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Compared with the efficacy of traditional physical therapy, a new therapy utilizing motor imagery can induce brain plasticity and
allows partial recovery of motor ability in patients with hemiplegia after stroke. Here, we proposed an updated paradigm utilizing
motor coordination imagery involving the lower limbs (normal gait imagery and hemiplegic gait imagery after stroke) and
decoded such imagery via an electroencephalogram- (EEG-) based brain network. Thirty subjects were recruited to collect EEGs
during motor coordination imagery involving the lower limbs. Time-domain analysis, power spectrum analysis, time-frequency
analysis, brain network analysis, and statistical analysis were used to explore the neural mechanisms of motor coordination
imagery involving the lower limbs. Then, EEG-based brain network features were extracted, and a support vector machine was
used for decoding. The results showed that the two employed motor coordination imageries mainly activated sensorimotor areas;
the frequency band power was mainly concentrated within theta and alpha bands, and brain functional connections mainly
occurred in the right forehead. The combination of the network attributes of the EEG-based brain network and the spatial features
of the adjacency matrix had good separability for the two kinds of gait imagery (p < 0.05), and the average classification accuracy of
the combination feature was 92.96% + 7.54%. Taken together, our findings suggest that brain network features can be used to
identify normal gait imagery and hemiplegic gait imagery after stroke.

1. Introduction

Approximately 45% of poststroke hemiplegic patients de-
pend on wheelchairs to move [1-4]. Unfortunately, tradi-
tional physical therapy has only a limited effect on
rehabilitation of the lower limbs of poststroke hemiplegic
patients [5]. In contrast, motor imagery therapy can induce
plasticity in the brain [6-10], which can partially restore
lower limb movement in poststroke hemiplegic patients
[11-14]. At present, most motor imagery therapies have
focused on improving the performance of the upper limbs

[15, 16], whereas only a few studies have aimed at improving
performance of the lower limbs [17]. In addition, current
and past studies on motor coordination have mainly focused
on control of redundant degrees of freedom in motor co-
ordination [18-23], quantification of motor coordination
[24-29], external environments [30], and evaluation
methods of motor coordination [31-34]. However, few
studies have investigated the neural mechanisms of motor
coordination imagery, and there has not been much focus on
decoding motor coordination imagery involving the lower
limbs.
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For the decoding of motor coordination imagery, con-
ventional features have mainly adopted time-domain fea-
tures [35], frequency-domain features [36], time-frequency
features [37], spatial-domain features [38], and fusion of
time-frequency-spatial multidomain features [39]. These
traditional features mainly reflect the activation level of the
corresponding brain area. However, motor coordination
imagery of the lower limbs involves not only the activation of
related brain regions but also the coordinated control among
related brain regions [36]. Therefore, it is necessary to use
brain network features to more comprehensively analyze the
neural correlates of motor coordination imagery.

In the present study, we proposed a new paradigm
(normal gait imagery and hemiplegic gait imagery after
stroke) of motor coordination imagery involving the lower
limbs. In our paradigm, normal gait imagery is abbreviated
as motor coordination imagery (MCI), and poststroke
hemiplegic gait imagery is abbreviated as imaging excep-
tional gait (IEG). In addition to traditional time-domain
analysis, power spectrum analysis, and time-frequency
analysis, a method for brain network analysis was also used
to investigate the neural mechanisms and decoding of motor
coordination imagery involving the lower limbs.

The rest of the paper is organized as follows. Details of the
method are illuminated in Section 2 including experiments
configuration and data analysis. Section 3 displays the brain
topographic maps, functional brain networks during MCI, IEG,
and REST, and comparison results of the average classification
accuracy of MCI and IEG. In Section 4, a brief discussion of the
results is given. Finally, Section 5 concludes the paper.

2. Methods

2.1. Subjects. Previous studies have shown that brain activity
patterns evoked by motor imagery and actual exercise are
similar [33]. Hence, our present study used the Kinesthetic
and Visual Imagery Questionnaire (KVIQ) [38-50] to re-
cruit 30 healthy subjects (numbered s1-s30) with strong
motor imagery abilities (questionnaire score > 70 points) to
serve as participants for data collection. All recruited sub-
jects were male, right-handed, without psychological disease
and were 25+ 1 years old. This study was approved by the
Medical Ethics Committee of Kunming University of Sci-
ence and Technology. Each subject signed an informed
written consent before the start of the experiment.

2.2. Experimental Paradigm. Coordinated movement is a
type of exercise to restore and strengthen motor coordi-
nation. It usually involves the coordinated movement of
multiple joints and limbs. Specifically, it includes motor
coordination of the following: the upper and lower limbs, the
limb trunk, and both symmetrical coordination and
asymmetrical coordination of the left and right limbs.
Among these components, coordinated movement of the
upper limbs and hands can train the accuracies, reaction
speeds, and rhythms of actions, while coordinated move-
ment of the lower limbs can train correct gaits and motor
coordination of the upper and lower limbs. In order to
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establish a method for recovering motor abilities of post-
stroke hemiplegic patients, the present study focused on
motor coordination imagery of the lower limbs. We
designed MCI and IEG. The timing of each trial is shown in
Figure 1. The screen at the beginning of the experiment
showed a fixed cross for 5s, which prompted subjects to
prepare for the experiment. When the fixed cross dis-
appeared, the screen showed a prompt for normal gait
imagery for 2s, which prompted subjects to prepare for
normal gait imagery. Once the prompt disappeared, the
screen became blank and required the subjects to imagine a
normal gait for 3s. When the imagery period ended, the
screen showed a star prompt for 5s, indicating the subjects
to rest. After the star prompt disappeared, the screen showed
a prompt for poststroke hemiplegic gait imagery for 2s,
which prompted subjects to prepare for poststroke hemi-
plegic gait imagery. After the prompt disappeared, the screen
became blank and required subjects to imagine a poststroke
hemiplegic gait for 3 s. At the end of the imagery period, the
screen showed a star prompt for 5s, prompting the subjects
to rest. This entire sequence comprised one experimental
block, and each subject completed a total of 50 blocks.

2.3. Experimental Setup. During the experiment, subjects
were approximately 70 cm away from the prompt screen,
and their hands were placed on the desktop. A TCL 24-inch
LCD monitor was used for task prompts. A Lenovo
ThinkPad computer running Windows 10 was used for data
acquisition and processing via MATLAB software. The
electroencephalogram (EEG) amplifier consisted of an
NT9200 series (Beijing Zhongke Xintuo Instrument Co.,
Ltd.) with a sampling rate of 1000 Hz and 45 Hz low-pass
filtering. At the beginning of the experiment, each subject
completed the task according to the prompts in Figure 1.
During the experiment, the subjects were required to avoid
movements and blinking as much as possible during the
visual imagery task. Figure 2 shows the schematic diagram of
the electrode layout. The collected EEG data consisted of the
following channels: Fpl, Fp2, F7, F3, Fz, F4, F8, FT7, FC3,
FCz, FC4, FT8,T7,C3, Cz, C4, T8, TP7, TP8, CP3, CP4, CPz,
P7, P3, Pz, P4, P8, PO7, POS8, O1, 02, and Oz. The electrode
layout included spatial positioning over the frontal lobe,
parietal lobe, occipital lobe, and temporal lobe. The reference
electrodes are denoted as Al and A2.

2.4. Data Analysis

2.4.1. Data Preparation. Visual inspection was carried out on
the collected EEG data to remove any data segments with
substantial noise in the EEG signal. Then, the EEG data of the
30 subjects under different task conditions were extracted.

2.4.2. Pretreatment. First, baseline drift correction was
performed on the extracted EEG signals to eliminate de-
viations of the EEG signal from the baseline [51]. An elliptic
filter was used for 8-30 Hz band-pass filtering. Then, in-
dependent component analysis (ICA) was used to remove
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FiGure 1: The timing of a single trial.

FIGURE 2: Schematic diagram of the electrode layout.

electrooculogram artifacts and electromyographical arti-
facts. Additionally, alpha, beta, gamma, zeta, delta, and theta
bands were extracted.

2.4.3. Time-Domain Analysis. After preprocessing, the data
were divided into three categories: MCI, IEG, and process of
rest (REST). Then, these three categories of data were
stacked and averaged, and we compared the movement-
related cortical potentials (MRCPs) among them in the time
domain and compared the MRCP average across channels
and the grand average across subjects among these three
categories of data.

2.4.4. Analysis of Brain Topography. In order to determine
the activation location of the brain region under the three
tasks of MCI, IEG, and REST, the three categories of data
were preprocessed and then averaged, after which the brain
topographies during the three tasks were determined at 1,
100, 200, 300, 400, and 500 ms.

2.4.5. Power Spectrum Analysis. In order to analyze the EEG
power associated with the task and reduce the impact of
absolute power between subjects and electrodes, the absolute
powers, ABSP, of MCI and IEG were obtained by using the
power of MCI minus the power of REST, as well as by using
the power of IEG minus the power of REST. The quantitative
method for determining the power spectral density was via a
fast Fourier transform algorithm. ABSP was calculated as
follows [52]:

ABSPyc; = POWER;¢; — POWERgger,

(1)
ABSP 5, = POWER ;; — POWERgqr.

2.4.6. Brain Network Analysis. In order to determine the
connectivity of the brain function network under the three
tasks of MCI, IEG, and REST, a multivariable autoregressive
(MVAR) model was established to obtain a time-varying
direct directed transfer function (dDTF). Because dDTF can
eliminate the pseudocausal relationship derived from other
leads [53], dDTF was used as a measure of causality, and
Granger causality analysis was performed on the three types
of preprocessed data to generate a dDTF weight matrix. The
threshold value used in the present study was set to 0.2.
Then, we generated an adjacency matrix under the selected
threshold. Finally, we obtained the brain function network
under the three types of tasks.

Specifically, the original EEG data, X (t), of the N lead
can be expressed as follows:

X(t) = [X, (1), X, (8),..., Xy ()] (2)

Among them, X; (t) is the EEG time series of the ith lead.
MVAR can be constructed according to X (t) [54]:

p
X(t) =) AKX (t-k) +E (t). (3)

k=1

Among them, A (k) is a matrix of model coefficients of
N x N, which represents the dependence of the time delay,
k; p is the model order, and E(¢) is the random noise. Our
present study used the Bayesian information criterion to
determine the model order, p.

By Fourier transform of A (k), we obtain

P
A(f) == A(ke "k (4)
k=0

Furthermore, X(f) in the frequency domain can be
obtained as follows:

X(f) = A(f)"E (f) = H(f)E (f). (5)

Among them, H (f) is the transfer matrix of the system.
Furthermore, the dDTF can be obtained as [55]

Xy (f) = F,())C (). (6)

Among them, Fl-zj (f)is the full frequency DTF, and the
calculation method is as follows:

ey ([
S Sa [Hy (O

where C;;(f) is the partial coherence. The calculation
method is as follows:

(7)

Fi(f) =

M;;(f)

Coi(f) =i
i ML (HM, () ®



where M;; is a minor of spectral matrix (matrix of spectra
and cross-spectra) with the i-th row and j-th column
removed.

2.4.7. Measurement Analysis of the Brain Function Network.
In order to analyze the connectivity of the brain function
network in detail, four kinds of network measures (char-
acteristic path length, global efficiency, clustering coefficient,
and local efficiency) were selected for comparative analysis
of the three types of tasks. The characteristic path length, PL,
and global efficiency, E,;,, measure the global transmission
capability of the network as follows [56]:

PL = d., 9
N(N 1]6;#] v ( )

E ! > d
lob = 37/~ _ 1) 10
¥ ON(N-1) i,jEN,i# j K (10)

In equations (9) and (10), the distance between two
nodes, i and j, in the network is represented by d;;, which
represents the edge number information of the shortest path,
and N is the total number of nodes in the network. It can be
determined from formulas (9) and (10) that the calculation
method of global efficiency is similar to the characteristic
path length. The difference is that the global efficiency, Eyq,
does not need to consider the isolated points in the network,
which is suitable for a regular network, small world network,
or a random network.

The local efficiency E,,. measures the local transmission
capacity of the network. The local efficiency E, . of the
network is the average of the global efficiency of the sub-
graphs corresponding to all nodes in the network:

Eloc = Z Eglob (G ) (11)

IEN

In equation (11), G; represents the subnetwork formed
by all nodes directly connected with node i.

The cluster coefficient CL, measures the degree of
grouping of the network. The cluster coefficient CL, of a
network is the mean value of the cluster coefficient cI; of all
nodes in the network, where the cluster coefficient of node i
is defined as follows:

2e; ZJ m%ijAim jm

kil -1) ki(k—1)

(12)

In equation (12), }.; ;i@ is the number of edges
included in the subnetwork composed of node i and is
directly connected to nodes j and m. k;(k;—1) is the
maximum number of edges of the subnetwork, and k; is the
degree of node i. Therefore, the clustering coefficient CL,, of
a network is as follows:

1N
CL, =5 . ch,.. (13)

In equation (13), N represents the total number of nodes
in the network.
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2.5. Classification Verification. In order to verify the dif-
ference between normal motor coordination imagery in-
volving the lower limbs and that of poststroke hemiplegia
gait imagery, the time-domain MRCP feature, power
spectrum feature, time-frequency feature, network attribute
feature, combined features of network attributes, and the
adjacency matrix space were extracted. Since the SVM
classifier has a good classification effect on small sample data
[57], SVM was used for classification verification.

Specifically, the MRCP feature was used to extract the
peak and phase of the 32 electrodes and to form a 32-di-
mensional feature matrix. The feature of the power spectrum
was used to for the AR model to estimate the power
spectrum and to obtain a 32-dimensional feature matrix. The
time-frequency feature was to extract the time-frequency
energy of the 32-lead EEGs by HHT and to form a 32-di-
mensional feature matrix. The network attribute feature was
used to calculate the characteristic path length of the 32
electrodes to form a 32-dimensional characteristic matrix.
The spatial feature of the adjacency matrix was used to
extract the 16-dimensional feature matrix of the adjacency
matrix using a spatial filter.

2.6. Statistical Analysis. In order to test the significance of
the task differences, the characteristic path lengths of 15
channels for the three types of tasks were compared in pairs
by repeated-measures analysis of variance. The statistical
significance level was set as p <0.05.

3. Results

Figure 3(a) shows the average EEG waveforms across
channels and the grand average across subjects during MCI.
The colored line represents the average EEG data during
MCI across all subjects, and the black line represents the
grand average EEG data of MCI across the 32 channels. It
can be seen from Figure 3(a) that a negative ERP was
generated at about 200 ms. Figure 3(b) shows the average
and grand average waveforms during IEG for all subjects.
Figure 3(c) shows a comparison of the stack average of EEG
data after preprocessing under MCI, IEG, and REST tasks.
Figure 3(d) shows the phase difference of EEG data between
MCI and REST, IEG and REST, and MCI and IEG. The EEG
waveform trends of IEG and REST states were relatively
consistent, while the EEG waveform trends of MCI and
REST states were almost opposite to one another; addi-
tionally, the EEG waveform trends of MCI and IEG states
were also opposite to one another (Figure 3(d)).

Figure 4(a) shows the MRCP difference between the MCI
and IEG on the C3 and C4 channels, and Figure 4(b) shows the
MRCP phase difference between the MCI and IEG on the C3
and C4 channels. Figure 4 shows that, for the MCI MRCPs, the
waveforms of the C3 and C4 channels were similar, but there
was a significant difference at about 200ms. For the IEG
MRCPs, the waveforms of the C3 and C4 channels were nearly
opposite to one another, and the waveforms of the C3 channel
were half a cycle ahead of those of the C4 channel, while they
reached a consistency at about 200 ms.
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Figure 5 shows the brain topographic maps at 1, 100, 200,
300, 400, and 500 ms during MCI, IEG, and REST. At about
200 ms, during MCI, the brain topographic map was mainly
activated in the right brain sensorimotor area (C4 channel);
during IEG, the brain topographic map was mainly activated
in the left brain sensorimotor area (C3 channel) and the
parietal lobe (Pz channel), while during REST the brain
topographic map was mainly activated in the left and right
sensorimotor areas (C3 and C4).

In terms of timing, MCI first activated the right frontal
lobe (F4 channel), left sensorimotor area (C3 channel), and
parietal lobe (Pz channel) at 100 ms; the right sensorimotor
area (C4 channel) was activated at 200 ms, whereas the left
sensorimotor area (C3 channel) and parietal lobe (Pz
channel) were activated at 300 ms. The central frontal area
(FCz channel), central sensorimotor area (Cz channel), and
right parietal lobe (P4 channel) were activated at 400 ms; the
central areas of right frontal lobe (FC4 channel) and left
parietal lobe (P3 channel) were activated at 500 ms. IEG first
activated the left and right parietal central areas (CP3 and
CP4 channels) at 100 ms; the left sensorimotor area (C3
channel) and the parietal lobe (Pz channel) were activated at
200 ms; the frontal central area (FCz channel) was activated
at 300ms. The left frontal central areas (FC3 channel),
middle frontal lobe (FCz channel), and left parietal lobes (P3
channel) were activated at 400 ms; the left frontal lobe (F3
channel) was activated at 500 ms. REST first activated the
central area of the left and right parietal lobes (CP3 and CP4
channels) at 100 ms; the left and right sensorimotor regions
(C3 and C4) were activated at 200 ms. The left frontal lobes
(F3 channel), left sensorimotor region (C3 channel), and the
central area of the parietal lobes (Pz channel) were activated
at 400 ms.

Figure 6 shows the power spectrum during MCI, IEG,
and REST tasks, as well as the absolute power spectrum of
MCI and IEG. According to changes in the absolute power
spectrum of MCI and IEG in Figures 6(d) and 6(e), the
power distributions of MCI and IEG were in the 6 wave
(4-7Hz), a wave (8-13Hz), and 3 wave (14-16 Hz). The
frequency band corresponding to the absolute power
showed that the power related to MCI was mainly con-
centrated in the a wave, while the power related to IEG was
mainly concentrated in the 0 wave.

Figure 7 shows the brain function networks of MCI, IEG,
and REST at 1, 100, 200, and 300 ms. The main core nodes of
the brain network were F7, FT7, T8, CP3, Pz, and POS8 at
1 ms for MCI, and the network connection took place from
the left frontal lobe to the right occipital lobe (Figure 7). The
main core nodes of the brain network were FP1, Fz, Oz, and
PO8 at 100 ms, and the network connection took place from
the forehead to the occipital lobe. The main core nodes of the
brain network were F8, FT8, FCz, CP4, TP8, PO7, and Ol at
200 ms. The main core nodes of the brain network were FP2,
F3, FT7, T8, TP8, POS8, and Oz at 300 ms, and the network
connection occurred from the right forehead to the right
occipital lobe. At 1 ms, the main core nodes during IEG were
F7, FP2, F4, FCz, C4, P3, and O2, and the network con-
nection took place in the left and right hemispheres; at
100 ms, the main core nodes of the brain network were F7,
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Fz, P4, and PO8, and the network connection took place
from the left forehead to the right occipital lobe. At 200 ms,
the main core nodes of the brain network were F4, FCZ,
CP4, TP7, and Pz, and the network connection took place in
the right hemisphere; at 300 ms, the main core nodes of the
brain network were FCz, FT8, P7, Pz, and Ol, and the
network connection occurred from right forehead to left
occipital lobe. When REST was 1 ms, the main core nodes of
brain network were FP1, FP2, F7, FC3, T8, O1, and O2, and
the network connection took place in the left prefrontal lobe
and the right occipital lobe; when REST was 100 ms, the
main core nodes of the brain network were PO7, CPz, CP4,
P4, and TP8, and the network connection took place in the
left and right occipital lobes. At 200 ms during REST, the
main core nodes of the brain network were F7, T8, and O2,
and the network connection took place in the left prefrontal
lobe; when REST was 300 ms, the main core nodes of the
brain network were FP2, CPZ, and POS8, and the network
connection occurred from the right forehead to the occipital
lobe.

Figure 8 shows the comparison of brain network mea-
sures among MCI, IEG, and REST tasks. The four selected
brain network measures were as follows: characteristic path
length, global efficiency, clustering coeflicient, and local
efficiency. Among these four measures, the difference in the
characteristic path lengths was the largest across MCI, IEG,
and REST, while the other three measures exhibited only
small differences across groups (Figure 8). REST had the
largest characteristic path length, followed by MCI and fi-
nally IEG. The characteristic path length showed that the
speed of information transmission between nodes in IEG
was the fastest, followed by MCI and REST.

In order to statistically analyze differences among MCI,
IEG, and REST, the characteristic path lengths of the 15
channels during MCI, IEG, and REST were selected for
repeated-measures single-factor analysis of variance. Table 1
shows the statistical results, where significant differences are
marked in red. The difference in the characteristic path
length between MCI and REST was significant, and only the
02 channel of MCI was not significantly different between
MCI and REST (Table 1). There was no significant difference
between IEG and REST. Only the p values of P3, C3, CP4,
and Pz channel were small during IEG, and there was a
significant difference between MCI and IEG.

Figure 9 shows the average classification results obtained by
classifying MCI and IEG. The classifier adopted features of
MRCPs, time-frequency analysis (Time-freq), power spectrum
analysis (Power spec), network attribute analysis (Net-attr), a
combination of the network attribute features, and the spatial
features of the adjacency matrix (Net-attr + Adj-mat-space).
The average classification accuracies of MRCPs, time-fre-
quency analysis, power spectrum analysis, network attribute
analysis, a combination of the network attribute features, and
the spatial features of the adjacency matrix were
67.89% + 9.14%, 78.12% + 8.91%, 81.08% + 8.99%,
89.12% +9.92%, and 92.96% +7.54%, respectively. According
to the average classification results, the combination of the
network attribute feature and the spatial feature of the adja-
cency matrix had the highest classification accuracies.
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F1GURE 5: The brain topographic maps at 1, 100, 200, 300, 400, and 500 ms during MCIL, IEG, and REST. The left, middle, and right columns
show the brain topographic maps during MCI, IEG, and REST tasks, respectively. The brain topographic maps, from top to bottom, occurred
at 1, 100, 200, 300, 400, and 500 ms during the corresponding task.
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4. Discussion

Compared with the efficacy of traditional physical ther-
apy, motor imagery therapy can induce brain plasticity,
which can partially restore motor abilities of poststroke
hemiplegic patients. At present, motor imagery therapy is
mostly used for the recovery of upper-limb motor abilities
but rarely for the recovery of lower-limb motor abilities.
In addition, although there have been studies on the actual
motor coordination of the lower limbs, few studies have
investigated the neural mechanisms and decoding of
imagined motor coordination of the lower limbs.
Therefore, the focus of our present study was distinct from
that of traditional studies on motor coordination, such
that we focused on motor coordination imagery involving
the lower limbs.

First, our present study was different from the simple
motor imagery used traditionally for a unilateral limb, such
as studies that focused on the upper limbs [58-64], as well as
lower limbs [65-67]. Prior to our present study, no related
studies on EEG-based lower-limb motor coordination have
been published. In order to determine a rehabilitation
method for lower-limb motor coordination in poststroke
hemiplegic patients, we used a paradigm of motor

coordination imagery involving the lower limbs that con-
sisted of both normal gait imagery and poststroke hemi-
plegic gait imagery. Simple motor imagery of a unilateral
limb mainly activates the contralateral brain area [68], while
motor coordination imagery involving both lower limbs
involves coordination of the left and right lower limbs,
which requires the coordinated participation of relevant
brain regions on the left and right sides of the brain. This
kind of motor coordination imagery training may be ben-
eficial for inducing plasticity of brain network structure/
function or affected patients. In future research, we will
design and improve our experimental research paradigm for
poststroke hemiplegic patients with problems in motor
coordination of the lower limbs.

The EEG pattern induced by motor coordination im-
agery involving the lower limbs is closely related to the
performance of motor imagery psychological activities of
subjects [68]. In order to ensure the effective completion of
the motor coordination imagery involving the lower limbs
and the reliability of the corresponding data, before the
experiment, subjects were selected according to their scores
on a motor-vision imagery questionnaire; subjects with
scores higher than 70 were selected for participation in our
present study. After the experiment, for the designed
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FiGUre 7: Functional brain networks at 1, 100, 200, and 300 ms during MCI, IEG, and REST. The upper, middle, and lower rows show the
brain function networks during MCI, IEG, and REST, respectively. From left to right, the brain function networks occur at 1, 100, 200, and
300 ms during the corresponding task, respectively.
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FiGure 8: Comparison of network measures during MCI, IEG, and REST.

imagery task, each subject was required to fill in a ques-  completion of the experiments in our present study. The
tionnaire about the implementation of psychological ac-  subjects reported that they could complete MCI and IEG in a
tivities and the degree of difficulty of imagination during  controllable way, but that for MCI was easier to imagine
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TaBLE 1: Results of repeated-measures one-way analysis of variance of characteristic path lengths of the 15 channels during MCI, IEG, and

REST.
REST
p values
F3 F4 FC3 FC4 C3 Cz C4 CP3  CP4 P3 Pz P4 01 02 Oz
F3  0.000 0.000 0.001 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
F4  0.000 0.002 0.007 0.000 0.002 0.014 0.009 0.000 0.000 0.001 0.000 0.001 0.002 0.000 0.000
FC3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FC4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C3  0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cz  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MCI CP3 0.000 0.000 0.001 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CP4 0.000 0.003 0.007 0.000 0.003 0.012 0.009 0.000 0.000 0.001 0.000 0.001 0.002 0.000 0.000
P3  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pz 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
P4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
O1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
02 0.031 0160 0277 0.000 0.174 0.359 0.312 0.063 0.044 0.113 0.045 0.154 0.199 0.011 0.022
Oz 0.001 0.008 0.017 0.000 0.008 0.025 0.021 0.002 0.001 0.004 0.001 0.006 0.009 0.000 0.001
F3  0.000 0.005 0.012 0.000 0.005 0.019 0.016 0.001 0.000 0.002 0.000 0.002 0.005 0.000 0.000
F4 0.002 0.039 0.104 0.000 0.041 0.162 0.127 0.005 0.003 0.017 0.003 0.023 0.048 0.001 0.003
FC3 0.050 0.483 0949 0.000 0.527 0.796 0936 0.133 0.079 0.315 0.082 0.488 0.686 0.018 0.039
FC4 0.034 0.226 0422 0.000 0.244 0549 0478 0.074 0.048 0.148 0.051 0.213 0.299 0.014 0.025
C3  0.000 0.003 0.009 0.000 0.003 0.017 0.012 0.000 0.000 0.001 0.000 0.001 0.003 0.000 0.000
Cz 0118 0.852 0.588 0.000 0.925 0.365 0.480 0.310 0.184 0.621 0.195 0.933 0.827 0.040 0.080
C4 0.042 0426 0.861 0.000 0465 0.887 0.973 0.111 0.065 0270 0.067 0.419 0.604 0.016 0.033
IEG CP3 0.021 0.214 0454 0.000 0.232 0.622 0.531 0.048 0.031 0.121 0.033 0.181 0.291 0.009 0.017
CP4 0.000 0.005 0.014 0.000 0.005 0.023 0.019 0.001 0.000 0.002 0.000 0.002 0.006 0.000 0.000
P3  0.049 0372 0.702 0.000 0.404 0.897 0.787 0.116 0.073 0.244 0.077 0.363 0.507 0.019 0.037
Pz  0.000 0.006 0.017 0.000 0.007 0.029 0.023 0.001 0.000 0.002 0.000 0.003 0.007 0.000 0.000
P4 0.019 0257 0595 0.000 0.285 0.833 0.699 0.046 0.030 0.134 0.031 0.213 0.363 0.008 0.017
O1 0.074 0.644 0.821 0.000 0.703 0.568 0.701 0.198 0.117 0.440 0.122 0.679 0911 0.026 0.054
02 0.028 0.156 0273 0.000 0.166 0.348 0.309 0.059 0.040 0.108 0.042 0.148 0.199 0.011 0.019
Oz 0.022 0.147 0.275 0.000 0.159 0.356 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.01
Average classification accuracy of extracted different features In terms of analysis content, previous studies have
100 F — mainly focused on the control of redundant degrees of
o5 L + . freedom, quantification of motor coordination, external
S e 9296 environments, and evaluation of motor coordination, while
0 5012 T our present study focused on the neural mechanisms and
5 o | o - . | decoding of motor coordination imagery involving the lower
g i e limb. In the EEG analysis method, in addition to traditional
2 80} : se.1p =1 3108 1 sensorimotor rhythm analysis [58-67], we also used MRCPs
£ | and brain networks to study motor coordination imagery
s o - il involving the lower limbs. Previous studies have shown that
&l = i MRCPs can represent neural activities related to planning
z El 67.89 before each exercise, the execution of each exercise, and the
65 | . end of each exercise [64]. Previous studies have also shown
o L that features of brain networks can represent the coordi-

MRCPs Time-freq Power spect Netwattri Net-attr+Adj

-mat-space
Different features
F1Gure 9: Comparison of the average classification results of MCI and
IEG classified by MRCPs, time-frequency analysis, power spectrum
analysis, network attribute analysis, a combination of the network
attribute features, and the spatial features of the adjacency matrix.

compared to that for [EG. In future research, we intend to
use online neurofeedback to further improve subjects’ motor
coordination imagery performance of the lower limbs.

nation among brain regions during activities such as sen-
sation, perception, representation, and cognition [53]. The
motor coordination imagery in our present study involved
planning, execution, and termination of motor imagery, as
well as coordination between brain regions.

In the time domain, the EEG patterns of IEG and REST
were more consistent, while the EEG patterns of MCI and
REST were almost opposite to one another, and the EEG
patterns of MCI and IEG were also nearly opposite to one
another. These findings may be due to the fact that the
subjects were more familiar with resting states and walking
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states but were not as familiar with poststroke hemiplegic
gaits. Unusual imagery can trigger different EEG patterns
[36]. In our present study, the MRCPs of MCI and IEG were
significantly different in terms of their EEG signals in the C3
and C4 channels. The EEG waveforms of MCI in the C3 and
C4 channels were similar, but there was a significant dif-
ference at about 200 ms. The EEG waveforms of IEG in the
C3 and C4 channels were nearly opposite to one another.
The waveform of the C3 channel was a half cycle ahead of the
waveform of the C4 channel, whereas they reached a con-
sistent value at about 200 ms. This result may be due to MCI
mainly involving bilateral lower limbs, while IEG mainly
involves unilateral lower limbs. MRCPs will trigger ERP
waveforms around 200 ms [35], so the ERP waveform is
formed in the contralateral brain.

As demonstrated by brain topography, motor coordination
imagery involving the lower limbs is mainly activated in
sensorimotor areas, which is due to motor coordination im-
agery of the lower limbs representing a form of motor imagery,
the latter of which has been shown to activate sensorimotor
areas [10]. In addition to activating sensorimotor areas, the
visual area located in the occipital lobe also has corresponding
activation, which may be because the cues provided to the
subjects are processed through the visual pathway before being
transmitted to the sensorimotor area [68].

In the present study, power spectrum analysis showed
that the power distribution related to MCI was distributed in
o waves, while the power related to IEG was distributed in 0
waves. Simultaneously, the absolute power of the IEG was
much higher than the absolute power of the MCI. This result
may be due to MCI being easier to complete than IEG,
resulting in MCI inducing lower energy.

Under the condition of motor coordination or imagery,
external stimulation acts on sensory organs and causes nerve
excitation. The activation of brain-related areas and the
coordinated control between brain areas transmit such nerve
excitation to synergetic and antagonistic muscles, such that
each muscle’s activation is timed appropriately and ensures
smooth completion of motor actions. Not only the activation
of brain area but also the features of the brain network to
represent the coordinated motion or imagination need to be
calculated. In the present study, brain network analysis
showed that brain functional connections during MCI, IEG,
and REST mainly occurred in the right forehead, which may
have been due to these psychological activities being related
to the subconscious since human subconscious behavior is
mainly related to the right forehead network [37, 53, 65, 69].
Our present brain network analysis also showed that the
characteristic path length was a good distinguishing feature
for MCI and IEG and that the other three measures were not.
In addition, because the characteristic path length and the
global efficiency determined the efficiency of the entire
information transmission of the network [53], the charac-
teristic path length and the global efficiency of the three types
of tasks were quite different. IEG had the smallest charac-
teristic path length and the highest global efficiency, so its
network-information transfer rate was the fastest, followed
by MCI; the slowest was REST, which may have been due to
IEG needing to recruit more neural resources.
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In the present study, the features of MRCPs, time-fre-
quency analysis, power spectrum analysis, network attribute
analysis, a combination of the network attribute features,
and the spatial features of the adjacency matrix in MCI and
IEG were classified by SVM, and the average classification
accuracies were 67.89 +9.14%, 78.12 + 8.91%, 81.08 + 8.99%,
89.12+9.92%, and 92.96 +7.54%, respectively. The results
showed that the average classification accuracy of the
combination of the network attribute features and the spatial
features of the adjacency matrix was 92.96%, confirming that
these were the two best classification features. This result
may be due to features representing collaborative infor-
mation among related brain regions; also, the feature di-
mensionality was high, so the relevant features were
extracted and retained comprehensively.

Statistical analysis showed that there was a significant
difference in the characteristic path lengths between MCI
and REST, for which only the O2 channel was not statis-
tically significant. There was no significant difference be-
tween the characteristic path lengths between IEG and
REST, whereas the p values of P3, C3, CP4, and Pz channels
of IEG were small, but the difference between MCI and IEG
was significant. This result may be due to the fact that
imagining MCI and REST is a relatively easy psychological
activity, while imagining IEG is a relatively difficult psy-
chological activity.

In Figure 5, there are some transition areas which are not
clear by uncertainty. This is often more frequent in reality
than one might think. We may segment each image obtained
in order to delimit each activated area using a fuzzy pro-
cedure [70, 71].

5. Conclusion

In order to determine a rehabilitation method for lower-
limb motor coordination in poststroke hemiplegic patients,
a novel paradigm using lower-limb motor coordination
imagery (normal gait imagery and poststroke hemiplegic
gait imagery) was employed in the present study. Time-
domain analysis, power spectrum analysis, time-frequency
analysis, brain network analysis, and statistical analysis were
used to investigate the neural mechanisms and decoding
methods of motor coordination imaging of the lower limbs.
The results showed that motor coordination imagery in-
volving the lower limbs was mainly activated in sensori-
motor areas and that the brain functional connection mainly
occurred in the right forehead. The results also showed that
the average classification accuracies of the combination
feature of the network attributes and the spatial features of
the adjacency matrix were 92.96% for normal gait imagery
and poststroke hemiplegic gait imagery. Taken together, our
findings may provide ideas for the rehabilitation of move-
ment in poststroke hemiplegic patients based on motor
coordination imagery involving the lower-limb brain-
computer interface (BCI). Finally, our future directions are
as follows: (1) EEG combined with fMRI to study the neural
mechanisms of motor coordination imagery involving the
lower limbs and (2) online verification of motor coordi-
nation imagery via BCL
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