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Variola virus F1L is a Bcl-2-like protein that unlike
its vaccinia virus counterpart inhibits apoptosis
independent of Bim

B Marshall1,2, H Puthalakath1,2, S Caria1,2, S Chugh1,2,5, M Doerflinger1,2, PM Colman3,4 and M Kvansakul*,1,2,3

Subversion of host cell apoptosis is an important survival strategy for viruses to ensure their own proliferation and survival.
Certain viruses express proteins homologous in sequence, structure and function to mammalian pro-survival B-cell lymphoma 2
(Bcl-2) proteins, which prevent rapid clearance of infected host cells. In vaccinia virus (VV), the virulence factor F1L was shown to
be a potent inhibitor of apoptosis that functions primarily be engaging pro-apoptotic Bim. Variola virus (VAR), the causative agent
of smallpox, harbors a homolog of F1L of unknown function. We show that VAR F1L is a potent inhibitor of apoptosis, and unlike all
other characterized anti-apoptotic Bcl-2 family members lacks affinity for the Bim Bcl-2 homology 3 (BH3) domain. Instead, VAR
F1L engages Bid BH3 as well as Bak and Bax BH3 domains. Unlike its VV homolog, variola F1L only protects against Bax-mediated
apoptosis in cellular assays. Crystal structures of variola F1L bound to Bid and Bak BH3 domains reveal that variola F1L forms a
domain-swapped Bcl-2 fold, which accommodates Bid and Bak BH3 in the canonical Bcl-2-binding groove, in a manner similar to
VV F1L. Despite the observed conservation of structure and sequence, variola F1L inhibits apoptosis using a startlingly different
mechanism compared with its VV counterpart. Our results suggest that unlike during VV infection, Bim neutralization may not be
required during VAR infection. As molecular determinants for the human-specific tropism of VAR remain essentially unknown,
identification of a different mechanism of action and utilization of host factors used by a VAR virulence factor compared with its VV
homolog suggest that studying VAR directly may be essential to understand its unique tropism.
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Variola virus (VAR), the causative agent of smallpox, is a
member of the poxvirus family and belongs to the orthopoxvir-
idae. Despite its successful eradication nearly 30 years ago,
VAR remains an ongoing concern because of its potential use
as a bioterrorism agent.1 The threat of intentional use of VAR
coupled with the absence of an FDA-approved drug for the
prevention or treatment of smallpox infection is cause for
considerable interest in the development of small-molecule
therapeutics against VAR. Current strategies for dealing with
smallpox are based on vaccination using live vaccinia virus
(VV),2,3 a closely related member of the orthopoxvirus genus,
which shares490% sequence identity with VAR. Vaccination
using live VV, however, can cause serious complications,4

underscoring the need for effective anti-viral treatments,
particularly since anti-viral treatment may be a more effica-
cious strategy compared with vaccination.5 Recent strategies
to target VAR for small-molecule therapeutics included the use
of polymerase inhibitors,6 notably Cidofovir, inhibitors of
extracellular virus formation7 and tyrosine kinase inhibitors
including Gleevec.8,9 Cidofovir is currently the only approved
antiviral drug for the treatment of orthopoxviruses, although it
is not approved for smallpox treatment. Other host–virus

interactions have been identified that may be suitable drug
targets10,11 but currently require further investigation.
Several poxvirus members other than VAR have been

shown to rely on virulence factors that prevent premature host
cell demise via programmed cell death or apoptosis,12–16 thus
ensuring survival and proliferation. The B-cell lymphoma 2
(Bcl-2) protein family is a key mediator for maintaining cell
survival or to drive apoptosis, thereby removing infected,
damaged or unwanted cells,17 and sequence, structural and
functional orthologs of Bcl-2 have been found in a number of
poxviruses.18 Certain viral Bcl-2-like proteins were only
identified as family members after their 3D structures were
determined, owing to their complete lack of sequence identity
to mammalian Bcl-2 proteins. This group of proteins include
the myxoma virus M11L12 and VV F1L15 and N1L.19 Myxoma
virus M11L was shown to adopt the classical Bcl-2 fold20,21

that utilizes the canonical Bcl-2 homology 3 (BH3)-binding
groove to engage BH3 ligands to exert its pro-survival effect.
VV F1L also adopts a Bcl-2 fold, but unlike M11L it exists as a
domain-swapped dimer,22,23 whereas N1L also adopted a
dimeric Bcl-2 fold but with a different dimeric arrangement.24,25

Although F1L from VAR has not previously been investi-
gated, the VV homolog is well characterized. VV F1L has been
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shown to inhibit the mitochondrial pathway of apoptosis by
replacing Mcl-126 and interacts with the isolated BH3 domains
of Bim, Bax and Bak,23 which are bound in the canonical Bcl-2-
binding groove.22 Furthermore, an F1L-deficient VV potently
causes Bak/Bax-mediated apoptosis.15,27 Functionally, VV
F1L appears to rely primarily on neutralization of Bim in the
context of a viral infection.22 Given the close similarity between
VAR and VV, VAR may also rely on inhibition of host cell
apoptosis for successful infection and proliferation. Disruption
of VAR ability to inhibit apoptosis thus may constitute an
attractive strategy for small-molecule-based intervention. To
investigate this possibility, we performed a biochemical,
structural and functional characterization of VAR F1L. Here
we report that despite possessing a nearly identical 3D
structure and sequence, VAR F1L inhibits apoptosis via a
different mechanism compared with its homolog in VV.

Results

Given the high sequence identity of VAR F1L with VV F1L
(Figure 1a) and the location of primary sequence variations (all
of which are away from the identified BH3-domain-binding
groove in VV F1L (Figure 1b and Supplementary Figure 1)),
we surmised that VAR F1L would display a ligand-binding
behavior similar to VV F1L. Using recombinant VAR F1L we
tested a panel of pro-apoptotic BH3-domain ligands using
isothermal calorimetry (Figure 1c). Previously, we showed that
VV F1L exhibited a highly selective BH3-domain ligand-
binding profile, with high affinity for pro-apoptotic Bim
(KD=200 nM), and considerably lower affinity for Bax and
Bak BH3 domains (KD of 2000 and 4300 nM, respectively).23

Similarly, VAR F1L bound Bax and Bak BH3 domains weakly
with KD values of 920 and 2640 nM, respectively. Unexpect-
edly, VAR F1L showed no detectable affinity for Bim BH3, and
only weakly bound Bid from the BH3-only proteins with a KD of
3220 nM. Considering the weak affinity of VAR F1L for Bax
and Bak BH3 ligands, we then investigated if VAR F1L is able
to engage and restrain full-length Bax and Bak. For this
purpose, we utilized a yeast-based assay in which we
expressed full-length Bak, Bax and VAR F1L. The assay is
based on the observation that Bax or Bak overexpression is
lethal in yeast, but can be repressed by co-expression of Bcl-2,
Bcl-xL, Mcl-1 or A1. Similar to endogenous mammalian

pro-survival Bcl-2, VAR F1L is able to prevent both Bak- and
Bax-induced yeast death (Supplementary Figure 2), indicating
that VAR F1L is able to directly engage both Bak and Bax. In
contrast, VV F1L has only been shown to bind Bak but not Bax
in yeast (Supplementary Figure 2), as previously observed in
mammalian cells.28

Structural basis for VAR F1L BH3 domain ligand binding.
To investigate the molecular basis for Bid, Bak and Bax BH3
domain binding by VAR F1L, we determined crystal
structures of VAR F1L in complex with Bak and Bid BH3
domain peptides (Figures 2a and d, Table 1). As observed
previously for VV F1L,22,23 VAR F1L adopts a Bcl-2-like fold
that forms a domain-swapped Bcl-2 with similar binding
grooves that engage BH3-domain ligands (Figures 2b and e).
Superimposition of bound Bak and Bid BH3 backbones
indicate that both ligands are bound in near identical manner
(Supplementary Figures 3a and b). In the VAR F1L:Bak BH3
complex (Figure 2c), residues V75, L78, I81, I85 protrude into
four pockets in the VAR F1L-binding groove, similar to the
equivalent hydrophobic residues in Bid (Figure 2f; I86, L90,
V93, M97).

Comparison of VAR_F1L:Bak BH3 with VV_F1L:Bak BH3
complex. Superimposition of VV F1L with VAR F1L from
their respective complexes with Bak BH3 yields a root-mean-
square deviation of 0.9 Å over 138 Cα atoms, with the only
notable differences in side chain orientations between VV
F1L and VAR F1L occurring at F135 (Supplementary Figure 4).
Overall, the VV F1L and VAR_F1L complexes with Bak
appear to be near identical.

VAR F1L only inhibits Bax but not Bak-mediated
apoptosis. To identify differences in anti-apoptotic activity
between VAR and VV F1L, we retrovirally transfected VAR F1L
into wild-type, Bax− /−, Bak− /− and Bax− /−/Bak− /− DKO cells
and treated them with thapsigargin to induced apoptosis via ER
stress. Unexpectedly, VAR F1L was unable to protect both wild-
type and Bax− /− mouse embryonic fibroblasts (MEFs),
whereas Bak− /− MEFs were efficiently protected from apopto-
sis (Figure 3a) in a manner similar to Bcl-2 (Figure 3b),
suggesting that VAR F1L exclusively inhibits Bax-mediated
apoptosis. Similar results were obtained after serum

Figure 1 (a) Sequence alignment of vaccinia virus (VV) with variola virus (VAR) F1L. Red denotes sequence differences in the Bcl-2 domain, H indicates helices.
(b) Sequence variations between VVand VAR F1L are mapped in red on a molecular surface of VV F1L (gray). (c) BH3-binding profile of VAR_F1L. KD values were determined by
isothermal calorimetry
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withdrawal, with VAR F1L maintaining viability of Bak− /− MEFs
but not wild-type and Bax− /− MEFs (Supplementary Figure 5).
Overall, the cellular assays mirror our peptide-binding data
obtained by ITC, where the lower affinity ligand Bak is not

inhibited in a cellular context. Considering the peptide-binding
data, we next investigated whether VAR F1L is able to protect
against Bim- and Bid-induced apoptosis. 293T cells were
transfected with either BimEL or Bid. VAR F1L protected against
both BimEL (P=0.006) or Bid-mediated apoptosis (P= 0.0027),
with comparable levels of protection observed with Bcl-2.

Discussion

Interactions between pro- and anti-apoptotic Bcl-2 family
members are critical for the regulation of apoptosis during
normal development aswell as during disease states including
viral infections or cancer.17 Compelling evidence points to a
critical role for viral Bcl-2 proteins during the viral life cycle,
particularly viral infectivity and proliferation.12,15,29 No anti-
apoptotic activity for VAR encoded proteins has been
demonstrated to date, although a number of proteins from
the closely related VV have been reported to manipulate host
cell death signaling.15,30 We have now shown biochemically
that VAR F1L is able to engage a limited number of pro-
apoptotic Bcl-2 proteins including Bid, Bak and Bax. This
binding profile is highly unusual, as all reported cellular or viral
anti-apoptotic Bcl-2 family members engage Bim,31 the sole
pan pro-survival antagonist of the Bcl-2 family,32 making VAR
F1L the first reported exception. This observation was
unexpected as VV F1L binds Bim BH3 in vitro and
in vivo.22,28 Furthermore, VV F1L prevents both Bak- and
Bax-mediated apoptosis in cell-based assays,26,28 whereas

Figure 2 Structures of VAR F1L:Bak and Bid BH3 complexes. (a) Cartoon diagram of F1L:Bak BH3 complex. F1L chains are shown as a cartoon (lime and salmon), with
helices α1-7 labeled. Two Bak BH3 chains are show in cyan and light blue. (b) Cartoon diagram of F1L:Bak BH3 complex. This view looks into the hydrophobic BH3-binding
grove, which is formed by helices α2–5. F1L helices α2–7 from monomer 1 (lime) are labeled, as is helix α1′ from monomer 2 (salmon). Bak BH3 is shown in cyan. (c) Cartoon
diagram of F1L:Bid BH3 complex. F1L (lime and salmon) in complex with Bid BH3 (wheat and lilac). The view is as in a. (d) Cartoon diagram of F1L:Bid BH3 complex. This view is
as in b. F1L helices α2–7 from monomer 1 (lime) are labeled, as is helix α1′ from monomer 2 (salmon). Bid BH3 is shown in wheat. (e) Stereo diagram of the F1L (lime):Bak
(cyan) complex interface. The F1L surface is shown in gray, except for magenta shading indicating the floor of the peptide-binding groove. F1L residues are labeled in lime, Bim
BH3 residues are labeled in cyan. (f) Stereo diagram of the F1L (lime):Bim (wheat) complex interface. View and labeling is as in c, except for labeling of Bid residues (in black)

Table 1 Crystallographic statistics

Crystal F1L: Bak F1L: Bid

Data collection and phasing
Spacegroup I2 F222
Resolution range (Å) 40 - 2.55 50 - 1.75
Unique reflections 45043 17113
Multiplicitya 4.1 (4.1) 13.3 (9.2)
Completeness (%)a 99.9 (100.0) 97.1 (80.4)
Rmerge

a,b 0.075 (0.656) 0.062 (0.459)
Mn I/σI 12.0 (2.2) 39.0 (4.1)

Refinement
Resolution range (Å) 39.7 - 2.55 40.5 - 1.75
Reflections (working set/test set) 41807/2127 15817/842
Protein atoms 7943 1351
Solvent atoms 98 H2O 91 H2O
Rcryst/Rfree

c 0.197/0.242 0.172/0.213
r.m.s.d. bonds (Å) 0.002 0.012
r.m.s.d. angles (º) 0.5 1.2
Ramachandran plot (%)d 95.1/4.9/0.0/0.0 98.0/2.0/0.0/0.0

aNumbers in parentheses refer to the highest resolution shells. bRmerge=
ΣhΣi | Ii(h) - oI(h)4 |/ΣhΣiIi(h), where Ii(h) is the ith measurement of reflection h
andoI(h)4 is the weighted mean of all measurements of h. cR= Σh|Fobs - Fcalc|/
ΣhFobs, where Fobs and Fcalc are the observed and calculated structure factor
amplitudes, respectively. Rcryst and Rfree were calculated using the working
and test set, respectively. dResidues in most favoured, additionally allowed,
generously allowed and disallowed regions
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VAR F1L was able to neutralize only Bax-mediated apoptosis.
Close examination of structures of VAR F1L complexes with
Bid and Bak and VV F1L complexes with Bim and Bak did not
reveal major differences in BH3 domain binding to the
canonical binding groove (Supplementary Figure 4) that can
explain the startlingly different ligand-binding behavior. The
loss of Bim binding for VAR F1L is particularly noteworthy as
VV-induced apoptosis is reduced in Bim-deficient cells,28

suggesting that Bim plays a substantial role during the cellular
response to VV infection. Whether or not Bim is important for
VAR infection has not been determined to date. In the case of
Epstein–Barr virus BHRF1-mediated inhibition of apoptosis,
Bim33 and Bak34 neutralization were shown to be critical,
whereas in the case of myxoma virus M11L,20 Bax and Bak
sequestration were identified as the primary mechanism of
inhibition. However, in both cases, the mechanism of
apoptosis inhibition was not defined in the context of a viral
infection. Nonetheless, despite the inability to directly engage
Bim, and the very modest affinity to Bid, VAR F1L is able to
counter both Bim- and Bid-mediated apoptosis.
In addition to raising intriguing questions about VAR biology,

this striking insensitivity of VAR F1L to Bim raises questions
about the regulation of Bcl-2-mediated apoptosis. Direct
activation of Bax and Bak via promiscuous or activator BH3-
only proteins has been shown to be an important route to
trigger apoptosis,35–38 however, VAR F1L appears to be
unlikely to act by BH3-only protein sequestration to prevent
Bax activation. Among the other alternatively proposed
mechanisms invoked to control apoptosis, VAR F1L’s ability
to inhibit apoptosis is most readily explained by an indirect
model based on sequestration of Bax and Bak,39,40 where Bax
and Bak are held in an inactive configuration by a pro-survival
Bcl-2 family member. This is supported by our observations
that VAR F1L is able to bind BH3 domain peptides from Bax
and Bak, albeit at modest affinity, as well as the prevention of
Bax- and Bak-induced growth arrest in yeast-based assays in
the absence of any other cellular apoptosis regulatory
proteins. Such a mechanism is also an integral part of the
currently favored unified model,41 where a balance between
direct activation and indirect activation ultimately yields control
of intrinsic apoptosis. The insensitivity of VAR F1L to Bim, and
indeed all tested BH3-only proteins, is striking in this context,

and may make VAR F1L a useful tool molecule to further
understand the interplay of the two main modes that underpin
the unified model of apoptosis regulation.
Targeting of the apoptotic machinery is currently an

intensely pursued strategy for the development of novel drugs
for cancer therapy.42,43 Similarly, VAR F1L may be a valid
target for development of antiviral therapeutics. Current
strategies for the development of antiviral therapeutics against
VAR have relied mostly on the use of homologous target
molecules from VV, monkeypox or ectromelia virus, with only a
small number of studies utilizing VAR-encoded proteins,44–46

and even fewer studies using their structures.47,48 Themarked
differences between VAR and VV F1L suggest that studies of
VAR proteins may provide unexpected avenues for therapeu-
tic intervention that may not be predicted based on available
data from the closely related and much better understood VV.
It also raises the question of how well current systems that
mimic VAR model the behavior of this intriguing virus. VAR
occupies a unique position as the sole human pathogen
among the orthopoxviruses. As molecular determinants for
this human-specific tropism remain essentially unknown,
identification of a different mechanism of action and utilization
of host factors used by a VAR virulence factor compared with
its VV homolog suggest that studying VAR directly may be
essential to understand its unique tropism.

Materials and Methods
All experiments were performed with WHO approval
Recombinant proteins and binding experiments: VAR_F1LΔN38ΔC36
was amplified by PCR from expression-optimized F1L cDNA (Blue Heron), cloned into
the pGEX-6P3 vector (Invitrogen, Melbourne, VIC, Australia) using BamHI and EcoRI,
and expressed in E. coli BL21 DE3 pLysS cells. Cells were homogenized using an
Avestin EmulsiFlex homogenizer in lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM
NaCl, 1 mM EDTA). After centrifugation, the supernatant was applied to a glutathione
sepharose column (GE Healthcare, Melbourne, VIC, Australia) and washed with lysis
buffer. On-column cleavage was performed using Prescission Protease (GE
Healthcare), and VAR F1L was eluted using lysis buffer. Subsequently, VAR F1L
was subjected to gel-filtration chromatography in 25 mM HEPES, pH 7.5, 150 mM
NaCl using a Superdex 200 column (GE Healthcare). Calorimetry data were collected
on a VP-ITC (MicroCal) with VAR_F1LΔN38ΔC36 as previously described.23

Peptides used have been described previously.34

Crystallization and structure determination: VAR F1L:Bak or VAR F1L:Bid
BH3 complexes were obtained by mixing VAR F1L with human Bak 26-mer or Bid

Figure 3 VAR F1L inhibits Bax- but not Bak-mediated apoptosis. (a) Viability of wild-type, Bax− /−, Bak− /− and Bax− /−/Bak− /− DKO cells. MEF cells stably overexpressing
VAR F1L or vector, treated with 1.5 μM thapsigargin and cultured for 24 h. (b) Viability of 293T cells transiently overexpressing either BimEL or Bid as well as F1L, Bcl-2 or vector
control. Error bars are ± S.E.M. with n= 3
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34-mer peptide in a 1:1.25 molar ratio and concentrated using a centricon (Millipore)
to 5 mg/ml.
VAR F1L:Bak BH3 crystals were grown by the sitting drop method at room

temperature in 1.7 M MgSO4, 0.1 M sodium acetate with pH 5.2.The crystals belong to
space group I121 with a= 124.774 Å, b= 68.762 Å, c= 171.598 Å, α= 90°,
β= 109.43°, γ= 90°. The asymmetric unit contains six VAR F1L chains and six
Bak BH3 peptides, with 49% solvent content. Diffraction data were collected from
crystals flash frozen in paratone at 100 K using beamline MX2 at the Australian
Synchrotron (Melbourne, VIC, Australia).
VAR F1L:Bid BH3 crystals were grown by the sitting drop method at room

temperature in 1.8 M sodium acetate and 0.1 M HEPES (pH 6.5). The crystals belong
to space group I121 with a= 124.774 Å, b= 68.762 Å, c= 171.598 Å, α= 90°,
β= 109.43°, γ= 90°. The asymmetric unit contains one VAR F1L chain and one Bid
BH3 peptides, with 49% solvent content. Diffraction data were collected from crystals
flash frozen in paratone at 100 K using beamline MX2 at the Australian Synchrotron.
Diffraction data were processed with XDS49 and programs of the CCP4 suite.50

The VAR F1L:Bak BH3 and VAR F1L:Bid BH3 structures were solved by molecular
replacement with PHASER51 using F1L from the VV F1L structure as a search model
(PDB 2VTY) and refined using Phenix.52 All data collection and refinement statistics
are summarized in Supplementary Table 1. Figures were prepared using PyMol.53

Software was in some instances accessed via SBGrid.54

Yeast colony assays
Saccharomyces cerevisiae. W303α cells were co-transformed with pGALL(TRP)
vector only, pGALL(TRP)-Bcl-xL, or pGALL(TRP)-VAR_F1L and pGALL(Leu)-Bak or
pGALL(Leu)-Bax. pGALL(TRP) and pGALL(Leu) places genes under the control of
a galactose inducible promoter. Cells were spotted as fivefold serial dilutions onto
medium containing 2% (w/v) galactose (inducing, ‘ON’), which induces protein
expression, or 2% (w/v) glucose (repressing, ‘OFF’), which prevents protein
expression, as previously described.55 Plates were incubated for 48 h at 30 °C and
then photographed.

Cell culture, transfection, lentiviral infection and cellular assays:
Human embryonic kidney 293T (ATCC CRL-3216) and MEFs (a gift from D Huang)
were cultured in Dubecco’s modified Eagle’s medium supplemented with 10% fetal
calf serum (Sigma) at 37 °C in a humidified 10% CO2 incubator. Both bak− /− and
bax− /− MEFs were generated from E15 embryos in accordance with standard
procedures and were infected with SV40 large T antigen-expressing lentiviruses as
described.39,40

To generate lentiviral particles, human embryonic kidney 293T cells were
transfected with packaging constructs pCMV ðR8.2 and VSVg and the relevant
lentiviral plasmid at a ratio of 1:0.4:0.6 using Fugene 6.0 transfection reagent (Roche
Lifesciences, Indianapolis, IN, USA) following the manufacturer’s instructions. The
virus containing supernatants were harvested, filtered (0.8 μm) and supplemented
with polybrene (4 mg/ml). Target cells were infected with virus supernatant as
described by Vince et al.56

MEF cells were seeded at ~ 10 000 cells per well and allowed to adhere for 24 h.
The cells were then treated with Thapsigargin (1.5 μM final, Calbiochem, San Diego,
CA, USA) or serum withdrawal for 24 and 48 h. To monitor cell death, cells were
stained with propidium iodide (1.25 μg/ml) and analyzed in a FACScan (Becton
Dickinson). Values presented are the means±S.D. (n= 3). Differences were
considered significant at Po0.05.
293T cells were seeded @150 000 cells per well in six-well plates in complete

Dubecco’s modified Eagle’s medium and incubated O/N @37 °C, 5% CO2. Next day,
the cells were transfected with 0.25 μg Bim, Bid or Bcl2 and 0.5 μg F1L or control
plasmid DNA per well using Xtreme Gene 9 transfection reagent (Roche
Lifesciences; Catalog number 06365787001). 24 h post transfection, cells were
harvested by trypsinization and PI uptake measured by flow cytometry. Error bars
presented are the standard error of the means (n= 3).
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