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A B S T R A C T

The rapid development of metal nanoparticles capped by an organic monolayer offers the possibility to
create a whole new variety of products with novel characteristic, functions and applications. Among
these, nanoparticles covered with carbohydrates (glyconanoparticles) constitute a good bio-mimetic
model of carbohydrate presentation at the cell surface and are currently centered on many
glycobiological and biomedical applications. In this study, a series of novel D-xylose gold nanoparticles
(AuNPs) with linkages of alkyl or polyethylene glycol have been synthesized via D-xylosethiols, forming
self-assembled monolayers on gold nanoparticles. The nano-gold solution, two carbohydrate derivatives
and modified nano-gold solution were tested for cytotoxicity to check the biocompatibility. The MTT
assay on NIH 3T3 cell lines confirmed that all the test materials showed no toxicity with the more than
90 % of cell viability in both low concentration (1 mM) and high concentration (100 mM), compared with
the control.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of nanomaterials is focused at the 1–100 nm scale,
involving material manufacturing technology and the properties of
new materials. Today, the nanomaterial technology field plays a
very important role. While the term nanomaterials came into
common usage in the 1980s, research into the development of
materials at the 1–100 nm scale had been underway considerably
earlier. Metal-based synthetic nanomaterials are nanosized metals
such as copper (Cu), iron (Fe), palladium (Pt), gold (Au), aluminium
(Al), zinc (Zn) and silver (Ag). Among the large number of metal-
based synthetic nanomaterials, gold is one of the primary supports
for the production of carbohydrate nanoparticles [1,2]. Gold is an
extremely inert and biocompatible material. At the nanoscale, gold
nanoparticles (AuNPs) have unique optical properties which are
useful in many diagnostic and affinity studies or protocols. In

addition, gold can be easily and covalently decorated on the surface
by utilizing the strong soft–soft interaction between Au atoms and
sulfur [3]. To date, various synthetic techniques to produce AuNPs,
including chemical, thermal, electrochemical and sonochemical
pathways, have been introduced [4–7]. In principle, there are two
approaches for the synthesis of AuNPs: the “bottom-up” approach
and the “top-down” approach [8]. The bottom-up approach
includes nanosphere lithography, templating, chemical, photo-
chemical, electrochemical, sonochemical, and thermal reduction
techniques [9–13]. However, just a few methods produce particles
of uniform size. The most common methods include reducing the
acidification of gold salts to produce gold particles of 12–20 nm in a
relatively narrow size distribution (standard deviation, �10 to
16 %) [14,15].

Brust et al. [16] applies borohydride reduction of gold salt in the
presence of an alkanethiol capping agent to produce 1 � 3 nm
particles. Seed growth techniques have been shown to be the
exception when it comes to controlling the size of nanoparticles
[17,18]. In this technique, the small metal nanoparticles are first
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Fig. 1. Thiol derivatives modified on the surface of gold nanoparticles.

Scheme 1. T3 compound synthesis process.

Scheme 2. C4 compound synthesis process.
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producing non-uniform particle sizes in stable colloidal systems
with the help of stabilizers [20]. To date, some compounds have
been used to modify AuNPs to improve their stability, dispersi-
bility, and biocompatibility such as surfactants, cyclodextrin, and
thiol compounds [21–25]. Among the above compounds, thiol
compounds can efficiently enhance the stability and dispersity of

colloidal AuNPs in aqueous solution. Gao et al. [26] indicated that
the thiol groups of these compounds can bind covalently to the
surface of AuNPs via a Au � S bond, which consist of glutathione,
mercaptopropionic acid, cysteine, cystamine, dihydrolipoic acid,
thiol-ending polyethylene glycol, some derivatives, etc. [27–37]
Many hydroxyl and carbonyl groups are involved in carbohydrates,
they provide a unique H-bonding capabilities of sugar coated
nanoparticle in formulating attractive nano construction abilities
of supramolecular architecture for establishing smart nanomate-
rials. Thiol tailored sugars is used as synthons for carbohydrate
functionalization of gold nanoparticles in present strategies
[38,39]. Roberts et al. [40] utilized reducing agent of sodium
borohydride for the synthesis and stabilization of β-D-glucose
capped AuNPs. Katti et al. [41] presented the production of AuNPs
via traditional sugar coated synthetic strategies which cannot
generate aspired results. They exhibited surface coating AuNPs of
sugars such as glucose (30 � 8 nm), sucrose (10 � 6 nm), maltose (8
� 2 nm), lactose (3 � 1 nm), raffinose (6 � 2 nm), and starch (39 � 9
nm) with a reducing agent of non-toxic water-soluble phosphino
aminoacid. Ribeiro et al. [42] utilized branched polyethyleneimine
via primary amine groups substituted by sugar moieties to exhibit
an apparent one-spot synthesis of polymer-stabilized �20 nm
AuNPs. Compared the stabilization of unmodified polymer chains,
the use of sugar substituted polymer chains produce gold
nanocolloids with decreased cytotoxicity and promoted cellular
uptake.

Studies for the immobilization of glucose oxidase onto gold
nanoparticles surfaces have recently been demonstrated with
enhanced activity [43] and binding affinity [44]. Not much effort

Fig. 2. Ultraviolet visible light absorption diagram of gold nanoparticles modified
with thorades molecules AuNPs-Cit, Surface modification of gold nanoparticles
on xylose-TEG-SH, Surface modification of gold nanoparticles on xylose-C6-SH.
Fig. 3. Surface modification of gold nanoparticles on xylose-TEG-SH (a) TEM and (b)Particle size distribution; Surface modification of gold nanoparticles on xylose-C6-SH (c)
TEM and (d) Particle size distribution.
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Fig. 4. TEM and particle size distribution of different Xylose-TEG-SH ratio modified to the surface of gold nanoparticles: (a) AuNPs-Cit, d = 5.0 � 0.8 nm; (b) 1:3000, d = 5.2 �
0.9 nm; (c) 1:7000, d = 5.0 � 0.8 nm; (d) 1:70000, d = 5.0 � 0.9 nm.
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has been made to covalently immobilize GOx on biocompatible
gold nanoparticles. In this study, we used the seeding growth
technique to synthesize AuNPs. The surface of these materials was
then decorated with thiolated xylose derivatives. The size of the
particles were examined using Correlation Spectroscopy (COSY)
and UV–vis spectroscopy. These characteristics are correlated with
particle size analysis obtained from transmission electron micros-
copy (TEM). We investigated the use of untreated AuNPs, and
AuNPs conjugated with the surface decorated with thiolated
xylose derivatives as to cytotoxic along with their mechanism of
action.

2. Materials and methods

2.1. Synthesis of sodium citrate stabilized gold nanoparticles

Sodium citrate stabilized gold nanoparticles (AuNPs-Cit) were
prepared using the seeding growth approach [18]. To prevent the
accumulation of gold nanoparticles, the coating agent must be
added to the reaction system (detailed experimental procedure is
discussed in Supplementary Information), in this case the cladding
used is tri-sodium citrate. 49.8 mL 2.5�10�4 M water solution of
tetrachloroquinic acid and 0.2 mL 2.5�10�4 M of sodium citrate
aqueous solution (the concentration of nano-gold core aqueous
solution is 0.01 wt %) were mixed and stirred evenly at room
temperature. Then 0.6 mL 0.1 M sodium borate solution was added
quickly while stirring, the solution changing from pale yellow to a

red color. After stirring for approximately 2 h, the solution is also
red to avoid light degradation at room temperature.

Firstly, an aqueous solution of tetrachloroquinic acid is
prepared and NaBH4 and sodium citrate are used as a reducing
agent and coating agent, respectively. As the preparation of gold
nanoparticles proceeds, the color of the reaction mixture will be
transformed from the original golden-yellow tetrachloroquinic
acid solution into a wine-red nanogold aqueous solution.

Nanogold aqueous solution added two thiol derivatives using
displacement reaction to replace sodium citrate of the gold
nanoparticle surface, acted as the cladding of the gold nano-
particles surface as shown in Fig. 1.

In the synthesis of thiol derivatives of the glycol chain, 1,2,3,4-
tetra-o-acetyl-D-xylopyranose is firstly synthesized. The product 1
can be obtained by using D-xylose and Acetic anhydride for the
amide reaction [45]. The product 1, triethylene glycol and boron
trifluoride diethyl etherate react to synthesize the product T1. Then
the product T1 reacted with Methanesulfonyl chloride to obtain
the first intermediate, followed by reaction with the Potassium
thioacetate to obtain the next intermediate, and finally the product
T3 can be obtained by sodium and methanol de-acetylation as
shown in Scheme 1 [38].

Alternatively, a long carbon chain thiol derivative was synthe-
sized and a bromine reaction of 1,6-hexanediol and HBr was
synthesized into 6-bromo-1-hexaneol (product C1). Product C1
and 6-bromo-1-hexaneol, with the addition of tin chloride, were
used to synthesize the product C2 at a temperature of 0�5℃
condition. Product C2 and potassium thioacetate were then
reacted to obtain product C3. Finally, C3 is reacted with NaOMe
to eliminate deacetyl synthesized 8-Mercaptohexyl D-xylopyrano-
side (product C4) as shown in Scheme 2 [46].

2.2. Cytotoxicity test

In vitro cytotoxicity was performed on NIH 3T3 (mouse
embryonic cells) cell lines using the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay. NIH 3T3 cells
were grown in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10 % fetal bovine serum (FBS). The cells were then
seeded into 96-well plates in 200 mL DMEM containing 10 % FBS at
plating density of 5000 cells/well and incubated at 37 �C, 5% CO2 for
24 h prior to addition of test materials. The test materials were
added in fresh medium. The fresh medium containing the test
materials at concentrations for 1mM or 100mM was added into the
cells and incubated at 37℃, 5% CO2 for an additional 24 h. After
treatment, 200 mL of MTT (1 mg/ mL) in FBS-free DMEM culture
media were added to each well and incubated at 37 �C for 4 h. After
removing the medium containing the MTT, the formed formazan
crystals were solubilized in 150 mL of dimethyl sulfoxide, and the
absorbance at 570 nm was measured using a microplate reader.

Fig. 5. Ultraviolet visible spectrographs of different Xylose-TEG-SH ratio modified
to the surface of gold nanoparticles AuNPs-Na3Ct、 AuNPs-SH-TEG-xylose
(1:3000).
AuNPs-SH-TEG-xylose (1:7000) AuNPs-SH-TEG-xylose (1:70000)

Table 1
Gold nanoparticles and gold nanoparticle modified carbohydrate derivatives.

Plasmon band max (l；nm) measd particle diam (nm)

AuNPs-Cit 506 5.0 � 0.8
AuNP-SH-TEG-xyolose
1:3000 510 5.2 � 0.9

1:7000 510 5.0 � 0.8
1:70000 511 5.0 � 0.9
AuNP-SH-C6-xyolose
1:3000 512 5.3 � 0.9
1:5000 512.5 5.0 � 0.8
1:7000 519.5 5.3 � 0.9
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he percentage of cell survival was determined using the following 3. Results and discussion

ig. 6. TEM and particle size distribution of different Xylose-C6-SH ratio modified to the surface of gold nanoparticles: (a) AuNPs-Cit, 5.0 � 0.8 nm 、(b) 1:3000, d = 5.3 � 0.9
m、(c) 1:5000, d = 5.0 � 0.8 nm、(d) 1:7000, d = 5.3 � 0.9 nm.
ormula:

% Cell Survival = Abs(test materials)/ Abs(control) � 100
where Abs means absorbance at 570 nm.
Experiments were carried out in triplicate and cells containing

o test materials served as the control.
6

3.1. UV–vis analysis and TEM images of thiol derivatives modified in
gold nanoparticles

Prepared surface-modified seamount molecules gold nano-
particles for ultraviolet light-visible spectrometer (UV–vis)



A. Shiue, J.-H. Chen, C.-Y. Chang et al. Biotechnology Reports 28 (2020) e00549
detection, confirmed the surface plasma resonance absorption
peak, observed the resonance absorption peak changes between
the unmodified gold nanoparticles, confirmed whether the
saccharides have been modified on the surface of the gold

nanoparticles, and explored the effects of adding different ratio
of the saccharides on the particles. Finally, the cytotoxicity test was
performed.

Fig. 2 shows the results of UV–vis analysis, AuNPs-Cit (6.47 �
10�8 M) has a maximum resonance absorption peak (lmax) at 506
nm. An absorption peak caused by limited surface plasma
resonance and resulting from the red color of the solution. When
xylose-C6-SH is added to nanogold solution, its color gradually
changes from red to purple. From the ultraviolet-visible spectrum,
it is known that the red shift of its absorption front position is
moved to 519.5 nm, and the absorption peak is wider, approving
the creation of gold nanoparticles, and the developing of the peak
could be associated to an indirect indication of the presence of thiol
on the surface of the gold nanoparticles. The reason for the feature
peak red shift is that xylose-C6-SH is modified on the surface of the
gold nanoparticles, and the hydrogen bonds of the thorium on the
surface of the gold nanoparticles cause the attraction between
particles, resulting in an aggregated phenomenon [47]. In addition,
the absorption peak also widens because xylose-C6-SH is modified
on the surface of the gold nanoparticles to make the particles
slightly larger [48]. When xylose-TEG-SH is added to nano-gold
solution, the color does not change, the red shift of the resonance
absorption peak moves to 510 nm, but the change of red shift
and peak widening is not as different as the long carbon chain.
The microstructural investigation of the xylose-TEG-SH and

Fig. 7. Ultraviolet visible spectrograph of different Xylose-C6-SH ratio modified to
the surface of gold nanoparticles.
AuNPs-Na3Ct、 AuNPs-SH-TEG-xylose (1:3000)
AuNPs-SH-TEG-xylose (1:5000)、 AuNPs-SH-TEG-xylose (1:7000)
Fig. 8. Cytotoxicity tests: NIH 3T3 cells were subjected to a MTT assay to test the toxicity of the materials, as described in the Materials and Methods. Control, no tested
material supplement. (a) survival rate of cells with treatment at concentration for 100 mM, (b) survival rate of cells with treatment at concentration for 1 mM, and (c) survival
rate of cells with treatment at concentration for 1, 50 and 100 mM.
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ylose-C6-SH attached gold nanoparticles was performed using the
ransmission electron microscopy (TEM) images to express the
ize, shape, and distribution/separation of the particles as shown in
ig. 3. Fig. 3a presents a bright-field electron micrograph of the
hiolated gold nanoparticles recorded at a magnification of 3000�,
nd it is expressed that the nearly spherical xylose-TEG-SH gold
anoparticles are distributed uniformly with a low tendency of
gglomeration among the particles [49]. The size of the spherical
hiolated gold particles is found to vary from 3 to 7 nm with an
verage size of about 5 nm as shown in Fig. 3b. The TEM
icrograph of the thiolated gold nanoparticles recorded at 3000�
agnification attached with a xylose-C6-SH is shown in Fig. 3c.
rom the micrographs, it is examined that the size of the particles
as increased, with a slightly higher tendency of agglomeration
49], which may be due to the presence of the xylose-C6-SH. The
ize of the particles varies from 3 to 7 nm with an average size of 5
m. The gold nanoparticles modified with xylose-TEG-SH which
ave a great distance between them and cannot produce
ggregation, because the tetra glycol is hydrophilic and highly
ispersed in water, and it cannot cause such a significant difference
n color and UV–vis as the gold nanoparticles that are modified
ith xylose-C6-SH.
To change the ratio of carbohydrate molecules available for

he modification of the gold nanoparticles in solution, the ratio
f xylose-TEG-SH addition was changed in the following
equence: 1:3000, 1:7000, 1:70000 (AuNPs: xylose-TEG-SH),
he TEM and particle size distribution are shown in Fig. 4. When
he ratio was changed, there was no difference in either
ispersion or particle size. Fig. 5 shows the results of UV–vis
nalysis, a modified nano-gold solution causes a red shift of 4�5
m surface plasma resonance absorption peaks, and when the
dded ratio increases (1:3000�1:70000), the resonance absorp-
ion peak is only slightly wider and more displaced. Kadir and
íctor [41] modified gold particles using polyoxyethylene (20)
orbitan monolaurate, causing only a red shift of 3 nm. Using 16-
ercaptoxdecanoic acid for the Modification of gold nano-
articles resulted in a red shift of 30 nm. Continuing two
ommon modifications to the surface of the gold particles will
ause a red shift of 4�5 nm, which the difference of red shift
henomena is generated by the dielectric constant of the
nvironment of the gold nanoparticles and the phenomenon of
he reunion between particles.

Then changed the adding xylose-C6-SH ratio in the order:
:3000, 1:5000, 1:7000 (AuNPs: xylose-C6-SH). The results of TEM
nd particle size distribution are shown in Fig. 6. It is observed that
here is a aggregated phenomenon between the modified gold
anoparticles in solution and the intensity of the color of the
olution increases toward to purple, the particle size distribution
id not discernably changed. Fig. 7 and Table 1 presents the results
f UV–vis analysis, showing that a modified gold nanoparticle
olution causes the red shift of the surface plasma resonance
bsorption peak and widen. While the added ratio increased
1:3000�1:7000), the peak would be more red and the peak would
e wider due to the effect of the aggregated phenomenon between
he gold nanoparticles and the influence of the surrounding
ielectric constant [47].

.2. Cytotoxicity test

The cytotoxicity test was performed to check the biocompati-

4. Conclusion

We successfully synthesized two thiol derivatives, the com-
pounds T3 and C4, using the end of the thiol base (-SH) to modify
the derivatives on the surface of gold nanoparticles. When the
saccharides are successfully modified on the surface of the gold
nanoparticles, they changed the surface plasma resonance and
ambient dielectric constant of the particles, resulting in absorption
peak displacement and wave width changes.

When the gold nanoparticles are modified with hydrophobic
long carbon chain of the carbohydrate molecules, the phenomenon
of particle aggregation occurs, resulting in the resonance absorp-
tion peak red shift and an increase in the width of the peak. When
the surface of the gold particles are modified with hydrophilic
glycol chains of the carbohydrate molecules, the particles will be
quite dispersed when in an aqueous solution. Under these
conditions there will be no aggregation between the particles,
so the change in resonance absorption peak position and wave
width is negligible. As the proportion of carbohydrate derivatives is
increased, the phenomenon of particle aggregation is further
reduced to a point where the resonance absorption peak and wave
width are unchanged.

The nano-gold solution, two carbohydrate derivatives and
modified nano-gold solution were tested for cytotoxicity to
check the biocompatibility. The MTT assay on NIH 3T3 cell lines
confirmed that all the test materials showed no toxicity with
the more than 90 % of cell viability in both low concentration
(1 mM) and high concentration (100 mM), compared with the
control.
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