color images
of the spontaneous activity in an E7 (stage 31) hindbrain-spinal cord preparation before (left images) and after (right images) the obex was cut. Images were obtained
from the hindbrain region indicated with a square in the lower inset. The red vertical line shows the location where the cut was made. An arrowhead in the right image
indicates the origin of the activity. The frame interval was 60 ms. G.V, trigeminal ganglion; G.VIII, vestibulo-cochlear ganglion; N.X, vagus nerve (Reproduced from
Momose-Sato et al., 2009; and Momose-Sato and Sato, 2014).
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neurons and stage 26 in the vestibuloocular neurons).
The asynchronous and synchronous activities were
considered to be independent phenomena produced by
different mechanisms since: (1) the asynchronous activity
was not inhibited by tetrodotoxin, which blocks the
synchronous activity; and (2) there is no temporal or
developmental relationship between the two activities (Mochida
et al., 2009a). Thus, in the early stages of development,
the activity of individual neurons is independent, but
later becomes synchronous. A similar developmental
sequence of spontaneous activity occurs in the mouse
hindbrain (Abadie et al., 2000; Gust et al., 2003) and
other brain regions (for a review see Allene and Cossart,
2010).

MIDLINE SPONTANEOUS ACTIVITY

Hughes et al. (2009) reported spontaneous activity that arises in
the midregion of the hindbrain and travels in both the rostral
and caudal directions along the midline. This activity resembled
the midline spontaneous activity reported in the mouse embryo,
which is produced by serotonergic neurons (for a review see
Bosma, 2010). In the chick, spontaneous waves that originate
in the spinal cord usually precede the midline activity (Hughes
et al., 2009), suggesting that it occurs secondarily following the
synchronized activity.

FUTURE PERSPECTIVES

Recent advances in electrophysiology, molecular biology, and
optical imaging have shed much light on our understanding
of the widely-propagating synchronized activity in the

hindbrain and spinal. Despite much knowledge on the
global features of this activity, many unanswered questions
remain. Perhaps the most important issue is the functional
significance of the activity. Primordial activity in the
spinal cord has been suggested to play a significant role
in developmental processes, including axon pathfinding
(Hanson and Landmesser, 2004; Hanson et al., 2008)
and establishment of locomotor function (Myers et al.,
2005). On the other hand, investigations in the hindbrain
are less advanced. Spontaneous synchronized activity is
observed in several systems of the developing brain, and
it is suggested to play an instructive role in the synaptic
network formation (Zhang and Poo, 2001; Kirkby et al.,
2013; Andreae and Burrone, 2014). Synchronized activity
in the chick hindbrain is only expressed within a restricted
period, E4–E8, during which functional synaptic connections
are established in the brainstem nuclei (Momose-Sato et al.,
2001a; Glover et al., 2008; Momose-Sato and Sato, 2011). One
challenge for the future would be to ascertain whether this
process is under the control of spontaneous activity in the
hindbrain.
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