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Abstract

Metformin, a biguanide agent, is the first-line treatment for type 2 diabetes mellitus due to its

glucose-lowering effect. Despite its wide application in the treatment of multiple health con-

ditions, the glycemic response to metformin is highly variable, emphasizing the need for reli-

able biomarkers. We chose the RNA-Seq-based comparative transcriptomics approach to

evaluate the systemic effect of metformin and highlight potential predictive biomarkers of

metformin response in drug-naïve volunteers with type 2 diabetes in vivo. The longitudinal

blood-derived transcriptome analysis revealed metformin-induced differential expression of

novel and previously described genes involved in cholesterol homeostasis (SLC46A1 and

LRP1), cancer development (CYP1B1, STAB1, CCR2, TMEM176B), and immune

responses (CD14, CD163) after administration of metformin for three months. We demon-

strate for the first time a transcriptome-based molecular discrimination between metformin

responders (delta HbA1c� 1% or 12.6 mmol/mol) and non-responders (delta HbA1c < 1%

or 12.6 mmol/mol), that is determined by expression levels of 56 genes, explaining 13.9% of

the variance in the therapeutic efficacy of the drug. Moreover, we found a significant upregu-

lation of IRS2 gene (log2FC 0.89) in responders compared to non-responders before the

use of metformin. Finally, we provide evidence for the mitochondrial respiratory complex I

as one of the factors related to the high variability of the therapeutic response to metformin

in patients with type 2 diabetes mellitus.

Introduction

Diabetes mellitus is a chronic disease affecting approximately 463 million people worldwide,

which is nearly 9.3% of the global population [1]. Type 2 diabetes mellitus (T2DM) is the most

common type of diabetes accounting for approximately 90% of all cases. The persistent hyper-

glycemia and insulin resistance, a characteristic of T2DM patients, is associated with an

increased risk of serious microvascular and macrovascular complications, including
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nephropathy, retinopathy, neuropathy, myocardial infarction, and stroke, which may be

reduced by early initiation of antidiabetic therapy [2–4]. Metformin is the first-line medication

for treating hyperglycemia in T2DM with beneficial effects in the treatment of multiple non-

diabetes related conditions, such as polycystic ovary syndrome, cancer, and neurodegenerative

disorders [5–7]. Despite the pleiotropic effects of the drug, the variable efficacy and gastroin-

testinal side-effects observed cause a significant non-compliance and discontinuation of the

therapy, justifying a need for studies exploring molecular mechanisms of metformin action,

and biomarkers predicting both treatment response and tolerance of the drug [8].

The mechanism of metformin action is generally considered to involve modulation of the

activity of mitochondrial complex I, activation of 50 AMP-activated protein kinase (AMPK)-

dependent mechanisms, and increased AMP concentrations, though some controversy

remains since multiple studies are providing evidence for other indirect mechanisms, such as

the significant contribution of the gut microbiome underlying the glucose-lowering effect of

the drug [9–11].

RNA sequencing (RNA-Seq) is the state-of-the-art approach that may be used to profile drug

response and efficacy biomarkers [12, 13]. So far, transcriptome datasets obtained from cell cul-

tures and tissue samples of animal models are extensively used in studies describing molecular

mechanisms of metformin concerning various conditions, nevertheless, longitudinal data of in
vivo studies in humans are still lacking. RNA-Seq has revealed various novel effects and therapeu-

tic targets of metformin, such as enrichment of the transcriptional regulator forkhead box O3a

(FOXO3a) in primary human fibroblasts [14], upregulation of activating transcription factor 3

(ATF3) in primary human hepatocytes [15], downregulation of cell division control protein 42

homolog (CDC42) in breast cancer cells [16], upregulation of krüppel-like factor 4 (KLF4) result-

ing in suppressed endothelial dysfunction [17], and even modulated alternative splicing in embry-

onic stem cells [18]. Moreover, multiple animal-based studies have reported metformin-specific

signatures in gene expression profiles of rat arteries and mice epididymal fat, liver and muscle tis-

sue, nevertheless, they still do not explain many beneficial effects of the drug [19–21].

Although the relatively high proportion (>30%) of patients failing to achieve glycemic con-

trol during metformin therapy has been partially explained by the contribution of genetic

inheritance (allelic variants of organic cation transporters OCT1, OCT2, etc.) [22–24], recent

studies report that heterogeneity of metformin response may be both patient and cell type-spe-

cific, suggesting the presence of yet unknown, non-genetic and selective manifestations of the

drug [25, 26]. The main objective of the study was to assess the systemic effect of metformin in

T2DM patients and reveal potential biomarkers for accurate prediction of its therapeutic effi-

cacy. We have previously reported direct evidence of the effects of metformin on the immedi-

ate and strong transcriptome changes in whole-blood samples of healthy subjects, though we

considered the diabetic state as a significant confounding factor, therefore the study was con-

tinued in a well-characterized, prospective T2DM patient cohort with prolonged observational

time, providing much wider applicability of the study results [27]. We believe that our strategy

will promote the development of biomarker-based approaches for monitoring treatment out-

comes and early identification of metformin responders, moving towards precision medicine.

Materials and methods

Study design

The study was conducted within the framework of the ongoing observational, prospective and

longitudinal study OPTIMED, which has been implemented since 2010 in collaboration with

endocrinologists and general practitioners from the leading health care centers in Latvia,

ensuring recruitment of newly diagnosed drug-naïve patients with ICD-10 diagnosis code E11
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and follow-up data collection. Written informed consent was obtained from every participant

after full explanation of the purpose and nature of all procedures used before their inclusion in the

study, and the study protocol was approved by Central Medical Ethics Committee of Latvia (No.

01–29.1/22) and Committee of Ethics in Pauls Stradins Clinical University Hospital (No.3000610

- 18L). The research was conducted in accordance with The Code of Ethics of the World Medical

Association (Declaration of Helsinki amended in Fortaleza, Brazil, October 2013) and The Con-

vention for the protection of Human Rights and Dignity of the Human Being with regard to the

Application of Biology and Medicine: Convention on Human Rights and Biomedicine. Manage-

ment of patient recruitment, collection of samples and associated clinical data was ensured by Lat-

vian Biomedical Research and Study Centre’s core facility Genome Centre and the Genome

Database of the Latvian Population following their standard procedures [28].

In total, 17 patients of European descent fulfilling the following inclusion criteria were

enrolled: (1a) newly diagnosed type 2 diabetes mellitus (ICD-10 code E11) requiring oral anti-

diabetic therapy, or (1b) previously diagnosed type 2 diabetes mellitus but no oral antidiabetic

therapy or insulin has been used for the last three years, or (1c) newly diagnosed type 2 diabe-

tes mellitus and intensive insulin therapy initiated in a hospital for acute glycemic normaliza-

tion; (2) the patient is not currently involved and is not planning to enroll in clinical trials

during the OPTIMED study; (3) the patient has attained 18 years of age; (4) the patient is not

pregnant at the time of application; (5) the patient meets the criteria for the diagnosis of type 2

diabetes mellitus: (a) fasting blood glucose level� 7 mmol/l, (b) a blood glucose level� 11.1

mmol/l for a two-hour glucose tolerance test with 75 g intake. The exclusion criteria of the

study were as follows: (1) the patient is receiving oral antidiabetic therapy on a regular basis or

has received the therapy during the last three years; (2) the patient is receiving insulin therapy

at the time of application; (3) the patient is pregnant. According to the observational study

design, the randomization procedure was not performed and metformin monotherapy (medi-

cation with metformin hydrochloride as the only active ingredient) was prescribed for each

study participant by an endocrinologist for at least three months regardless of the research

objectives. The drug manufacturer and dosage of metformin (varied from 850 mg to 2000 mg

per day) were chosen by endocrinologists based on clinical experience, patient’s health status,

and manifestations of the disease. Enrollment in the study did not affect the choice of treat-

ment strategy made by endocrinologists. Blood tests (e.g. measures of ALT, creatinine levels,

HbA1c) were performed in a certified clinical laboratory before the administration of metfor-

min and after metformin therapy for three months to evaluate general hematological and bio-

chemical parameters and eligibility of the subjects (Table 1). Blood samples for RNA-Seq were

collected at the same time points, hereinafter referred to as M0 (before administration of met-

formin) and M3m (after three months long metformin course). Considering the high inter-

Table 1. Characteristics of the study group.

Characteristic Value

Female/ male, n (%) 11 (64.7%) / 6 (35.3%)

Mean age (years) ± SD 61.12± 9.57

Mean BMI ± SD 34.94 ± 4.70

Mean ALAT ± SD, μkat/L 0.74 ± 0.51

Mean creatinine ± SD, μmol/l 63.25 ± 12.60

Mean triglycerides ± SD, mmol/l 2.51 ± 1.86

HbA1c level before the therapy ± SD, mmol/mol 60 ± 14

HbA1c level after 3 months of metformin therapy ± SD, mmol/mol 46 ± 6

BMI, body mass index; SD, standard deviation; ALAT, alanine aminotransferase; HbA1c, glycated hemoglobin.

https://doi.org/10.1371/journal.pone.0237400.t001
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individual variability expected in RNA-Seq data, longitudinally repeated measurements were

chosen as the most suitable approach for global gene expression analysis.

HbA1c measurements were made for all participants at two consecutive time points analo-

gous to the blood collection for RNA extraction (M0 and M3m). Study participants were fur-

ther stratified in two subgroups based on metformin response, which was defined according to

metformin-induced alterations in glycated hemoglobin (HbA1c) levels comparing measure-

ments made in the time points M0 and M3m: responders (delta HbA1c� 1% or 12.6 mmol/

mol), non-responders (delta HbA1c < 1% or 12.6 mmol/mol) [29].

Sample processing and RNA sequencing

For RNA isolation, 3 ml of whole blood were collected in Tempus™ Blood RNA Tubes

(Thermo Fisher Scientific, USA) and further processed using Tempus™ Spin RNA Isolation Kit

(Thermo Fisher Scientific, USA) according to manufacturer’s instructions. The quantity and

quality of extracted RNA and prepared libraries were determined by Qubit Fluorometer

(Thermo Fisher Scientific, USA) and Agilent 2100 Bioanalyzer systems (Agilent, USA), respec-

tively. The integrity of RNA was evaluated by RNA integrity number (RIN) within the Agilent

2100 Bioanalyzer system (Agilent, USA). For depletion of ribosomal RNA 500 ng of total RNA

from each sample were processed using Low Input RiboMinus™ Eukaryote System v2 (Thermo

Fisher Scientific, USA). Complementary DNA library preparation was performed with Ion

Total RNA-Seq Kit v2 (Thermo Fisher Scientific, USA). Ion Proton™ System (Post-Light™ Ion

Semiconductor Sequencing, Thermo Fisher Scientific, USA) and Ion PI™ Chip (Thermo Fisher

Scientific, USA) was used for 200-base-read single-end sequencing, following the manufactur-

er’s instructions. Since the shot-gun RNA-Seq is considered to be the most accurate and desir-

able method for the quantification of the individual transcript and gene expression, additional

methods for technical validation were not applied in this study [30].

Data analysis

Trimmomatic 0.36 was used for read trimming applying window size 5 and quality threshold

of 10. After trimming reads had to have a minimum length of 30 bp and an average quality of

10 to be included in subsequent analyses. Sequencing reads were mapped against human refer-

ence genome GRCh38 release 90 and per-gene read counts were calculated with STAR

(v.2.5.3a.). STAR (v.2.5.3a.) outputs read quantification per gene while performing read map-

ping. The reads were quantified if they match only one gene. The obtained read counts were

then normalized using trimmed mean normalization implemented in Bioconductor package

edgeR in R (v.3.5.3). Differentially expressed genes (DEGs) were estimated using the Likeli-

hood ratio test with added observation weights to reduce the influence of outliers, and sva

(Surrogate Variable Analysis) package in R (v.3.5.3) was used for removing batch effects [31].

In order to evaluate metformin-induced alterations in the transcriptome profile (comparison

of samples M3m vs M0), each sample was set as a factor considering longitudinal study design.

When comparing responders against non-responders in each time point separately, sequenc-

ing run and baseline (M0) HbA1c levels were considered as covariates. FilterByExpr function

was applied for gene filtering in edgeR, taking into account the sample library sizes [32]. Multi-

ple testing correction was implemented using the Benjamini-Hochberg procedure and differ-

ential expression of the genes was determined using a false discovery rate (FDR) < 0.05 cutoff,

regardless of the log2 fold change of expression for each gene [33]. In order to identify key

genes determining the metformin response, Partial least squares discriminant analysis

(PLS-DA) was performed implemented in the mixOmics package of R (v.3.5.3). CPM values

(obtained in edgeR and adjusted for the impact of sequencing run and baseline HbA1c levels)
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were used in PLS-DA. Key genes contributing to a separation of patients in both metformin

response groups were identified by using a cutoff of variable importance of projection (VIP)

score >1 obtained from PLS-DA [34]. Association between HbA1c levels and the log CPM

expression values of each mitochondrial gene was performed with multiple linear regression

using lm function in R (v.3.5.3). Sex and body mass index were included in the model to

account for their potential confounding.

Genes showing the p-value <0.05 for differential expression were further used in the func-

tional analysis. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways were adopted as the functional terms. GO enrichment analysis was per-

formed with R package Goseq (v.1.38.0), and KEGG pathway enrichment analysis was done

using an online software Database for Annotation, Visualization and Integrated Discovery

(DAVID) 6.8., the threshold value of enrichment was selected by a P-value <0.05 [35, 36].

Heat maps were constructed with Matplotlib and SciPy. Hierarchical clustering with aver-

age linkage method implemented in SciPy was used for the clustering of genes according to

their differences in CPM values [37, 38]. Statistical analysis of anthropometric measures and

biochemical data was performed in R (v3.5.3.) by applying the Wilcoxon rank-sum test and

Pearson’s chi-squared test with a p-value threshold < 0.05.

Results

Identification of metformin-induced differential expression of genes in

blood cells

We characterized the transcriptome profiles of whole-blood samples obtained from 17 drug-

naïve T2D patients (characteristics of patients provided in Table 1) before any antidiabetic

therapy (M0) and after three months of metformin monotherapy (M3m) by RNA-Seq tech-

nique to detect sustained transcriptional alterations in blood cells at the diabetic state due to

the administration of the drug. The median of read counts per sample produced by RNA

sequencing was 21.1 (IQR = 6.3) and 87.9% of the reads (median = 18.2; IQR = 5.1) were fur-

ther mapped to the human reference genome.

Differential expression analysis performed by comparing transcriptome profiles of blood

samples collected after metformin administration for three months against samples collected

before the use of any antidiabetic therapy (M3m vs M0) revealed 28 DEGs (FDR< 0.05) from

the pool of 9992 transcripts identified in total. Out of them, 20 genes were significantly down-

regulated and 8 genes showed significant up-regulation after administration of metformin (Fig

1, Table 2, S1 Fig).

Functional enrichment characteristic to metformin therapy

In order to describe the implementation of metformin-modulated transcriptome profiles in

cell signaling pathways and core biologic functions, the KEGG pathway and GO enrichment

analysis was performed. Over-representation of biological pathways (e.g. amino sugar and

nucleotide sugar metabolism, antigen processing and presentation) and GO Terms (e.g. helper

T cell chemotaxis and lipoprotein particle receptor activity) related to energy metabolism,

immune responses and lipid metabolism were observed, see S1 and S2 Tables for the complete

list of GO terms and enriched KEGG pathways.

Determining genes involved in differential metformin responsiveness

Considering the potential contribution of distinct molecular mechanisms mediating variable

metformin response, all participants were stratified in two efficacy groups, according to
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metformin-induced changes in their HbA1c levels (responders: delta HbA1c�1% or 12.6

mmol/mol; non-responders: delta HbA1c <1% or 12.6 mmol/mol) (Table 3).

Genes associated with variable metformin responsiveness were determined by differential

gene expression analysis comparing the number of RNA-Seq reads from responders against

non-responders in each time point of blood collection (M0 and M3m) separately. In total, 27

significant DEGs were identified contrasting responders against non-responders before the

administration of metformin (M0). We observed a notable portion of downregulated genes

coding for small nucleolar RNAs and upregulated insulin receptor substrate 2 (IRS2) gene in

responders, revealing distinctive features between response groups already before the use of

any antidiabetic therapy (Fig 2C), (Table 4).

PLS-DA was applied to understand whether patients could be clustered based on their gene

expression profiles before the administration of metformin. PLS-DA revealed pronounced dis-

crimination of samples, based on the obtained transcriptome profiles, explaining 13.9% of the

variance in total (11% of variance explained by latent variable 1 and 2.9% of variance explained

by latent variable 2) (Fig 3B). In total, 56 discriminatory genes showing the strongest separa-

tion of different metformin response groups were identified, based on variable importance for

projection (VIP>1) value in two latent variables (components), generated by PLS-DA (Fig

3A). See S5 Table for the full list and VIP values of discriminatory genes.

Comparison of gene expression profiles between metformin responders and non-respond-

ers after the use of metformin for three months (M3m) showed differential expression of 15

genes (12 up-regulated, 3 down-regulated), including 5 mitochondrial genes, which may be

associated with mechanisms underlying variable efficacy of the drug (Table 5) (Fig 2D).

Fig 1. Metformin-induced alterations of gene expression profiles. (A)—Heat map and hierarchical clustering of 28 DEGs identified. Each row

corresponds to one subject in the respective time-point and each column represents a DEG. Normalized sequence read counts were rescaled to lie in

the range [0,1] and further used to estimate the difference between the gene expression levels in two time-points. DEGs with analogous expression

values were clustered at the column level. (B)—Volcano plot showing the distribution of gene expression in the analyzed contrast. Significance versus

log2 fold change is plotted on the y and x axes, respectively, calculated using likelihood ratio test and edgeR. Red dots represent the significant DEGs

(FDR< 0.05), black dots–non-significant genes. M0 –time point of blood collection before administration of metformin; M3m –time point of blood

collection after metformin therapy for three months.

https://doi.org/10.1371/journal.pone.0237400.g001
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Table 2. List of differentially expressed genes due to administration of metformin, ranked by log2 fold change.

Gene symbol Full name log2FC FDR

ROBO1 Roundabout guidance receptor 1 -2.83 7.54E-04

ADGRB3 Adhesion G protein-coupled receptor B3 -2.2 2.67E-02

CABP4 Calcium binding protein 4 -1.85 6.08E-04

HMGB3P4 High mobility group box 3 pseudogene 4 -1.72 2.45E-02

NEURL1 Neuralized E3 Ubiquitin Protein Ligase 1 -0.46 2.26E-02

COX18 Cytochrome C Oxidase Assembly Factor -0.46 1.17E-02

NIBAN2 Niban apoptosis regulator 2 -0.33 1.64E-03

STAB1 Stabilin 1 -0.3 2.89E-04

CPVL Carboxypeptidase vitellogenic like -0.29 1.03E-03

TMEM176B Transmembrane protein 176B -0.29 5.72E-03

SLC24A4 Solute Carrier Family 24 Member 4 -0.26 1.64E-03

CYP1B1 Cytochrome P450 family 1 subfamily B member 1 -0.25 3.10E-02

LRP1 LDL receptor related protein 1 -0.23 8.23E-03

CCR2 C-C motif chemokine receptor 2 -0.23 1.11E-02

CD14 CD14 molecule -0.22 3.88E-02

VCAN Versican -0.21 2.45E-02

MS4A6A Membrane Spanning 4-Domains A6A -0.21 1.17E-02

CD163 CD163 molecule -0.21 3.15E-02

PLXNB2 Plexin B2 -0.19 2.57E-02

ADA2 Adenosine deaminase 2 -0.19 3.62E-02

CCAR2 Cell cycle and apoptosis regulator 2 0.19 2.95E-02

HBB† Hemoglobin subunit beta 0.28 4.77E-03

PDZK1IP1† PDZK1-interacting protein 1 0.33 2.89E-04

SNORA74B Small nucleolar RNA, H/ACA box 74B 0.37 2.61E-02

RN7SL679P† RNA, 7SL, cytoplasmic 679, pseudogene 0.48 8.77E-03

RN7SL200P RNA, 7SL, cytoplasmic 200, pseudogene 0.52 1.96E-02

AC099811.1 AC099811.2 (novel transcript, sense intronic to STAT5B) 0.74 1.17E-02

SLC46A1 Solute carrier family 46 member 1 1.14 2.57E-02

Log2FC, log2 fold change; FDR, false discovery rate.
†Genes showing significant differential expression due to the administration of metformin also in healthy individuals [27].

https://doi.org/10.1371/journal.pone.0237400.t002

Table 3. Characteristics of responders and non-responders.

Characteristic Responders (n = 10) Non-responders (n = 7) P-value

Female/ male, n (%) 6(60.00%)/4(40.00%) 5(71.43%)/2(28.57%) 1.00E+00

Mean age (years) ± SD† 61.14±11.35 61.10±8.77 8.84E-01

Mean BMI ± SD† 33.70±4.50 35.81±5.12 2.61E-01

Mean ALAT ± SD, μkat/L† 0.91±0.70 0.61±0.27 4.91E-01

Mean creatinine ± SD, μmol/l† 59.57±13.35 66.11±12.75 2.23E-01

Mean triglycerides ± SD, mmol/l† 3.65±2.57 1.75±0.67 8.78E-02

HbA1c level before the therapy ± SD, mmol/mol† 76±15 48±4 4.48E-03

HbA1c level after 3 months of metformin therapy ± SD, mmol/mol 48±7 45±4 5.57E-01

BMI—body mass index; SD—standard deviation; ALAT—alanine aminotransferase; HbA1c - glycated hemoglobin.
†Measured before the administration of metformin (M0).

https://doi.org/10.1371/journal.pone.0237400.t003
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Moreover, a multiple linear regression model revealed a significant association between the

expression of two out of five mitochondrial genes and HbA1c levels after metformin therapy

for three months (MT-ND4, p-value = 0.047; MT-ND4L, p-value = 0.032) (S7 Table).

Biological functions contributing to metformin responsiveness

GO analysis was performed for each list of DEGs (responders against non-responders at time

points M0 and M3m separately). RNA processing and negative regulation of fatty acid trans-

port was revealed among the enriched biological processes using DEG list obtained by com-

parison of responders against non-responders before administration of metformin (Fig 2A).

Fig 2. Differentially expressed genes and their representation in Gene Ontologies. Bar plots showing the top 5 enriched Gene Ontology terms in the comparison of

responders against non-responders before administration of metformin (A) and three months after metformin therapy (B). Volcano plot represents the distribution of

gene expression comparing responders against non-responders before administration of metformin (C) and three months after metformin therapy (D). Significance

versus log2 fold change is plotted on the y and x axes, respectively, calculated using likelihood ratio test and edgeR. Red dots represent the significant DEGs (FDR< 0.05),

black dots–non-significant genes. BP–biological process; CC–cellular component; MF–molecular function.

https://doi.org/10.1371/journal.pone.0237400.g002
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Contrasting responders against non-responders after three months of metformin use identi-

fied enrichment of GO terms strongly related to the mitochondrial activity (e.g. mitochondrial

respiratory chain complex I, ATP metabolic process) (Fig 2B). See S3 and S4 Tables for the full

list of enriched GO terms identified. Although KEGG pathway analysis of DEG list, obtained

from the baseline analysis (M0), did not reveal any significantly enriched cell signaling path-

way, comparison of responders against non-responders after three months of metformin use

showed differential expression of 5 mitochondrial genes (MT-ATP6, MT-ND2, MT-ND4,

MT-ND4L, MT-ND6). All of these genes provided a significant enrichment of the following

pathways: hsa00190: Oxidative phosphorylation (p-value = 4.47E-06), hsa05012: Parkinson’s

disease (p-value = 5.81E-06) and hsa01100: Metabolic pathways (p-value = 2.18E-02).

Discussion

The results of our study showed metformin-specific signatures in blood cell transcriptome

profiles associated with some of its well-known properties: the ability to improve energy

metabolism, influence immune responses, and inhibit cancer progression. This study has dem-

onstrated a gene expression-based molecular discrimination between metformin responders

Table 4. List of differentially expressed genes comparing responders against non-responders before administration of metformin.

Gene symbol Full name log2FC FDR

RNU5A-1 RNA, U5A small nuclear 1 -2.12 1.07E-02

SNORA20 Small nucleolar RNA, H/ACA box 20 -2.06 9.85E-04

SNORD82 Small nucleolar RNA, C/D box 82 -2.02 1.11E-03

SNORA5C Small nucleolar RNA, H/ACA box 5C -2.01 4.63E-04

SNORA28 Small nucleolar RNA, H/ACA box 28 -1.87 8.00E-06

RNU5B-1 RNA, U5B small nuclear 1 -1.84 8.63E-03

SNORD20 Small nucleolar RNA, C/D box 20 -1.8 4.58E-08

RNY4 RNA, Ro60-associated Y4 -1.73 1.44E-03

SNORD90 Small nucleolar RNA, C/D box 90 -1.67 8.00E-06

SNORA75 Small nucleolar RNA, H/ACA box 75 -1.57 8.63E-03

SNORA74B Small nucleolar RNA, H/ACA box 74B -1.38 2.80E-02

SNORD91A Small nucleolar RNA, C/D box 91A -1.35 1.98E-02

SNORA37 Small nucleolar RNA, H/ACA box 37 -1.24 2.39E-02

SNORA66 Small nucleolar RNA, H/ACA box 66 -1.2 7.00E-03

SNORA14B Small nucleolar RNA, H/ACA box 14B -1.13 9.45E-03

CLC Charcot-Leyden crystal galectin -1.07 1.49E-02

RALGPS2† Ral GEF with PH domain and SH3 binding motif 2 -0.75 4.74E-02

GPX4 Glutathione peroxidase 4 0.61 4.95E-02

PCMTD2 Protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2 0.68 4.23E-02

MARCH2 Membrane associated ring-CH-type finger 2 0.69 4.23E-02

CDYL Chromodomain Y like 0.87 1.19E-02

IRS2 Insulin receptor substrate 2 0.89 7.81E-03

SIRPG Signal regulatory protein gamma 1.16 2.13E-03

SLC6A9 Solute carrier family 6 member 9 1.34 4.83E-02

FMN1† Formin 1 1.66 4.74E-02

HEBP1† Heme binding protein 1 1.69 3.06E-03

CHI3L1 Chitinase 3 like 1 2.1 8.03E-13

Log2FC, log2 fold change; FDR, false discovery rate.
†Genes showing significant differential expression comparing responders against non-responders also after metformin therapy for 3 months.

https://doi.org/10.1371/journal.pone.0237400.t004
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and non-responders, and suggested that mitochondrial respiratory complex I may be associated

with metformin efficacy. To the best of our knowledge, this is the first longitudinal study focus-

ing on metformin-induced transcriptional alterations of drug-naïve T2DM patients in vivo.

Our study revealed metformin-induced differential expression of genes involved in choles-

terol homeostasis, such as solute carrier family 46 member 1 (SLC46A1), which is involved in

the intestinal folate absorption affecting plasma high-density lipoprotein levels [39], and lipo-

protein receptor-related protein 1 (LRP1), a crucial protein for cholesterol uptake. Metformin-

induced reduction of hepatic LRP1 expression level has been reported before [40], though here

we report a similar effect in blood cells for the first time. Metformin-induced differential

expression of both genes may serve as a contributing factor for the cholesterol-lowering effect

of the drug. In our data, the same mechanism was supported by the enrichment of lipoprotein

particle receptor activity among identified GO terms.

In addition, we found significant downregulation of multiple cancer-related genes coding

for cytochrome P450 1B1 (CYP1B1), C-C chemokine receptor type 2 (CCR2), stabilin-1

(STAB1) and transmembrane protein 176B (TMEM176B). Some of the observed alterations

have been previously identified in different tissue types, such as the downregulation of CCR2,

which has been explained by the ability of metformin to block M2-like polarization of tumor-

associated macrophages providing the anti-metastatic effect of the drug [41], or downregula-

tion of CYP1B1 in breast cancer cells where due to its crucial role in estrogen metabolism,

Fig 3. The partial least-square discriminant analysis of the RNA-Seq data obtained before the administration of metformin. (A) Heat map and hierarchical

clustering of 56 key genes contributing the most to the patient separation in metformin response groups, selected by VIP score threshold>1 from PLS-DA. Each row

corresponds to one subject (N: non-responder; R: responder) and each column represents a gene. Normalized sequence read counts were rescaled to lie in the range

[0,1], genes with analogous expression values were clustered at the column level. (B) PLS-DA plot of RNA-Seq data showing clear transcriptome-based discrimination of

patients with different metformin responses. Each point represents the transcriptome signature of one patient, the confidence level is set to 95% for ellipses. The

separation of samples in the PLS-DA model is based on latent variables (X-variate 1 on and X-variate 2 on x and y axes, respectively). T2DM patients with different

metformin responses are projected into distinct clusters indicating the difference in their transcriptome profiles.

https://doi.org/10.1371/journal.pone.0237400.g003
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metformin has been suggested as a potential chemopreventive agent against carcinogenesis

[42]. Multiple studies have reported that aberrant expression of STAB1 is related to the tumor

progression in various types of cancer, serving as a potential molecular target for cancer ther-

apy [43, 44]. Similarly, elevated protein levels of TMEM176B are detected in multiple malig-

nancies, moreover, inhibition of TMEM176B has already been proved to promote CD8+ T

cell-mediated tumor growth control, enhancing the therapeutic efficacy of cancers [45, 46].

Therefore, the observed downregulation of both, STAB1 and TMEM176B may highlight novel

players in the anti-cancer activity of metformin.

Finally, the enrichment of antigen processing and presentation pathway and significantly

reduced expression of genes coding for the cluster of differentiation 14 (CD14), which was

already proved to be differentially expressed in metformin-treated monocyte cells, and the

cluster of differentiation 163 (CD163) [47], a scavenger receptor which has been previously

associated with insulin resistance in patients with T2DM, altogether may explain well-known

participation of metformin in the inflammatory and immune responses [48].
According to our previous study, there are only three genes (HBB, PDZK1IP1, and

RN7SL679P) showing metformin-induced differential expression in blood cells obtained from

both, T2DM patients and healthy volunteers. Although both studies were longitudinal, the

duration of the therapy (7 days for healthy volunteers and 3 months for T2DM patients) and

the dose of metformin (850 mg twice a day for healthy volunteers and variable dose in the

T2DM patient group), differed between both studies, which may explain the observed variabil-

ity of metformin effects on the blood cell transcriptome profiles among both study groups.

Moreover, the general health status including the presence of T2DM may serve as the major

confounding factor to modulate the cell metabolism and effects of metformin in the patient

group compared to healthy individuals [49].

One of the main findings of our study was the clear, transcriptome-based discrimination of

study subjects into metformin responders and non-responders before the administration of

any anti-diabetic therapy. Differential expression analysis before the use of metformin revealed

significant upregulation of IRS2 gene coding for insulin receptor-2 (log2FC 0.89) in responders

Table 5. List of differentially expressed genes comparing responders against non-responders after metformin therapy for three months.

Gene symbol Full name log2FC FDR

S100P S100 calcium binding protein P -2.00 7.54E-03

FP671120.7 Novel transcript, similar to YY1 associated myogenesis RNA 1 YAM1 -1.53 3.77E-02

PAX5 Paired box 5 -1.21 3.45E-02

TNFRSF13C TNF receptor superfamily member 13C -1.20 4.01E-02

IGHM Immunoglobulin heavy constant mu -1.17 1.43E-03

MT-ND6 Mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 6 -1.10 3.45E-02

MT-ND4L Mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 4L -1.07 3.46E-02

MT-ATP6 Mitochondrially encoded ATP synthase membrane subunit 6 -1.02 3.07E-02

MT-ND4 Mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 4 -1.00 3.07E-02

MT-ND2 Mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 2 -1.00 6.27E-03

CD79A CD79a molecule -0.90 3.45E-02

RALGPS2† Ral GEF with PH domain and SH3 binding motif 2 -0.82 3.45E-02

WARS Tryptophanyl-trna synthetase 0.87 3.45E-02

HEBP1† Heme binding protein 1 1.42 4.23E-03

FMN1† Formin 1 1.83 7.12E-04

Log2FC, log2 fold change; FDR, false discovery rate.
†Genes showing significant differential expression comparing responders against non-responders also before administration of metformin.

https://doi.org/10.1371/journal.pone.0237400.t005
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compared to non-responders. So far, multiple studies have demonstrated the ability of metfor-

min to activate the hepatic insulin receptor and the IRS2/PI3K/Akt pathway resulting in

reduced insulin resistance and increased glucose uptake [50, 51]. The results of our study sug-

gest that the activity of IRS2 in blood cells prior to the administration of metformin may be

related to the efficacy of the therapy. Nevertheless, this hypothesis must be tested in a larger

longitudinal cohort.

PLS-DA analysis also provided strong evidence for transcriptome-based patient stratifica-

tion which was mainly explained by a single latent variable (component) and defined by

expression of 56 key genes (VIP>1). We found carcinoembryonic antigen-related cell adhe-

sion molecule 1 (CEACAM1), Insulin receptor substrate 1 (IRS1), ABCC2 gene coding for mul-

tidrug resistance protein 2 and IGHA1 gene coding for the constant segment of

immunoglobulin A heavy chain among the marker genes determining the distribution of

patients in metformin response groups. So far, there are no studies reporting the role of multi-

drug resistance protein 2 in metformin efficacy, nevertheless, its homolog mitochondrial mul-

tidrug resistance protein 1 has been already associated with resistance to metformin in human

malignant mesothelioma cells [52]. Interestingly, CEACAM1 is a mediator of insulin clearance

in the liver [53] and IRS1 is playing a key role in glucose homeostasis [54], though no reports

were linking their activity with metformin efficacy so far. In our previous studies, we have

already reported the contribution of IgA, the most abundant intestinal antibody shaping the

gut microbiome composition, in metformin action [27], and here we suggest a potential impli-

cation of IgA in microbiome-mediated metformin response [55]. Together these genes showed

notable patient segregation in metformin response groups also when visualized in CPM-based

heat map, therefore they may be considered as candidates for further studies of biomarkers for

metformin response.

The comparison of blood cell transcriptome profiles from responders with transcripts from

non-responders after the metformin therapy for three months revealed significant downregu-

lation of mitochondrial genes (MT-ATP6, MT-ND2, MT-ND4, MT-ND4L, MT-ND6). Further-

more, MT-ND4 and MT-ND4L also showed a positive association with HbA1c levels

according to the multiple regression model. Metformin directly acts on mitochondria and lim-

its respiration by inhibiting mitochondrial respiratory-chain complex 1 (NADH: ubiquinone

oxidoreductase), which is among the top targets of the drug, and it also catalyzes oxidative

phosphorylation in mammalian mitochondria [56, 57]. Thus, the observed downregulation of

genes coding for NADH: ubiquinone oxidoreductase core subunits in responders and enrich-

ment of oxidative phosphorylation seems rational. These data suggest altered mitochondrial

complex I activity as one of the mechanisms linked to the variability of metformin response.

There are a few limitations in this study that could be addressed by future research. First, a

small sample size due to the essential inclusion criterion of drug-naïve T2DM patients. Second,

prolonged observation time (three months) that provides an advantage to evaluate long-term

metformin effects, while causing an issue of possible accumulation of uncontrollable factors

affecting gene expression and masking the true effects of the drug. Third, the lack of control

arm allowing the elimination of these confounding factors. Nevertheless, we believe that

RNA-Seq, a highly sensitive and accurate method for gene expression, together with the

repeated measures within the longitudinal study design and strictly defined inclusion criteria

ensures the absence of potential influence of other anti-diabetic therapies and improves the

validity of our results.

In conclusion, the current study applying RNA-Seq for the discovery of transcriptional

effects of metformin in drug-naïve T2DM patients provided detailed insight into potential

molecular mechanisms underlying well-known beneficial effects of metformin. However,

since there are no data confirming the accumulation of metformin in other blood cells than
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erythrocytes [58], it seems reasonable to assume that the observed effects of metformin on

peripheral blood cells most likely are indirect and reflects the systemic consequence of the

therapy. Nevertheless, we suggest that blood-derived transcriptome profiles may be used for

evaluation of therapeutic efficacy and specific genes may be further applied in the development

of biomarkers for metformin response.
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