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SUMMARY 
To enhance phenotype recognition in clinical notes of genetic diseases, we developed two 
models - PhenoBCBERT and PhenoGPT - for expanding the vocabularies of Human Phenotype 
Ontology (HPO) terms. While HPO offers a standardized vocabulary for phenotypes, existing 
tools often fail to capture the full scope of phenotypes, due to limitations from traditional 
heuristic or rule-based approaches. Our models leverage large language models (LLMs) to 
automate the detection of phenotype terms, including those not in the current HPO. We 
compared these models to PhenoTagger, another HPO recognition tool, and found that our 
models identify a wider range of phenotype concepts, including previously uncharacterized 
ones. Our models also showed strong performance in case studies on biomedical literature. We 
evaluated the strengths and weaknesses of BERT-based and GPT-based models in aspects 
such as architecture and accuracy. Overall, our models enhance automated phenotype 
detection from clinical texts, improving downstream analyses on human diseases. 
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INTRODUCTION 
Rare diseases affect 30 million people in the USA and more than 300–400 million worldwide, 
often causing chronic illness, disability, and premature death 1-3. Phenotype-driven approaches 
are increasingly used to facilitate the genetic diagnosis of rare diseases 1,4,5. For example, a 
number of computational methods have been developed to facilitate phenotype-based 
prioritization of disease variants and genes 6-12, and some methods also enable the prediction of 
Mendelian diseases directly from phenotype information 13-15. To facilitate computational 
phenotype analysis, the Human Phenotype Ontology (HPO) was established, which provides a 
standardized vocabulary to describe phenotypic abnormalities in human diseases 16. The 
current release of HPO (June 2022) covers 13,000 terms and over 156,000 annotations on 
hereditary diseases. However, the curation of the HPO largely relies on experts’ input, which 
may not be comprehensive enough to capture all the clinical terms, such as the age-specific 
neurodevelopmental and neuropsychiatric phenotypes. For instance, our previous study on 
children with autism spectrum disorders (ASD) 17 developed a natural language processing 
(NLP) pipeline and identified more ASD terms than those documented in the HPO (i.e., 3,000 
terms linked to ~2,000 unique Unified Medical Language System (UMLS) concepts), 
representing one of the largest ASD terminology available to date. This is an illustration that 
NLP techniques can facilitate human reviewers in building catalogs of phenotype terms that are 
not previously documented for specific diseases. Therefore, there is a strong need to develop 
more efficient NLP methods to extract novel phenotypic concepts that may not be well covered 
in HPO. 
 
Automated phenotype concept recognition from unstructured biomedical text is a type of named 
entity recognition (NER) task and remains a challenging problem in the biomedical NLP field. As 
shown in Table 1, we summarized three major types of methods to tackle this problem: (1) rule-
based (string matching, dictionary-based, statistical model, etc.) algorithms, (2) machine 
learning algorithms, including recently developed deep learning methods, and (3) hybrid models 
combining both approaches. The first generation of tools for clinical concept recognition were 
either dictionary-based or rule-based approaches, such as MetaMap 18, NCBO annotator 19, 
ClinPhen 20, and the Aho-Corasick algorithm used in Doc2HPO 21. MetaMap is a program 
developed at the National Library of Medicine (NLM) to map biomedical texts to the 
Metathesaurus based on a knowledge intensive approach. NCBO Annotator first creates direct 
annotations from raw text based on syntactic concept recognition according to a dictionary that 
uses terms (concept names and synonyms) from both UMLS and NCBO BioPortal ontologies, 
and then different components expand the first set of annotations using the knowledge 
represented in one or more ontologies. ClinPhen uses sequential analytic procedures with a 
rule-based NLP system to decide which phenotypes correspond to true mentions and which are 
false positives. CLAMP (Clinical Language Annotation, Modeling, and Processing) is a clinical 
NLP toolkit that provides not only state-of-the-art NLP components, but also a user-friendly 
graphic user interface that can help users quickly build customized NLP pipelines including 
phenotype recognition tasks 22. In recent years, researchers began to adopt machine-learning 
models, including deep-learning models, due to their high accuracy and independence of hand-
crafted features 23. Machine learning based approaches, such as conditional random field (CRF) 
24 and support vector machine (SVM) 25, were developed to advance the novel concept 
discovery; but more recently, convolutional neural network (CNN), recurrent neural networks 
(RNN) 26, and transformer are increasingly used. For example, the neural concept recognizer 
(NCR) uses the CNN to encode input phrases and then rank medical concepts based on the 
similarity in that vector space 27. Transformer allows for parallelization and makes it possible to 
train on a much larger corpus and recognizes the long-range relationship in a sentence via its 



attention mechanism 28. Transformer-based models are particularly useful for phenotype 
recognition since the contextual information can be very useful in determining whether a set of 
phrases represents a description of a particular phenotype. Pre-trained language model BERT 
(Bidirectional Encoder Representations from Transformers) 29 is the most well-known 
transformer-based model, using general corpora as the training set. The BERTBASE model has 
12 encoders with 12 bidirectional self-attention heads, and the BERTLARGE model has 24 
encoders with 16 bidirectional self-attention heads. Both models are pre-trained from unlabeled 
data extracted from the BooksCorpus with 800M words and English Wikipedia with 2,500M 
words.  
 
Several studies have explored the utility of BERT-based approaches in the clinical and 
biomedical domains for the concept recognition task. In the biomedical domain, BioBERT 30 
continued to train a model on ~18 billion words from PubMed research papers using BERT pre-
trained model as the base model. BioBERT outperforms BERT in a variety of biomedical text 
mining tasks, which suggests that continued training on domain specific corpora improves the 
performance. To make the BERT model more useful in the clinical field, ClinicalBERT 31 
(updated now as Bio+Clinical BERT on Huggingface model cards) started from BioBERT’s pre-
trained model and continued to train on 3 million notes from the MIMIC III corpora 32. Similarly, 
BERN 33 used BioBERT as the backbone model to recognize known, novel, and multiple types 
of biomedical entities, such as gene, disease, drugs; later, the same team developed an 
improved version BERN2 34 for NER using bio-lm pre-trained model. Note that these two 
methods focused on fine-tuning the BERT-based pre-train model for the discovery of multiple 
types of biomedical entities. PhenoBERT is a combined deep learning method for automated 
recognition of HPO; it introduces a two-levels CNN module consisting of a series of CNN 
models organized in two levels 35. Furthermore, PhenoTagger was developed for HPO 
recognition using both dictionary-based and BERT-based model 36, and is currently one of the 
most reliable methods for automated HPO extraction from biomedical texts. We note that 
PhenoTagger can be improved in several aspects. First, PhenoTagger relies on n-gram phrase 
classification, so it can be difficult to differentiate different (context-dependent) concepts with the 
same texts or the same concept with different expressions; second, it is difficult to recognize the 
misspelling or low-frequency phenotypes in the samples; third, negation is not supported yet the 
negated instances can be important in diagnosing diseases.  
 
As a transformer encoder-based model,  BERT has shown excellent performance on a wide 
range of tasks in biomedical NLP applications, including named entity recognition (described 
above), text classification (such as disease prediction 37), and relation extraction (such as 
chemical-protein relation extraction 38). However, little work has been done to evaluate 
transformer decoder-based models, e.g., GPT-type models, in biomedical NLP tasks. In our 
view, this is partly due to the following reasons: 

1. The BERT structure was pre-trained on a large corpus so that it can be fine-tuned for a 
wide range of specific NLP tasks. In contrast, GPT was initially designed primarily for 
generating text such as in chatbots that fits the desired output format. 

2. BERT was released by Google in 2018 and quickly became widely available to the 
research community. Although GPT was initially released by OpenAI in 2018, it is less 
well-known and it took a few years to improve until ChatGPT becomes widely 
successful. Moreover, GPT-based models were initially only available for research 
purposes, with limited access to commercial users. 



3. Recent versions of GPT models are typically much larger and require significantly more 
computational resources compared to BERT models, which make them less accessible 
for researchers and practitioners with limited resources and budgets. 

Nevertheless, recent advances in the ability to scale Large Language Models (LLMs) have 
resulted in top-notch performance across various NLP tasks 39. The ability to scale LLMs to 
hundreds of billions of parameters has unlocked additional capabilities such as in-context few-
shot learning, making it possible for LLMs to perform well on tasks trained on only a handful of 
examples 40. Chain-of-Thought (CoT) prompting has also showcased the robust reasoning 
ability of LLMs across a wide variety of tasks, even in the absence of few-shot examples 41. 
Additionally, Huang et al. have demonstrated that LLMs are capable of self-improving with only 
unlabeled datasets 42. 
 
Current phenotype recognition models primarily rely on the HPO dictionary for training or 
prediction, limiting their ability to capture all the important phenotypic features, especially for 
those not well represented by HPO terms. Therefore, it will be of great scientific and practical 
importance to develop an accurate phenotype concept recognition model to extract all available 
phenotype information from clinical notes. In this study, we proposed two transformer-based 
models for phenotype concept recognitions: PhenoBCBERT (BERT-based) and PhenoGPT 
(GPT-based), and compared their performance to other existing models. We initially trained a 
phenotype recognition model on top of Bio+ClinicalBERT for rare disease-specific NLP text 
mining tasks, allowing the recognition of terms outside of the standard HPO vocabulary. Next, 
we implemented several GPT-based phenotype recognition models to supplement BERT-based 
models. Compared to existing tools such as PhenoTagger, our PhenoBCBERT can accurately 
infer essential phenotypic features from given contexts, despite the occurrence of non-HPO 
phenotypes, misspellings, and lexical dissimilarities with the original training data. Meanwhile, 
PhenoGPT can achieve comparable results with PhenoBCBERT with significantly fewer fine-
tuning data. Therefore, both of our Transformer-based models are robust and can complement 
each other to achieve improved performance in concept recognition of HPO or non-HPO 
phenotypes. 
 
 
RESULTS 
Summary 
In the sections below, we first separately described our evaluation of the performance of BERT-
based (PhenoBCBERT) and GPT-based (PhenoGPT) models with comparisons to existing 
approaches. We then performed a comparative analysis of BERT-based and GPT-based 
models and discussed the relative merits of each model’s architecture. Finally, we demonstrated 
real-world applications of these methods on publicly available clinical notes in the published 
genetics literature. The workflow design of the project is shown in Figure 1. The model 
architecture of PhenoBCBERT and PhenoGPT are illustrated in Figure 2. The tokenization 
techniques used in two models are described in Table 2. 
 
Evaluation of PhenoBCBERT  
For the evaluation of PhenoBCBERT, our initial dataset contains 3400 automatically labeled 
clinical notes and 460 hand-labeled clinical notes exclusively from the CHOP database, among 



which 200 automatically labeled ones were randomly selected for testing and the remaining 
ones were used for training.  
Comparing PhenoBCBERT and PhenoTagger 

We have on average ~79% overlap of concepts identified from our PhenoBCBERT model and 
PhenoTagger, among the 200 test notes. By examining the test notes where >50% of entities 
were found in PhenoTagger but not found in PhenoBCBERT, we inferred the following two 
scenarios with specific examples: 

1. PhenoTagger’s results may contain repeated/nested phenotype mentions, yet they are 
skipped by our model. For instance, as shown in the clinical note 4 of Figure 3, 
PhenoTagger infers both “autism” and “autism spectrum disorder” while our 
PhenoBCBERT only infers “autism spectrum disorder”. 

2. PhenoTagger’s results may contain non-phenotype entities (false positives) from human 
review. For instance, as shown in the clinical note 2 of Figure 3, PhenoTagger includes 
“contact the Roberts”, while PhenoBCBERT does not. 

There are several possibilities to explain the observed results. PhenoTagger, like other rule-
based or hybrid model 35,43, utilizes localized information to facilitate predictions. Specifically, it 
will segment a sentence into small groups of n-grams (n = 2~10), and then feed into a deep-
learning model (e.g., BioBERT) for classification. This output will be combined with dictionary-
based inference for the final prediction. Since segments of local information and dictionary-
based matching rely on the restricted meaning and patterns of short segments of tokens/words, 
it renders this method sensitive to the similarity of strings between input data and phenotype 
entities, which in turn leads to over-matching of the same tokens regardless of its meaning and 
its occurrence.  
In contrast, our PhenoBCBERT takes the complete long-stretch of meaningful sentences or 
paragraphs as the input, passes into a fine-tuned deep-learning model, and then post-
processes its output with minimal intervention (resemble subwords, etc.). Hence it will make a 
positive prediction only if the surrounding tokens grant it semantic meanings that resemble 
phenotype mentioning. Meanwhile, our infused hand-labeled data is continuously correcting the 
model from aligning to any wrong classifications automatically generated by PhenoTagger.  
We further examined the cases where entities were identified in PhenoBCBERT but not found in 
PhenoTagger. We illustrated a few case studies in Figure 3 as examples. In most cases, 
entities either do not have strong lexical similarity to a standard HPO term, or are written in a 
non-standard format (abbreviations, uncommon synonym, misspellings, etc.). For instance, in 
the clinical note 7 of Figure 3, our PhenoBCBERT successfully detected “difficulty urinating”, 
which corresponds to “urinary retention” in the standard HPO format (HP:0000016). 
PhenoTagger uses the standard HPO dictionary as the training data, which includes limited 
amounts of standardized phenotypic abnormalities encountered in human diseases. Therefore, 
it is not surprising that our model can reveal many phenotype entities that are not documented 
in any standard dictionaries. We acknowledge that our model may also generate false positives, 
such as ‘fragile' in Note 3. With the help of this pipeline, we will match newly found phenotype 
entities with higher-level HPO terms and it may help expand phenotype catalogs of rare 
diseases. 
In addition, we found that PhenoBCBERT is more robust to typos and misspelling of words in 
the sentence. After removing, or replacing, random letters and/or words of phenotype entities in 
the testing sentence, PhenoBCBERT still recognize the compromised phenotype entities. For 
example, by replacing “palmar telangiectasia” with “pal telrngiectasia”, PhenoTagger cannot 
recognize this phenotype while our model will recognize it precisely. In addition, our model can 



recognize abbreviations or short notation by doctors, which are not standard HPO terms. For 
example, 'severe IUGR' (Note 5) is not recognized by PhenoTagger. 
 
Evaluation of PhenoGPT  
As shown in Table 3 and 4, even though PhenoGPT used a significantly smaller volume of a 
public dataset in comparison to the in-house training data used by the PhenoBCBERT model, 
PhenoGPT has demonstrated highly competitive results, with an impressive accuracy of 0.857 
and the top F1 score (GPT-J based) when evaluated on the BiolarkGSC+ validation dataset. In 
the context of prompt-based learning, we have implemented a one-shot learning strategy and 
through this approach, we found that the overall size of the model plays a critical role in 
determining its effectiveness and overall performance. GPT-J is the smallest model with 6 billion 
parameters; GPT-3 (davinci) is the most capable GPT-3 model with 175 billion parameters40; 
GPT-3.5 (gpt-3.5-turbo) is one of the most advanced GPT model built on GPT-3 and involves 
reinforcement learning with human feedback (RLHF) 44, optimized for chat. The outputs 
generated by GPT-J would produce incorrect phenotype entities along with arbitrary HPO IDs. 
In comparison, the GPT-3.5 model is capable of generating more than 80% of accurate 
phenotype entities, albeit with slightly compromised HPO IDs. 
After the prompt-based learning, three models have drastically different performance as shown 
in the “GPT comparison 1” panel of Figure 4. The GPT-J has very low recall and makes up fake 
HPO IDs, whereas both GPT-3 and GPT-3.5 have reasonably good performance on entity 
extraction. On the other hand, GPT-3.5 is capable of performing entity normalizations by 
accurately assigning the appropriate HPO ID to corresponding entities. For instance, it can 
correctly associate "talipes equinovarus" with HP_0001762 and "foot deformities" with 
HP_0001760, likely due to its exposure to public phenotypic datasets during the pretraining 
process. Conversely, GPT-3 appears incapable of achieving such entity normalization without 
undergoing the fine-tuning process. However, after fine-tuning, GPT-3 is capable of successfully 
performing entity normalization, as discussed below. 
The prediction results after fine-tuning are illustrated in the GPT comparison 2-6 of Figure 4. 
We found that the performance of the model is significantly influenced by the size of the fine-
tuning dataset. Yet, both the closed-source and open-source models can yield comparably 
favorable outcomes. As shown in the “GPT comparison 2” panel (Figure 4), the performance of 
the GPT-3 based model fine-tuned on 28 instances is even worse than the prompt-based 
learning. Conversely, other model finetuned on 200 instances has considerably better results. It 
has fewer false positive predictions and more accurately normalized HPO IDs compared to 
prompt-based results. For example, the fine-tuned GPT-3 (w/ 200 instances) can successfully 
extract “distal arthrogryposis (HP: 0005684)” and “foot deformities (HP: 0001760)”, which were 
in the results of prompt-based GPT-3 prediction but with incorrect HPO IDs (HP: 0001812 and 
HP: 0000827, respectively); the fine-tuned model also excluded false outcomes in the prompt-
based learning like “strict diagnostic criteria”, “incomplete ascertainment”, “range of 
phenotypes”, etc. It is not surprising that the fine-tuned model will be more reliable and accurate 
on the phenotypic entity recognition than prompt-based learning, since the model will compute 
gradients and make updates on all of its parameters to fit the fine-tuning dataset. In addition, we 
searched through the 200 notes in the fine-tuning dataset and found that all phenotypic entities 
with the correct HPO ID normalization have appeared at least once in the fine-tuning dataset, 
which explains the reason why the fine-tuned model can successfully normalize those 
phenotypes. 
As illustrated in the GPT “comparison 3” panel (Figure 4), both the closed-source and open-
source models demonstrate strong ability to identify phenotype entities accurately. For example, 



in the case of the previous 9 positive phenotypic entities, both the GPT-J-based and Falcon-
based open-source models were able to successfully identify all of them. The LLaMA-based 
open-source model, however, missed one phenotype, "arthrogryposis", but it still correctly 
classified it under the more comprehensive HPO term, distal arthrogryposis (HP: 0005684). It is 
important to note that both LLaMA and GPT-J generated an additional false positive each; 
LLaMA misidentified "incomplete ascertainment", and GPT-J misidentified "variable". On the 
other hand, the Falcon model demonstrated an impeccable match for all phenotype entities. 
We further evaluated the performance of our open-source models across various clinical 
abstracts, as showcased in GPT comparisons 4-6 (Figure 4). We found that these three 
PhenoGPT open-source models demonstrate consistency and strong performance. In rare 
instances, there are discrepancies in results, as seen in GPT comparison 6. The GPT-J-based 
model predicted two additional true positives, but also reported a false positive, "miscarriage". 
Both LLaMA and Falcon predicted one additional true positive each, namely, "coxa-
epiphysiolysis" and "obesity".  
In conclusion, the results presented above emphasize the critical role played by both the size 
and quality of the pretraining data in determining the final performance of the model. 
Furthermore, it is highly recommended to initially fine-tune the large base GPT model on 
domain-specific datasets before utilizing it for inference, as this process enhances the model's 
ability to perform accurate entity normalization. When it comes to open-source versus closed-
source models, the choice largely depends on an individual's specific requirements. Open-
source models offer greater flexibility, allowing for customization and the use of various training 
strategies such as LoRA, quantization, and others. On the other hand, closed-source models 
depend on third-party services and are typically easier to implement through API calls. Both 
types of models demonstrate commendable performance. 
Comparison between the BERT-based model and GPT-based model 
Performance on phenotype entity recognition 

Both PhenoGPT and PhenoBCBERT are capable of extracting phenotypic information from 
unstructured raw clinical data. They have comparably high precision, recall and accuracy on the 
public validation dataset. As shown in the Table 3 and 4, PhenoGPT has the best Recall and 
F1 score for certain datasets while PhenoBCBERT has relatively lower scores. Since we 
formulated NER as a causal language model task for GPT model’s fine-tuning, it requires fewer 
efforts to post-process its outcomes (e.g., HPO ID normalization). In contrast, PhenoBCBERT 
needs extra modules to normalize its phenotype entity predictions (e.g., Sent2Vec or SVM). The 
precision scores of our models are not superior, which is partially due to the fact that our models 
can detect the words that are not included in the standard HPO dictionary.  
We also observed the nuances in the performance of the PhenoGPT model family, which 
showed slightly inferior results on the ID-68 dataset compared to PhenoBCBERT. These 
nuances can be attributed to various factors including dataset characteristics, architectural 
decisions, and training approaches. Specifically, ID-68 dataset comprises real-world clinical 
notes focused exclusively on families with intellectual disabilities, which naturally limits the 
model's performance to specific areas. PhenoBCBERT excels particularly in recognizing entities 
related to intellectual disabilities, likely owing to the high representation of this specific 
phenotype in the in-house dataset. This contrasts with other larger language models, which 
demonstrate better overall performance, as illustrated in Table 3. Another point to consider is 
the inherent difficulty in training large GPT-based language models. These models often rely 
heavily on their pre-existing knowledge base for decision-making, which is precisely why such 
large-scale models are developed in the first place. One of our primary objectives is to fine-tune 
large language models in a cost-effective manner to excel at general Named Entity Recognition 



(NER) tasks in the biomedical domain. Our findings indicate that both a fully fine-tuned BERT 
model and an efficiently fine-tuned large GPT model can outperform other general-purpose 
models in these tasks. This validates our approach and bolsters our confidence to continue 
refining our large language models for larger cohorts in future projects. 
Data efficiency for model training 

Despite the differences in model architecture and training approaches between PhenoBCBERT 
and PhenoGPT, both models demand accurately labeled data containing phenotypic 
information. Therefore, gathering and preprocessing raw clinical data for both models are 
equally challenging and expensive. Nonetheless, since GPT has been pretrained on a 
substantially larger dataset compared to BERT, it needs a relatively smaller fine-tuning dataset 
to attain comparable outcomes. Note that it is also possible that GPT models might have 
already seen the public datasets that were used in the fine-tuning step. 
Computing resource requirement and accessibility 

PhenoBCBERT has 110 million parameters and requires 1-2GB of RAM during training, making 
it suitable for fine-tuning with larger batch sizes. The closed-source PhenoGPT can have up to 
175 billion parameters, demanding 600 GB of RAM, so fine-tuning is performed using OpenAI's 
API and stored in the cloud for inference. The open-source PhenoGPT models still necessitates 
a certain amount of GPU resources, ranging from 14-70GB, depending on the specific model 
and training strategy utilized. The open-source model was saved locally and sharable for public 
use. 
In conclusion, BERT is more affordable and efficient, while GPT has excessive capabilities. The 
choice of which model to use depends on task requirements, and it is advisable to test different 
models since they each have their own merits. 
 
Additional validation through case studies 
We applied both BERT-based and GPT-based models (GPT-3) on clinical notes selected from 
papers published by the American Journal of Human Genetics (AJHG) 45-47 to extract phenotype 
entities. As shown in Figure 5, we noticed some differences between the results of 
PhenoTagger and our models. We underlined PhenoTagger-specific outputs, PhenoBCBERT-
specific outputs, and PhenoGPT-specific outputs in green, red and blue, respectively. We also 
highlighted negation detection and misspelled entities in red and yellow.  
In the example of Figure 5A, we observed that PhenoBCBERT captured all the phenotype 
entities, including two essential phenotypes missed by PhenoTagger (“restricted cerebellar 
growth” and “problems with latching and swelling”) and one negated phenotype entity 
(“chromosomal abnormalities”, which is an “abnormal cellular phenotype”). In addition, 
PhenoTagger mistakenly recognized one non-phenotype entity “nuchal translucency” as 
“Increased nuchal translucency” (HP: 0010880). PhenoGPT had high precision and skipped the 
negated phenotype entity, but it could not identify “ventriculomegaly” and “small cerebellum”. 
In the example Figure 5B, PhenoTagger could not recognize phenotypes “pyelocaliceal 
dilatation”, “dysmorphisms” and “micrognatia”. In contrast, PhenoBCBERT successfully 
highlighted all essential phenotypes, with extra granularity (“learning difficulty in expressive 
language” instead of “learning difficulty”). We also noticed that PhenoBCBERT did not identify 
non-phenotype entities such as “vacuum extraction”. For this note, PhenoGPT did not over-
predict phenotype terms such as “gestational diabetes” (maternal phenotype) and “umbilical 
artery” (non-phenotype). Additionally, PhenoGPT identified the less obvious phenotype entity, 
"height and weight above the 95th centile". 



In the example Figure 5C, PhenoTagger could recognize most of the positive phenotype 
entities, while both PhenoBCBERT and PhenoGPT slightly outperformed with more true positive 
predictions (“severe neurosensory hyopoacusia”) and more accurate phenotypic description (“… 
with stiffness”, “right-convex scoliosis”, “Achilles tendon”, “tendon retraction”). Our models 
missed one general phenotype “Pyramidal signs”, but successfully captured its child term “high 
tendon reflexes”, which contains more information at its level of taxonomic hierarchy.  
Interestingly, in the example Figure 5B and Figure 5C, we noticed misspellings in the original 
data (these mistakes are present in the originally published AJHG manuscript): “micrognatia” 
should be “micrognathia”, and “hyopoacusia” should be “hypoacusis”, which disguised 
themselves from PhenoTagger yet both PhenoBCBERT and PhenoGPT could recognize them. 
These examples supported the robustness of our transformer models as discussed above. 
The under-performance of PhenoTagger on these applications is mainly caused by two 
reasons, as specified in the original paper 36: first, PhenoTagger cannot disambiguate the 
different concepts with the same text name; second, PhenoTagger misses some phenotype 
concepts that are lexically dissimilar with the concept terms in the HPO.  
In conclusion, these case studies demonstrate that context information can be important and 
informative to reliably make predictions on phenotype recognition tasks. PhenoBCBERT and 
PhenoGPT can accurately infer essential phenotypic information from the given context, despite 
the occurrence of rare phenotypes, misspelling, and lexical dissimilarity with the original training 
data. 
 
DISCUSSION 
The study used BERT-based and GPT-based models on clinical texts from pediatric patients to 
identify known and unknown (not documented by HPO) clinical phenotypes. We found that both 
PhenoBCBERT and PhenoGPT can identify new concepts with better accuracy, recall, and 
precision than competing models. The methods can be adapted to other biomedical domains 
and can identify novel entities based on context. Despite the strengths, these models have 
several limitations and further improvements can be made.  
 
Effect of data quantity and quality 
Both PhenoBCBERT and PhenoGPT require annotated training data. The performance levels of 
the fine-tuned models may vary based on the quality of data collected and the labeling strategy 
utilized. Additionally, there is a potential for training bias, especially if physicians from the same 
institutions or teams tend to document notes in similar styles. For instance, physicians often 
repeatedly include a patient's past clinical history in a current clinical note when drafting a new 
note, which may lead to a bias toward specific semantic structures or recurring tokens (when 
the same passage occurs multiple times in the same note). Additionally, unexpected errors by 
doctors (such as typos, missing words, or incorrect phenotypes) can hinder the automatic 
labeling process from generating accurate training data. Moreover, the notes may contain 
redundant yet potentially privacy-leaking information (such as a patient's address or first name), 
which raises serious privacy and ethical concerns in the model training 48. Although we used a 
Stanford-Penn MIDRC Deidentifier model for de-identifying all clinical notes before using them 
in the BERT training process, we are still concerned about the possibility of leaking private 
information from patients and therefore cannot share the model trained on in-house data. On 
the other hand, PhenoGPT, which can utilize both open-source and closed-source GPT models, 
was fine-tuned using only minimal amounts of data available to the public. Thus, we do not have 



the same privacy leakage concerns that BERT-based models might pose. Despite this, thanks 
to their extensive pre-trained knowledge base, they still demonstrate strong performance on the 
evaluation datasets. In our future research, we aim to incorporate more diverse datasets 
sourced from various healthcare systems for additional refinement/improvements of the 
phenotype recognition models, with appropriate IRB protocols. We will assess the degree to 
which these institutional datasets enhance our models' effectiveness and generalizability. Lastly, 
we discussed above generic concerns applicable to all deep learning models when used on real 
clinical data. Several different existing strategies, including strings comparison for repeated 
tokens, auto-correction for misspelling 49, de-identification model 50 to remove patient 
information, have been explored to minimize the undesirable negative impacts of raw clinical 
data. 
 
Model structure 
For the BERT-based model, we used pretrained Bio+Clinical BERT as the main deep learning 
model, which is configured from BERTbase. The size of the model (number of attention layers, 
number of attention heads, dimensions of non-linear layer, etc.) is relatively small compared to 
recently published large language models. In this case, pretraining for a larger model with 
billions of parameters on EHR data may be necessary. Based on the promising result from the 
current study, we will pretrain a specialized large language model on de-identified clinical notes 
from our database for future downstream EHR-NLP tasks. 
We also noticed the restrictions on the length of sentences for the language model (512 tokens 
for BERTbase and BERTlarge). To overcome the bottleneck, we will further adopt the down-
sampling 51 or/and filtering methods 52 on top of our model. Meanwhile, we can distribute many 
independent models on multiple GPUs for training such that a combination of them will take 
care of extra-long samples 53. 
With the GPT-based model, its larger input window and automatic normalization are 
advantageous as part of the output. However, the vast number of parameters and associated 
costs can make it difficult for retraining. Moreover, as a generative language model, its strengths 
in chat completion and next-sentence generation were not fully utilized. In fact, our fine-tuning 
process diminished its capacity to generate coherent human-like responses. Consequently, a 
more effective strategy to fully leverage the model's structure is essential. 
 
Model Selection and Implementation 
Our PhenoBCBERT model, initialized from a BERT-based architecture, demands the fewest 
computational resources. However, its Named Entity Recognition (NER) training strategy 
necessitates additional steps for entity normalization and negation, potentially resulting in a 
longer overall processing time. On the other hand, while our GPT-based models do require a 
certain degree of computational power during training, their final versions are relatively 
resource-efficient and easy to deploy for inference and predictive tasks. 
In comparison to PhenoTagger, both of our models can be conveniently transferred to a local 
machine for making predictions. Even for setups with limited GPU resources, CPU-based 
deployment remains a viable alternative. For users interested in custom training our models on 
their datasets, we have provided comprehensive guidelines and scripts in the code repository 
that detail how to fine-tune large language models with minimal computational expenditure. 
 
Future Directions 



Although both our models show promising results for phenotype entity recognition, they cannot 
classify all of the desired phenotype entities in the context. Concretely speaking, we list the 
following two potential improvements in terms of our current work. 
Phenotype entity recognition 

In the test data, we noticed that our model would recognize medication names and disease 
names as positive if they appear in a similar context as phenotypes. (e.g., he has red eyes vs. 
he has sertraline.) Also, despite post-processing, the output of BERT-based model may skip 
prepositions in phenotype entities (learning difficulty in the expressive language). In very few 
cases, both models missed out on rare phenotype entities. 
Incorporating hard negative examples into the annotated dataset for fine-tuning could enhance 
phenotype entity recognition performance. Additionally, employing multi-modal networks to 
boost natural language understanding may be another potential approach. These strategies 
represent potential avenues for future exploration. 
HPO normalization and negation 

We observed that our model can encounter errors when associating phenotype entities with 
their corresponding HPO IDs. This issue arises as each HPO term may have multiple synonyms 
or typographical errors that were not present in the training data. Furthermore, PhenoBCBERT 
employs Sent2Vec to calculate cosine similarity between a given phenotype entity and all HPO 
terms, assigning the most similar HPO term to the phenotype entity. Meanwhile, PhenoGPT 
conducts the next token prediction based on a given phenotype entity. Neither of these 
approaches can effectively tackle normalization problems.  
We hypothesize that employing vector embedding could enhance the HPO normalization 
process. In particular, we aim to leverage GPT's extensive knowledge to generate a database of 
HPO embeddings as high-dimensional vectors, where each vector is normalized to enable 
either Euclidean or cosine distance as similarity measures. Such an embedding should yield 
more accurate normalization outcomes and better interpretability. Lastly, we can enhance the 
detection of negated entities by incorporating a dedicated post-processing model based on the 
transformer or LSTM architectures as a part of the pipeline, rather than relying on general NLP 
packages such as Negspacy. This will be one of our focuses in future research. 
In addition to the two aspects previously discussed, we have also fine-tuned the latest version of 
the LLaMA 2 model to investigate whether it offers any advancements in HPO normalization or 
notable improvements in phenotype entity recognition. Unfortunately, the most recent LLaMA 2 
iteration does not yield better outcomes; its performance closely mirrors that of the original 
LLaMA. We have made this model accessible in our public code repository for further testing. 
Going forward, we plan to delve into the utility of large-scale generative language models for a 
range of biomedical NLP tasks, such as entity recognition, relationship extraction, and text 
classification, in a cost-effective manner. Given the strength of reinforcement learning, we also 
hope to develop such a model capable of adapting to changes in the environment and can 
continue to learn over time (for example, personalized biomedical NLP pipelines). Meanwhile, 
scaled models will have compromised interpretability and credential issues, and carefully 
addressing these problems is another direction for future work. 
 
EXPERIMENTAL PROCEDURES 
Resource availability 
Lead contact 



Further information and requests for data should be directed to and will be fulfilled by the lead 
contact, Dr. Kai Wang (wangk@chop.edu). 
Materials availability 

This study did not generate new unique materials. 
Data and code availability 

The various GPT-based models and example notebook scripts are available to download at 
https://github.com/WGLab/PhenoGPT. All original code has been deposited at DOI: 
10.5281/zenodo.8346470 and is publicly available as of the date of publication. Any additional 
information required to reanalyze the publicly available data reported in this paper is available 
from the lead contact upon request. 
 
Summary 
PhenoBCBERT utilized encoder-based BERT model by fine-tuning the pretrained Bio+Clinical 
BERT model for concept recognition. PhenoGPT utilized decoder-based GPT model (GPT-J, 
Falcon 54, LLaMA 55, GPT-3 40, GPT-3.5 44) and can be trained by either prompt-based strategy 
or fine-tuning strategy. The framework of the project design is shown in Figure 1. The workflow 
of both PhenoBCBERT and PhenoGPT is illustrated in Figure 2. All the computational models 
were built using the PyTorch module and HuggingFace 56 interface. 
 
Data preparation 
This study was approved by the institutional review board of the Children Hospital of 
Philadelphia (CHOP). Our in-house dataset consists of clinical notes of rare disease patients 
seen at CHOP. We used 2252 ICD10 code 57 (that can map to the rare disease in the Orphanet 
Database) to query rare disease patients. Among these, we sub-sampled more than 4500 
clinical notes regarding rare diseases, each of which contains potential phenotypic concepts 
that have been recognized by physicians. Although these potential phenotype entities are not 
complete, they will serve as the foundational phenotype information to assist in locating clinical 
abstracts and incorporating additional related phenotype entities using the mixed labeling 
strategy outlined in the following section. Since patients might have multiple visits to the hospital 
due to different reasons, we only retained disease progression summary notes that map to 
these rare-disease specific ICD10 code. We further excluded low-quality notes defined as 
patients with less than 4 visits or notes with less than 1000 words. Each progression summary 
note contains full counseling history, including medical history, surgical history, testing and 
imaging, developmental history, physical history, family history, genetic counseling summary, 
etc. In the end, we obtained 3860 high-quality clinical abstracts by using associated 
fundamental phenotypic concepts as the query to extract the counseling summary, removing 
extraneous information, and then truncating each summary to a maximum of 2400 characters 
(approximately 500 tokens). This was necessary as we are utilizing a BERT-based model that 
can only accommodate up to 512 tokens per sample. After truncation, the 3860 clinical 
abstracts contained over 14,000 individual trainable sentences. Due to confidentiality concerns, 
we used this data locally only for PhenoBCBERT. 
Our publicly available dataset consists of BiolarkGSC+ 58 and ID-68 35. BiolarkGSC+ is an 
updated version of Bio-Lark gold-standard corpus (GSC) dataset 59 with 228 de-identified 
clinical notes abstracts and the corresponding HPO terms. The ID-68 dataset includes 68 de-
identified clinical notes from families with intellectual disabilities 60 and with HPO terms 
annotated in the same way as in the GSC+ dataset 35. These public datasets were used mainly 
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for fine-tuning, validating GPT-based models, and comparison between various rule-based and 
deep-learning models. Furthermore, in our case studies, we also evaluated performance of 
different methods on three distinct clinical abstracts of published biomedical literature in the 
American Journal of Human Genetics (AJHG) 45-47 as the independent third-party data source. 
Specifics will be covered in the extra case study section. 
 
Tokenization 
In the PhenoBCBERT, we used WordPiece tokenization and three different embeddings, 
consisting of token, position, and sentence embedding, to represent the input information 29. 
Most meaningful words are kept and the other words are tokenized into pieces. An uncommon 
word can be split into more than one tokens, and two sharps (##) are added in front of the 
tokens. For example, “arthritis” is tokenized into “art”, “##hr”, “##itis”. This means the word 
“arthritis” was less common than other words when training the WordPiece representation. This 
technique helps us to tokenize all possible words in the literature regardless of whether they 
occurred before. Two special tokens [CLS] and [SEP] were used to mark the start and the end 
of a sentence. We did not consider the order of sentences in our model, so the sentence 
embedding will default to all 0’s. 
In the PhenoGPT, we used GPT’s fast Byte Pair Encoding (BPE), which can handle out-of-
vocabulary (OOV) words in a similar fashion as WordPiece tokenization with additional 
SentencePiece 61 mechanism. Since GPT is a generative decoder model, we do not need 
sentence embeddings. Table 2 summarized the tokenization techniques used in two models. 
 
Labeling and Training strategy 
To train PhenoBCBERT and PhenoGPT models for phenotype entity recognition, different 
labeling strategies were required due to the fundamental differences in their model structures.  
PhenoBCBERT 

We labeled our BERT-based model PhenoBCBERT following the standard NER (name entity 
recognition) task practice. We utilized PhenoTagger automatic labeling in our training process 
because (1) it is a hybrid model combining both deep-learning-based results and rule-based 
classification, therefore making it a good representative of two major classification methods; and 
(2) it outperforms other state-of-the-art methods for phenotype concept recognitions, like 
Doc2hpo 21, OBO 62 and NCR 27. 
To avoid duplicating PhenoTagger’s results, we will use data augmentation, as in various NLP 
tasks 63-66, to improve our training dataset by infusing the 3400 automatically labeled clinical 
notes with 460 hand-labeled clinical notes from our in-house dataset. We name this labeling 
strategy with data augmentation as mixed-supervision, in contrast to a fully-supervised dataset 
with manually labeled clinical notes or a dataset with labels generated completely by third party 
NER machines. 
Finally, we located starting and ending positions of each phenotype entity from PhenoTagger’s 
output file in the original input sentence and matched them to the tokenized subwords for 
labeling as shown in the table. Instead of the IOB labeling strategy which distinguishes 
beginning and inside tokens, we simply adopted a binary inside-outside labeling strategy for 
efficiency and labeled all positive sub-word tokens as 1. The final labeling is illustrated in Table 
2. The starting and ending position are manually annotated in 460 hand-labeled clinical notes. 
PhenoGPT 



Instead of training a GPT model for name entity recognition, we labeled the training data to 
comply with the model’s nature as a generative decoder. For a given clinical abstract, we 
generated a text by appending phenotype entities with their associated HPO IDs to the abstract 
for either prompt-based learning or fine-tuning. 
Comparing these two models’ training strategies, although NER needs a lot of time and effort on 
data preprocessing (mixed labeling) and labeling, it is much easier to train than causal language 
modeling, as in a GPT model. Causal language modeling cannot attend to future tokens and 
can only make predictions on the next token, whereas the NER model can attend to a complete 
sentence to make a classification on the [CLS] token. In general, generative language models 
require a larger amount of pretraining data due to a larger amount of training parameters, which 
may cause unexpected behaviors 67. 
 
Model initialization, fine-tuning and prompt-based learning 
Our PhenoBCBERT was initialized from the Bio+Clinical BERT 31 as the pre-trained base 
model. After initialization, we continued to finetune all parameters with our mixed-supervised 
dataset and apply an extra token classification layer for label prediction (out-of-bag or 
phenotype entity). Lastly, we compared our results with PhenoTagger’s output to map common 
phenotypic entities and rely on Sent2Vec's similarity score 68 of embeddings to normalize newly 
detected phenotypes in a manner similar to this study17. We also applied Negspacy 69 to 
exclude negated entities in the final step. 
Our PhenoGPT model was constructed upon a range of GPT models, with the specific choices 
influenced by factors such as model availability and size, as we aimed to ensure ease of 
reproducibility for users. For the open-source models, we utilized GPT-J-6B, Falcon-7B, and 
LLaMA-7B as the initial models. In contrast, for the closed-source models, we opted to start with 
the GPT-3 model. Both versions were subsequently fine-tuned using the public BiolarkGSC+ 
dataset. It is also worth mentioning that we did not employ any proprietary data in this task to 
avoid the potential risk of disclosing confidential information, particularly with the closed-source 
model. We used cross-entropy loss to penalize the causal language model for producing 
incorrect next tokens, i.e., wrong phenotype entities or HPO IDs. Since a large language model 
like GPT is capable of prompt-based few-shot learning, we also tested GPT-J, GPT-3, and 
GPT-3.5 for their performance given only prompts. We used the prompt to guide the GPT model 
towards generating phenotypic features. For example, the prompt we used is " please identify 
human phenotype ontology for me". To evaluate the performance, we used the publicly 
available BiolarkGSC+ dataset and ID-68 dataset for training and validation, and both datasets 
include human labeled HPO terms and their identifiers. We divided the BiolarkGSC+ dataset 
into two asymmetric potions, one containing 200 instances and the other one containing 28 
instances. We then proceeded to fine-tune our entire suite of PhenoGPT models on a larger 
dataset comprising 200 instances. Furthermore, to assess the impact of training sample sizes, 
we also fine-tuned two PhenoGPT models based on GPT-3: one was trained using a dataset of 
200 instances and validated on a set of 28 instances over 12 epochs, while the other was 
trained on a smaller set of 28 instances and validated on the larger 200-instance set over 32 
epochs. Note that these two models were also referred to as GPT-3 (200) and GPT-3 (28) in the 
Figure 4. 
In the deployment of open-source PhenoGPT models (GPT-J, Falcon, LLaMA), we used 4-bits 
and 8-bits 70 model quantization strategy to reduce our model size to only 1/4th without 
compromising the performance. Following this, the language model parameters are set as fixed 
and a comparatively small quantity of trainable parameters are incorporated into the model via 
Low-Rank Adapters (LoRA) 71. During the fine-tuning process, the optimizer propagates 



gradients through the static 4-bit quantized pre-trained language model into these Low-Rank 
Adapters. It is important to note that only the LoRA layers undergo updates during the training 
phase. This training strategy, known as QLoRA 72, is implemented across all of our open-source 
PhenoGPT models. 
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Legends of Figures 
Figure 1. Illustration of the workflow of the project. 
Figure 2. Illustration of the BERT-based and GPT-based model used in the current study for a 
sentence with phenotype mention. (A) Conversion of input sequence into a combination of three 
embeddings (sentence embedding is treated as zero in the current study). (B) The pre-training 
and fine-tuning strategy for PhenoBCBERT. (C) The pre-training and fine-tuning strategy for 
PhenoGPT. 
Figure 3. Examples of phenotype terms from 8 clinical notes recognized by PhenoTagger and 
PhenoBCBERT. The font size is relative to the frequency of appearance. 
Figure 4. Examples of phenotype terms from clinical notes recognized by different series of GPT 
models. GPT comparison 1: prediction results after prompt-based learning. GPT comparison 2-
6: prediction results after fine-tuning. GPT-3 (N): GPT-3 fine-tuned based on N instances. 
Figure 5. Case studies of the predicted phenotype entities with PhenoTagger, PhenoBCBERT 
and PhenoGPT (GPT-3). The negation terms and misspelled terms from the original published 
manuscript are highlighted. 
 
  



 
TABLES 
 
 
 

 Rule-
based 

Hybrid Deep-
learning 

Year 

Metamap    2001 

NCBO    2009 

OBO    2014 

Doc2Hpo    2019 

ClinPhen    2019 

NCR   CNN (local) 2019 

Phenotagger   BERT(local) 2021 

BERN2   BERT 2022 

PhenoBERT   CNN+BERT 2022 

Table 1. Summary of different phenotype recognition models. 
 
 
 
 
 
 
 
 
 
 
 
 



Input BERT 
Tokenize 

GPT 
Tokenize 

Labeling 

 
[CLS]  -100 

he he he 0 

has has _has 0 

red red _red 1 

eyes eyes _eyes 1 

and and _and 0 

distance distance _distance 1 

exotropia exo _exo 1 
 

##tropia tropia 1 
 

[SEP]  -100 

Table 2. Illustration of labeling strategies for a sentence with phenotype mentions. 
 
 
 
  



 
BiolarkGSC+ 
(Validation) 

Model Precision Recall F1 

OBO Anotator 0.810 0.568 0.668 

NCBO 0.777 0.521 0.624 

Doc2hpo-Ensemble 0.754 0.608 0.673 

MetaMap 0.707 0.599 0.649 

Clinphen 0.590 0.418 0.489 

NeuralCR 0.736 0.610 0.667 

PhenoTagger 0.720 0.760 0.740 

PhenoRerank 0.843 0.708 0.770 

PhenoBCBERT 0.747 0.813 0.779 

PhenoGPT(GPT-3) 0.827 0.794 0.810 

PhenoGPT(GPT-J) 0.809 0.857 0.832 

PhenoGPT(Falcon) 0.801 0.792 0.796 

PhenoGPT(LLaMA) 0.828 0.694 0.755 

Table 3. Performance comparison on the BiolarkGSC+ validation set. PhenoGPT and 
PhenoBCBERT were fine-tuned using the BiolarkGSC+ training set. 
  



 
ID-68 

(Validation) 

Model Precision Recall F1 

NCBO 0.874 0.660 0.752 

MetaMapLite 0.804 0.591 0.682 

Doc2hpo 0.844 0.575 0.684 

Clinphen 0.749 0.615 0.675 

NeuralCR 0.786 0.776 0.781 

PhenoTagger 0.898 0.755 0.820 

PhenoBERT 0.943 0.781 0.854 

PhenoBCBERT 0.912 0.923 0.872 

PhenoGPT(GPT-3) 0.818 0.814 0.816 

PhenoGPT(GPT-J) 0.723 0.758 0.740 

PhenoGPT(Falcon) 0.738 0.881 0.803 

PhenoGPT(LLaMA) 0.719 0.926 0.809 

Table 4. Performance comparison on the ID-68 dataset. PhenoGPT and PhenoBCBERT were 
fine-tuned using BiolarkGSC+ training set. 
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E[SEP]
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